Как запомнить число Пи. Число пи прописью


π - Греческая строчная буква пи (U+03C0) символ, знак, значок, иконка, html: π π - Греческий и коптский алфавиты

U+03C0

Сохранить

Начертание этого символа в разных шрифтах

Описание символа

Извините, пока нет подробной информации.

Кодировка

Кодировка hex dec (bytes) dec binary
UTF-8 CF 80 207 128 53120 11001111 10000000
UTF-16BE 03 C0 3 192 960 00000011 11000000
UTF-16LE C0 03 192 3 49155 11000000 00000011
UTF-32BE 00 00 03 C0 0 0 3 192 960 00000000 00000000 00000011 11000000
UTF-32LE C0 03 00 00 192 3 0 0 3221422080 11000000 00000011 00000000 00000000

unicode-table.com

Как запомнить число Пи

Самый известный стишок для запоминания числа Пи звучит так:

Чтобы нам не ошибаться,Надо правильно прочесть:Три, четырнадцать, пятнадцать,Девяносто два и шесть.

Ну и дальше надо знать,Если мы вас спросим -Это будет пять, три, пять,Восемь, девять, восемь.

(С. Бобров "Волшебный двурог")

 

Выучить значение Пи помогут стишки, в которых количество букв каждого слова последовательно совпадает с цифрой из числа Пи.

Вот несколько примеров таких стихов:

"Раз у Коли и АриныРаспороли мы перины.Белый пух летал, кружился,Куражился, замирал,Ублажился,Нам же далГоловную боль старух.Ух, опасен пуха дух!"

 

"Это я знаю и помню прекрасно,Но многие знаки мне лишни, напрасны.Доверимся знаньям громаднымТех, пи кто сосчитал, цифр армаду."

 

Другим интересным вариантом как запомнить число Пи является система «Джордано», построенная на образном воспроизведении. Изначально нужно каждой цифре присвоить образ, состоящий из пары согласных букв.

0 – НМ, 1 – ГЖ, 2 – ДТ, 3 – КХ, 4 – ЧЩ, 5 – ПБ, 6 – ШЛ, 7 – СЗ, 8 – ВФ, 9 – РЦ.

Давайте попробуем запомнить число Пи до двадцатого знака после запятой. Вот оно - 3,14159265358979323846…

Для этого сначала разобьем наши цифры на двузначные числа и запишем их в виде букв. Затем подберем слова, в которых будет по одной из букв каждой пары.

14 – ГЖ ЧЩ – ЖуЧок, 15 – ГЖ ПБ – ЖаБа, 92 – РЦ ДТ – РиТа, 65 – ШЛ ПБ – ЛиПа,  35 – КХ ПБ – КеПка, 89 – ВФ РЦ – ВеРно, 79 – СЗ РЦ – ЗаяЦ, 32 – КХ ДТ – КоТ, 38 – КХ ВФ – КоФе, 46 – ЧЩ ШЛ – ЧаШка.

Как видно, сначала идут 2 согласные, каждая их которых преобразуется в цифру, которую запоминаем.

У нас есть слова, которые нужно запомнить. Легче всего придумать из них рассказ.

"ЖуЧок и ЖаБа РиТа жили в лесу. Как-то раз под ЛиПой они нашли КеПку. ВеРно это ЗаяЦ или КоТ ее потеряли. Выпили друзья КоФе из ЧаШки и пошли искать кому принадлежит пропажа."

Остается запомнить рассказ и опорные слова. Затем перевести слова в цифры и удивить окружающих своей памятью.

 

Еще один способ выучить число Пи – это разбить цифры после запятой на группы по четыре. Специалисты в области мнемоники рекомендуют начинать запоминание с четырех групп, постепенно увеличивая нагрузку.

Для тех, кто без труда запоминает номера телефонов, можно записать число Пи в виде номеров. Это будет выглядеть так:

Анна (314) 159-26-53Борис (589) 793-23-84Владимир (626) 433-83-27Галина (950) 288-41-71 и т.д.

Лучше присваивать номерам имена по алфавиту и по возможности знакомых Вам людей. И тогда запомнить число Пи не составит труда.

Это всего лишь несколько способов как запомнить число Пи. Пробуйте, тренируйте память, возможно, Вам удастся не только выучить большое количество цифр, но и придумать свой вариант запоминания.

 

О числе Пи и рекордах его запоминания.

π - это математическая константа, которая выражает отношение длины окружности к длине ее диаметра и равна приблизительно 3,14. Именно это числовое значение мы подставляем в формулы, решая задачи по геометрии.

На самом же деле цифр после запятой значительно больше. На сегодняшний день их известно несколько триллионов, вычисленных при помощи компьютера. Люди постоянно соревнуются в их запоминании. Конечно, воспроизвести по памяти все известные цифры числа Пи не под силу ни одному человеку, но, тем не менее, есть рекордсмены, которые смогли запомнить несколько тысяч знаков.

Хидиаки Томойори из Японии воспроизвел около 40 000 цифр числа Пи. Для запоминания ему понадобилось почти 10 лет. В России Александру Беляеву удалось запомнить 2500 знаков. Это значительно меньше, но и времени он потратил всего 1,5 месяца. Какими именно способами как запомнить число Пи пользовались эти люди, история умалчивает.

Число Пи - справочные материалы

Число Пи - значение, история, кто придумал

Чему равно число Пи

Число Пи в Excel

Число Пи на клавиатуре и в Word

Фотографии числа Пи

www.calculator888.ru

Пи (число)

пи число пи, пи число фибоначчи(перечислено в порядке увеличения точности)

3,1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

Первые 1000 знаков после запятой числа π У этого термина существуют и другие значения, см. Пи. Если принять диаметр окружности за единицу, то длина окружности — это число «пи» Пи в перспективе

(произносится «пи») — математическая константа, равная отношению длины окружности к длине её диаметра. Обозначается буквой греческого алфавита «пи». Старое название — лудольфово число.

Содержание

Свойства

Трансцендентность и иррациональность

Соотношения

Известно много формул числа :

здесь простые числа

История

Символ константы

Впервые обозначением этого числа греческой буквой воспользовался британский математик Джонс в 1706 году, а общепринятым оно стало после работ Леонарда Эйлера в 1737 году.

Это обозначение происходит от начальной буквы греческих слов περιφέρεια — окружность, периферия и περίμετρος — периметр.

История числа шла параллельно с развитием всей математики. Некоторые авторы разделяют весь процесс на 3 периода: древний период, в течение которого изучалось с позиции геометрии, классическая эра, последовавшая за развитием математического анализа в Европе в XVII веке, и эра цифровых компьютеров.

Геометрический период

То, что отношение длины окружности к диаметру одинаково для любой окружности, и то, что это отношение немногим более 3, было известно ещё древнеегипетским, вавилонским, древнеиндийским и древнегреческим геометрам. Самое раннее из известных приближений датируется 1900 годом до н. э.; это 25/8 (Вавилон) и 256/81 (Египет), оба значения отличаются от истинного не более, чем на 1 %. Ведийский текст «Шатапатха-брахмана» даёт как 339/108 ≈ 3,139.

Алгоритм Лю Хуэя для вычисления

Архимед, возможно, первым предложил математический способ вычисления . Для этого он вписывал в окружность и описывал около неё правильные многоугольники. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. Рассматривая правильный 96-угольник, Архимед получил оценку и предположил, что примерно равняется 22/7 ≈ 3,142857142857143.

Чжан Хэн во II веке уточнил значение числа , предложив два его эквивалента: 1) 92/29 ≈ 3,1724…; 2) ≈ 3,1622.

В Индии Ариабхата и Бхаскара использовали приближение 3,1416. Варахамихира в 6 веке пользуется в «Панча-сиддхантике» приближением .

Около 265 года н. э. математик Лю Хуэй из царства Вэй предоставил простой и точный итеративный алгоритм (англ. Liu Hui's π algorithm) для вычисления с любой степенью точности. Он самостоятельно провёл вычисление для 3072-угольника и получил приближённое значение для по следующему принципу:

Позднее Лю Хуэй придумал быстрый метод вычисления и получил приближённое значение 3,1416 только лишь с 96-угольником, используя преимущества того факта, что разница в площади следующих друг за другом многоугольников формирует геометрическую прогрессию со знаменателем 4.

В 480-х годах китайский математик Цзу Чунчжи продемонстрировал, что ≈ 355/113, и показал, что 3,1415926 < < 3,1415927, используя алгоритм Лю Хуэя применительно к 12288-угольнику. Это значение оставалось самым точным приближением числа в течение последующих 900 лет.

Классический период

До II тысячелетия было известно не более 10 цифр . Дальнейшие крупные достижения в изучении связаны с развитием математического анализа, в особенности с открытием рядов, позволяющих вычислить с любой точностью, суммируя подходящее количество членов ряда. В 1400-х годах Мадхава из Сангамаграма (англ. Madhava of Sangamagrama) нашёл первый из таких рядов:

Этот результат известен как ряд Мадхавы — Лейбница, или ряд Грегори — Лейбница (после того как он был заново обнаружен Джеймсом Грегори и Готфридом Лейбницем в XVII веке). Однако этот ряд сходится к очень медленно, что приводит к сложности вычисления многих цифр числа на практике — необходимо сложить около 4000 членов ряда, чтобы улучшить оценку Архимеда. Однако преобразованием этого ряда в

Мадхава смог вычислить как 3,14159265359, верно определив 11 цифр в записи числа. Этот рекорд был побит в 1424 году персидским математиком Джамшидом ал-Каши, который в своём труде под названием «Трактат об окружности» привёл 17 цифр числа , из которых 16 верные.

Первым крупным европейским вкладом со времён Архимеда был вклад голландского математика Людольфа ван Цейлена, затратившего десять лет на вычисление числа с 20-ю десятичными цифрами (этот результат был опубликован в 1596 году). Применив метод Архимеда, он довёл удвоение до n-угольника, где n = 60·229. Изложив свои результаты в сочинении «Об окружности» («Van den Circkel»), Лудольф закончил его словами: «У кого есть охота, пусть идёт дальше». После смерти в его рукописях были обнаружены ещё 15 точных цифр числа . Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число иногда называли «лудольфовым числом», или «константой Лудольфа».

Примерно в это же время в Европе начали развиваться методы анализа и определения бесконечных рядов. Первым таким представлением была формула Виета:

,

найденная Франсуа Виетом в 1593 году. Другим известным результатом стала формула Валлиса:

,

выведенная Джоном Валлисом в 1655 году.

Аналогичные произведения:

Произведение, доказывающее родственную связь с числом Эйлера e:

В Новое время для вычисления используются аналитические методы, основанные на тождествах. Перечисленные выше формулы малопригодны для вычислительных целей, поскольку либо используют медленно сходящиеся ряды, либо требуют сложной операции извлечения квадратного корня.

Первую эффективную формулу нашёл в 1706 году Джон Мэчин (англ. John Machin)

Разложив арктангенс в ряд Тейлора

,

можно получить быстро сходящийся ряд, пригодный для вычисления числа с большой точностью.

Формулы такого типа, в настоящее время известные как формулы Мэчина (англ. Machin-like formula), использовались для установки нескольких последовательных рекордов и остались наилучшими из известных методов для быстрого вычисления в эпоху компьютеров. Выдающийся рекорд был поставлен феноменальным счетчиком Иоганном Дазе (англ. Johann Dase), который в 1844 году по распоряжению Гаусса применил формулу Мэчина для вычисления 200 цифр в уме. Наилучший результат к концу XIX века был получен англичанином Вильямом Шенксом (англ. William Shanks), у которого ушло 15 лет для того, чтобы вычислить 707 цифр, хотя из-за ошибки только первые 527 были верными. Чтобы избежать подобных ошибок, современные вычисления подобного рода проводятся дважды. Если результаты совпадают, то они с высокой вероятностью верные. Ошибку Шенкса обнаружил один из первых компьютеров в 1948 году; он же за несколько часов подсчитал 808 знаков .

Теоретические достижения в XVIII веке привели к постижению природы числа , чего нельзя было достичь лишь только с помощью одного численного вычисления. Иоганн Генрих Ламберт доказал иррациональность в 1761 году, а Адриен Мари Лежандр в 1774 году доказал иррациональность . В 1735 году была установлена связь между простыми числами и , когда Леонард Эйлер решил знаменитую Базельскую проблему (англ. Basel problem) — проблему нахождения точного значения

,

которое составляет . И Лежандр, и Эйлер предполагали, что может быть трансцендентным, что было в конечном итоге доказано в 1882 году Фердинандом фон Линдеманом.

Считается, что книга Уильяма Джонса «Новое введение в математику» c 1706 года первая ввела в использование греческую букву для обозначения этой константы, но эта запись стала особенно популярной после того, как Леонард Эйлер принял её в 1737 году. Он писал:

Существует множество других способов отыскания длин или площадей соответствующей кривой или плоской фигуры, что может существенно облегчить практику; например, в круге диаметр относится к длине окружности как 1 к

См. также: История математических обозначений

Эра компьютерных вычислений

Эпоха цифровой техники в XX веке привела к увеличению скорости появления вычислительных рекордов. Джон фон Нейман и другие использовали в 1949 году ЭНИАК для вычисления 2037 цифр , которое заняло 70 часов. Ещё одна тысяча цифр была получена в последующие десятилетия, а отметка в миллион была пройдена в 1973 году (десяти знаков числа вполне достаточно для всех практических целей). Такой прогресс имел место не только благодаря более быстрому аппаратному обеспечению, но и благодаря алгоритмам. Одним из самых значительных результатов было открытие в 1960 году быстрого преобразования Фурье, что позволило быстро осуществлять арифметические операции над очень большими числами.

В начале XX века индийский математик Сриниваса Рамануджан обнаружил множество новых формул для , некоторые из которых стали знаменитыми из-за своей элегантности и математической глубины. Одна из этих формул — это ряд:

.

Братьями Чудновскими в 1987 году найдена похожая на неё:

,

которая даёт примерно по 14 цифр на каждый член ряда. Чудновские использовали эту формулу для того, чтобы установить несколько рекордов в вычислении в конце 1980-х, включая то, в результате которого в 1989 году было получено 1 011 196 691 цифр десятичного разложения. Эта формула используется в программах, вычисляющих на персональных компьютерах, в отличие от суперкомпьютеров, которые устанавливают современные рекорды.

В то время как последовательность обычно повышает точность на фиксированную величину с каждым следующим членом, существуют итеративные алгоритмы, которые на каждом шагу умножают количество правильных цифр, требуя, правда, высоких вычислительных затрат на каждом из таких шагов. Прорыв в этом отношении был сделан в 1975 году, когда Ричард Брент и Юджин Саламин (англ. Eugene Salamin (mathematician)) независимо друг от друга открыли алгоритм Брента — Саламина (англ. Gauss–Legendre algorithm), который, используя лишь арифметику, на каждом шагу удваивает количество известных знаков. Алгоритм состоит из установки начальных значений

и итераций:

,

пока an и bn не станут достаточно близки. Тогда оценка даётся формулой

При использовании этой схемы 25 итераций достаточно для получения 45 миллионов десятичных знаков. Похожий алгоритм, увеличивающий на каждом шаге точность в четыре раза, был найден Джонатаном Боруэйном (англ. Jonathan Borwein) Питером Боруэйном (англ. Peter Borwein). При помощи этих методов Ясумаса Канада и его группа, начиная с 1980 года, установили большинство рекордов вычисления вплоть до 206 158 430 000 знаков в 1999 году.

Непрерывная дробь

(Эта непрерывная дробь не периодическая. Записана в линейной нотации)

Тригонометрия радиан = 180°

www.turkaramamotoru.com

Пи (число) - это... Что такое Пи (число)?

Иррациональные числаγ - ζ(3) — √2 — √3 — √5 — φ — α — e — π — δ
Система счисления Оценка числа
Двоичная 11,00100100001111110110…
Десятичная 3,1415926535897932384626433832795…
Шестнадцатеричная 3,243F6A8885A308D31319…
Рациональное приближение 22⁄7, 223⁄71, 355⁄113,103993/33102, …

(перечислено в порядке увеличения точности)

Непрерывная дробь [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, … ]

(Эта непрерывная дробь не периодическая. Записана в линейной нотации)

Евклидова геометрия радиан = 180°

3,1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

Первые 1000 знаков после запятой числа π[1] Если принять диаметр окружности за единицу, то длина окружности — это число «пи»

(произносится «пи») — математическая константа, выражающая отношение длины окружности к длине её диаметра.[2] Обозначается буквой греческого алфавита «пи». Старое название — лудольфово число.

Свойства

Трансцендентность и иррациональность

Соотношения

Известно много формул числа :

здесь простые числа

История

Символ константы

Впервые обозначением этого числа греческой буквой воспользовался британский математик Джонс в 1706 году, а общепринятым оно стало после работ Леонарда Эйлера в 1737 году.

Это обозначение происходит от начальной буквы греческих слов περιφέρεια — окружность, периферия и περίμετρος — периметр.

История числа шла параллельно с развитием всей математики. Некоторые авторы разделяют весь процесс на 3 периода: древний период, в течение которого изучалось с позиции геометрии, классическая эра, последовавшая за развитием математического анализа в Европе в XVII веке, и эра цифровых компьютеров.

Геометрический период

То, что отношение длины окружности к диаметру одинаково для любой окружности, и то, что это отношение немногим более 3, было известно ещё древнеегипетским, вавилонским, древнеиндийским и древнегреческим геометрам. Самое раннее из известных приближений датируется 1900 годом до н. э.; это 25/8 (Вавилон) и 256/81 (Египет), оба значения отличаются от истинного не более, чем на 1 %. Ведийский текст «Шатапатха-брахмана» даёт как 339/108 ≈ 3,139.

Алгоритм Лю Хуэя для вычисления

Архимед, возможно, первым предложил математический способ вычисления . Для этого он вписывал в окружность и описывал около неё правильные многоугольники. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. Рассматривая правильный 96-угольник, Архимед получил оценку и предположил, что примерно равняется 22/7 ≈ 3,142857142857143.

Чжан Хэн во II веке уточнил значение числа , предложив два его эквивалента: 1) 92/29 ≈ 3,1724…; 2) ≈ 3,1622.

В Индии Ариабхата и Бхаскара использовали приближение 3,1416. Варахамихира в 6 веке пользуется в «Панча-сиддхантике» приближением .

Около 265 года н. э. математик Лю Хуэй из царства Вэй предоставил простой и точный итеративный алгоритм (англ. Liu Hui's π algorithm) для вычисления с любой степенью точности. Он самостоятельно провёл вычисление для 3072-угольника и получил приближённое значение для по следующему принципу:

Позднее Лю Хуэй придумал быстрый метод вычисления и получил приближённое значение 3,1416 только лишь с 96-угольником, используя преимущества того факта, что разница в площади следующих друг за другом многоугольников формирует геометрическую прогрессию со знаменателем 4.

В 480-х годах китайский математик Цзу Чунчжи продемонстрировал, что ≈ 355/113, и показал, что 3,1415926 < < 3,1415927, используя алгоритм Лю Хуэя применительно к 12288-угольнику. Это значение оставалось самым точным приближением числа в течение последующих 900 лет.

Классический период

До II тысячелетия было известно не более 10 цифр . Дальнейшие крупные достижения в изучении связаны с развитием математического анализа, в особенности с открытием рядов, позволяющих вычислить с любой точностью, суммируя подходящее количество членов ряда. В 1400-х годах Мадхава из Сангамаграма (англ. Madhava of Sangamagrama) нашёл первый из таких рядов:

Этот результат известен как ряд Мадхавы — Лейбница, или ряд Грегори — Лейбница (после того как он был заново обнаружен Джеймсом Грегори и Готфридом Лейбницем в XVII веке). Однако этот ряд сходится к очень медленно, что приводит к сложности вычисления многих цифр числа на практике — необходимо сложить около 4000 членов ряда, чтобы улучшить оценку Архимеда. Однако преобразованием этого ряда в

Мадхава смог вычислить как 3,14159265359, верно определив 11 цифр в записи числа. Этот рекорд был побит в 1424 году персидским математиком Джамшидом ал-Каши, который в своём труде под названием «Трактат об окружности» привёл 17 цифр числа , из которых 16 верные.

Первым крупным европейским вкладом со времён Архимеда был вклад голландского математика Людольфа ван Цейлена, затратившего десять лет на вычисление числа с 20-ю десятичными цифрами (этот результат был опубликован в 1596 году). Применив метод Архимеда, он довёл удвоение до n-угольника, где n = 60·229. Изложив свои результаты в сочинении «Об окружности» («Van den Circkel»), Лудольф закончил его словами: «У кого есть охота, пусть идёт дальше». После смерти в его рукописях были обнаружены ещё 15 точных цифр числа . Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число иногда называли «лудольфовым числом», или «константой Лудольфа».

Примерно в это же время в Европе начали развиваться методы анализа и определения бесконечных рядов. Первым таким представлением была формула Виета:

,

найденная Франсуа Виетом в 1593 году. Другим известным результатом стала формула Валлиса:

,

выведенная Джоном Валлисом в 1655 году.

Аналогичные произведения:

Произведение, доказывающее родственную связь с числом Эйлера e :

В Новое время для вычисления используются аналитические методы, основанные на тождествах. Перечисленные выше формулы малопригодны для вычислительных целей, поскольку либо используют медленно сходящиеся ряды, либо требуют сложной операции извлечения квадратного корня.

Первую эффективную формулу нашёл в 1706 году Джон Мэчин (англ. John Machin)

Разложив арктангенс в ряд Тейлора

,

можно получить быстро сходящийся ряд, пригодный для вычисления числа с большой точностью.

Формулы такого типа, в настоящее время известные как формулы Мэчина (англ. Machin-like formula), использовались для установки нескольких последовательных рекордов и остались наилучшими из известных методов для быстрого вычисления в эпоху компьютеров. Выдающийся рекорд был поставлен феноменальным счетчиком Иоганном Дазе (англ. Johann Dase), который в 1844 году по распоряжению Гаусса применил формулу Мэчина для вычисления 200 цифр в уме. Наилучший результат к концу XIX века был получен англичанином Вильямом Шенксом (англ. William Shanks), у которого ушло 15 лет для того, чтобы вычислить 707 цифр, хотя из-за ошибки только первые 527 были верными. Чтобы избежать подобных ошибок, современные вычисления подобного рода проводятся дважды. Если результаты совпадают, то они с высокой вероятностью верные. Ошибку Шенкса обнаружил один из первых компьютеров в 1948 году; он же за несколько часов подсчитал 808 знаков .

Теоретические достижения в XVIII веке привели к постижению природы числа , чего нельзя было достичь лишь только с помощью одного численного вычисления. Иоганн Генрих Ламберт доказал иррациональность в 1761 году, а Адриен Мари Лежандр в 1774 году доказал иррациональность . В 1735 году была установлена связь между простыми числами и , когда Леонард Эйлер решил знаменитую Базельскую проблему (англ. Basel problem) — проблему нахождения точного значения

,

которое составляет . И Лежандр, и Эйлер предполагали, что может быть трансцендентным, что было в конечном итоге доказано в 1882 году Фердинандом фон Линдеманом.

Считается, что книга Уильяма Джонса «Новое введение в математику» c 1706 года первая ввела в использование греческую букву для обозначения этой константы, но эта запись стала особенно популярной после того, как Леонард Эйлер принял её в 1737 году. Он писал:

Существует множество других способов отыскания длин или площадей соответствующей кривой или плоской фигуры, что может существенно облегчить практику; например, в круге диаметр относится к длине окружности как 1 к

Эра компьютерных вычислений

Эпоха цифровой техники в XX веке привела к увеличению скорости появления вычислительных рекордов. Джон фон Нейман и другие использовали в 1949 году ЭНИАК для вычисления 2037 цифр , которое заняло 70 часов. Ещё одна тысяча цифр была получена в последующие десятилетия, а отметка в миллион была пройдена в 1973 году. Такой прогресс имел место не только благодаря более быстрому аппаратному обеспечению, но и благодаря алгоритмам. Одним из самых значительных результатов было открытие в 1960 году быстрого преобразования Фурье, что позволило быстро осуществлять арифметические операции над очень большими числами.

В начале XX века индийский математик Сриниваса Рамануджан обнаружил множество новых формул для , некоторые из которых стали знаменитыми из-за своей элегантности и математической глубины. Одна из этих формул — это ряд:

.

Братьями Чудновскими в 1987 году найдена похожая на неё:

,

которая даёт примерно по 14 цифр на каждый член ряда. Чудновские использовали эту формулу для того, чтобы установить несколько рекордов в вычислении в конце 1980-х, включая то, в результате которого в 1989 году было получено 1 011 196 691 цифр десятичного разложения. Эта формула используется в программах, вычисляющих на персональных компьютерах, в отличие от суперкомпьютеров, которые устанавливают современные рекорды.

В то время как последовательность обычно повышает точность на фиксированную величину с каждым следующим членом, существуют итеративные алгоритмы, которые на каждом шагу умножают количество правильных цифр, требуя, правда, высоких вычислительных затрат на каждом из таких шагов. Прорыв в этом отношении был сделан в 1975 году, когда Ричард Брент (англ. Richard P. Brent) и Юджин Саламин (англ. Eugene Salamin (mathematician)) независимо друг от друга открыли алгоритм Брента — Саламина (англ. Gauss–Legendre algorithm), который, используя лишь арифметику, на каждом шагу удваивает количество известных знаков.[9] Алгоритм состоит из установки начальных значений

и итераций:

пока an и bn не станут достаточно близки. Тогда оценка даётся формулой

При использовании этой схемы 25 итераций достаточно для получения 45 миллионов десятичных знаков. Похожий алгоритм, увеличивающий на каждом шаге точность в четыре раза, был найден Джонатаном Боруэйном (англ. Jonathan Borwein) Питером Боруэйном (англ. Peter Borwein).[10] При помощи этих методов Ясумаса Канада и его группа, начиная с 1980 года, установили большинство рекордов вычисления вплоть до 206 158 430 000 знаков в 1999 году. В 2002 году Канада и его группа установили новый рекорд — 1 241 100 000 000 десятичных знаков. Хотя большинство предыдущих рекордов Канады были установлены при помощи алгоритма Брента — Саламина, вычисление 2002 года использовало две формулы типа мэчиновских, которые работали медленнее, но радикально снижали использование памяти. Вычисление было выполнено на суперкомпьютере Hitachi из 64 узлов с 1 терабайтом оперативной памяти, способном выполнять 2 триллиона операций в секунду.

Важным развитием недавнего времени стала формула Бэйли — Боруэйна — Плаффа (англ. Bailey–Borwein–Plouffe formula), открытая в 1997 году Саймоном Плаффом (англ. Simon Plouffe) и названная по авторам статьи, в которой она впервые была опубликована[11]. Эта формула,

примечательна тем, что она позволяет извлечь любую конкретную шестнадцатеричную или двоичную цифру числа без вычисления предыдущих.[11] С 1998 до 2000 года распределённый проект PiHex использовал видоизменённую формулу ББП Фабриса Беллара для вычисления квадриллионного бита числа , который оказался нулём.[12]

В 2006 году Саймон Плафф, используя PSLQ, нашёл ряд красивых формул.[13] Пусть q = eπ, тогда

и другие вида

где q = eπ, k — нечётное число, и a, b, c — рациональные числа. Если k — вида 4m + 3, то эта формула имеет особенно простой вид:

для рационального p у которого знаменатель — число, хорошо разложимое на множители, хотя строгое доказательство ещё не предоставлено.

В августе 2009 года учёные из японского университета Цукубо рассчитали последовательность из 2 576 980 377 524 десятичных разрядов.[14]

31 декабря 2009 года французский программист Фабрис Беллар на персональном компьютере рассчитал последовательность из 2 699 999 990 000 десятичных разрядов.[15]

2 августа 2010 года американский студент Александр Йи и японский исследователь Сигэру Кондо (яп.)русск. рассчитали последовательность с точностью в 5 триллионов цифр после запятой.[16][17]

19 октября 2011 года Александр Йи и Сигэру Кондо рассчитали последовательность с точностью в 10 триллионов цифр после запятой[18][19].

Рациональные приближения

Нерешённые проблемы

Метод иглы Бюффона

На разлинованную равноудалёнными прямыми плоскость произвольно бросается игла, длина которой равна расстоянию между соседними прямыми, так что при каждом бросании игла либо не пересекает прямые, либо пересекает ровно одну. Можно доказать, что отношение числа пересечений иглы с какой-нибудь линией к общему числу бросков стремится к при увеличении числа бросков до бесконечности.[26] Данный метод иглы базируется на теории вероятностей и лежит в основе метода Монте-Карло.[27]

Стихотворение для затвердевания в памяти 8-11 знаков числ π:

Чтобы нам не ошибаться,Надо правильно прочесть:Три, четырнадцать, пятнадцать,Девяносто два и шесть.

Надо только постаратьсяИ запомнить всё как есть:Три, четырнадцать, пятнадцать,Девяносто два и шесть.

Три, четырнадцать, пятнадцать,Девять, два, шесть, пять, три, пять.Чтоб наукой заниматься,Это каждый должен знать.

Можно просто постаратьсяИ почаще повторять:«Три, четырнадцать, пятнадцать,Девять, двадцать шесть и пять».

Запоминанию может помогать соблюдение стихотворного размера:

Три, четырнадцать, пятнадцать, девять два, шесть пять, три пятьВосемь девять, семь и девять, три два, три восемь, сорок шестьДва шесть четыре, три три восемь, три два семь девять, пять ноль дваВосемь восемь и четыре, девятнадцать, семь, один

Существуют стихи, в которых первые цифры числа π зашифрованы в виде количества букв в словах:

Это я знаю и помню прекрасно:Пи многие знаки мне лишни, напрасны.Доверимся знаньям громаднымТех, пи кто сосчитал, цифр армаду.

Раз у Коли и АриныРаспороли мы перины.Белый пух летал, кружился,Куражился, замирал,Ублажился,Нам же далГоловную боль старух.Ух, опасен пуха дух!

— Георгий Александров

Дополнительные факты

Памятник числу «пи» на ступенях перед зданием Музея искусств в Сиэтле

В культуре

См. также

Примечания

  1. ↑ PI
  2. ↑ Это определение пригодно только для евклидовой геометрии. В других геометриях отношение длины окружности к длине её диаметра может быть произвольным. Например, в геометрии Лобачевского это отношение меньше, чем .
  3. ↑ Lambert, Johann Heinrich. Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques, стр. 265–322.
  4. ↑ Доказательство Клейна приложено к работе «Вопросы элементарной и высшей математики», ч. 1, вышедшей в Гёттингене в 1908 году.
  5. ↑ Weisstein, Eric W. Постоянная Гельфонда (англ.) на сайте Wolfram MathWorld.
  6. ↑ 1 2 Weisstein, Eric W. Иррациональное число (англ.) на сайте Wolfram MathWorld.
  7. ↑ Модулярные функции и вопросы трансцендентности
  8. ↑ Weisstein, Eric W. Pi Squared (англ.) на сайте Wolfram MathWorld.
  9. ↑ Brent, Richard (1975), Traub, J F, ed., "«Multiple-precision zero-finding methods and the complexity of elementary function evaluation»", Analytic Computational Complexity (New York: Academic Press): 151–176, <http://wwwmaths.anu.edu.au/~brent/pub/pub028.html>   (англ.)
  10. ↑ Jonathan M Borwein. Pi: A Source Book. — Springer, 2004. — ISBN 0387205713 (англ.)
  11. ↑ 1 2 David H. Bailey, Peter B. Borwein, Simon Plouffe. On the Rapid Computation of Various Polylogarithmic Constants // Mathematics of Computation. — 1997. — В. 218. — Т. 66. — С. 903—913. (англ.)
  12. ↑ Fabrice Bellard. A new formula to compute the nth binary digit of pi  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 11 января 2010.
  13. ↑ Simon Plouffe. Indentities inspired by Ramanujan’s Notebooks (part 2)  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 11 января 2010.
  14. ↑ Установлен новый рекорд точности вычисления числа π
  15. ↑ Pi Computation Record
  16. ↑ Число «Пи» рассчитано с рекордной точностью
  17. ↑ 1 2 5 Trillion Digits of Pi — New World Record (англ.)
  18. ↑ Определено 10 триллионов цифр десятичного разложения для π
  19. ↑ 1 2 Round 2… 10 Trillion Digits of Pi
  20. ↑ Weisstein, Eric W. Мера иррациональности (англ.) на сайте Wolfram MathWorld.
  21. ↑ Weisstein, Eric W. Pi (англ.) на сайте Wolfram MathWorld.
  22. ↑ en:Irrational number#Open questions
  23. ↑ Some unsolved problems in number theory
  24. ↑ Weisstein, Eric W. Трансцендентное число (англ.) на сайте Wolfram MathWorld.
  25. ↑ An introduction to irrationality and transcendence methods
  26. ↑ Обман или заблуждение? Квант № 5 1983 год
  27. ↑ Г. А. Гальперин. Биллиардная динамическая система для числа пи.
  28. ↑ Лудольфово число. Пи. Pi.
  29. ↑ Статья в Los Angeles Times «Желаете кусочек »? (название обыгрывает сходство в написании числа и слова pie (англ. пирог)) (англ.).
  30. ↑ Chinese student breaks Guiness record by reciting 67,890 digits of pi
  31. ↑ Interview with Mr. Chao Lu
  32. ↑ How can anyone remember 100,000 numbers? — The Japan Times, 17.12.2006.
  33. ↑ Pi World Ranking List
  34. ↑ The Indiana Pi Bill, 1897  (англ.)
  35. ↑ В. И. Арнольд любит приводить этот факт, см. например книгу Что такое математика (ps), стр. 9.

Литература

Ссылки

xzsad.academic.ru

Число Пи

Изучение числа Пи начинается в начальных классах, когда школьники изучают круг, окружность и встречается значение Пи. Так как значение Пи - это константа означающая отношение длины самой окружности к длине диаметра данной окружности. К примеру если мы возьмем окружность диаметр которой будет равен одному, тогда ее длина равняется числу Пи. Данное значение Пи - бесконечно в математическом продолжении, но так же есть общепринятое обозначение. Взялось оно от упрощенного написания значения Пи, выглядит оно как 3,14.

Историческое рождение числа Пи

Корни свои число Пи предположительно получило в Древнем Египте. Так как древнеегипетские ученые вычисляли с помощью диаметра D площадь у круга, которое принимало значение D - D/92. Что соответствовало 16/92, либо 256/81, а значит число Пи равно 3,160.Индия в шестом веке до нашей эры, тоже коснулась числа Пи, в религии Джайнизма, были найдены записи в которых говорилось о том что число Пи равно 10 в квадратном корне, а значит 3,162.

Учение Архимеда об измерении круга в третьем веке до нашей эры привели его к следующим выводам:

Уже позже свои выводы он обосновывал последовательностью вычислений на примерах правильно вписанных либо описанных многоугольных форм с удвоением числа сторон данных фигур. В точных расчетах Архимед заключил соотношение диаметра и окружности в числах между 3*10/71 и 3*1/7, следовательно значение Пи равно 3,1419... Так как мы уже говорили о бесконечной форме данного значения, выглядит оно как 3,1415927... И это еще не предел, потому что математик Каши в пятнадцатом веке рассчитал значение Пи уже как шестнадцати-значную величину.Математик Англии Джонсон У. в 1706 году, начал использовать обозначение числа Пи символом ? (с греческого есть первая буква в слове окружности). Загадочное значение.

Значение Пи иррациональное, его не удается выражать в форме дроби, потому как в дроби применяются целые значения. Корнем в уравнении оно быть не может из-за чего оно так же получается трансцендентным, находится с помощью рассмотрения любых процессов, уточняясь за счет большого количества рассматриваемых шагов данного процесса. Было очень много попыток рассчитать наибольшее количество знаков в числе Пи, которые привели к десяткам триллионов цифр данного значения от запятой.

Интересный факт: У значения Пи как это ни странно есть свой праздник. Называется он международный день числа Пи. Отмечают его 14 марта. Дата появилась благодаря самому значению Пи 3,14 (мм.гг) и физику Шоу Ларри который и начал первым отмечать этот праздник уже в 1987 году.

Заметка: Юридическая помощь в получении справки об отсутствии (наличии) судимости для всех граждан РФ. Перейдите по ссылке госуслуги справка об отсутствии судимости (http://справкаосудимости.рф/) законно, быстро и без очередей!

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

reshit.ru

Пи (число) - это... Что такое Пи (число)?

Иррациональные числаγ - ζ(3) — √2 — √3 — √5 — φ — α — e — π — δ
Система счисления Оценка числа
Двоичная 11,00100100001111110110…
Десятичная 3,1415926535897932384626433832795…
Шестнадцатеричная 3,243F6A8885A308D31319…
Рациональное приближение 22⁄7, 223⁄71, 355⁄113,103993/33102, …

(перечислено в порядке увеличения точности)

Непрерывная дробь [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, … ]

(Эта непрерывная дробь не периодическая. Записана в линейной нотации)

Евклидова геометрия радиан = 180°

3,1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

Первые 1000 знаков после запятой числа π[1] Если принять диаметр окружности за единицу, то длина окружности — это число «пи»

(произносится «пи») — математическая константа, выражающая отношение длины окружности к длине её диаметра.[2] Обозначается буквой греческого алфавита «пи». Старое название — лудольфово число.

Свойства

Трансцендентность и иррациональность

Соотношения

Известно много формул числа :

здесь простые числа

История

Символ константы

Впервые обозначением этого числа греческой буквой воспользовался британский математик Джонс в 1706 году, а общепринятым оно стало после работ Леонарда Эйлера в 1737 году.

Это обозначение происходит от начальной буквы греческих слов περιφέρεια — окружность, периферия и περίμετρος — периметр.

История числа шла параллельно с развитием всей математики. Некоторые авторы разделяют весь процесс на 3 периода: древний период, в течение которого изучалось с позиции геометрии, классическая эра, последовавшая за развитием математического анализа в Европе в XVII веке, и эра цифровых компьютеров.

Геометрический период

То, что отношение длины окружности к диаметру одинаково для любой окружности, и то, что это отношение немногим более 3, было известно ещё древнеегипетским, вавилонским, древнеиндийским и древнегреческим геометрам. Самое раннее из известных приближений датируется 1900 годом до н. э.; это 25/8 (Вавилон) и 256/81 (Египет), оба значения отличаются от истинного не более, чем на 1 %. Ведийский текст «Шатапатха-брахмана» даёт как 339/108 ≈ 3,139.

Алгоритм Лю Хуэя для вычисления

Архимед, возможно, первым предложил математический способ вычисления . Для этого он вписывал в окружность и описывал около неё правильные многоугольники. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. Рассматривая правильный 96-угольник, Архимед получил оценку и предположил, что примерно равняется 22/7 ≈ 3,142857142857143.

Чжан Хэн во II веке уточнил значение числа , предложив два его эквивалента: 1) 92/29 ≈ 3,1724…; 2) ≈ 3,1622.

В Индии Ариабхата и Бхаскара использовали приближение 3,1416. Варахамихира в 6 веке пользуется в «Панча-сиддхантике» приближением .

Около 265 года н. э. математик Лю Хуэй из царства Вэй предоставил простой и точный итеративный алгоритм (англ. Liu Hui's π algorithm) для вычисления с любой степенью точности. Он самостоятельно провёл вычисление для 3072-угольника и получил приближённое значение для по следующему принципу:

Позднее Лю Хуэй придумал быстрый метод вычисления и получил приближённое значение 3,1416 только лишь с 96-угольником, используя преимущества того факта, что разница в площади следующих друг за другом многоугольников формирует геометрическую прогрессию со знаменателем 4.

В 480-х годах китайский математик Цзу Чунчжи продемонстрировал, что ≈ 355/113, и показал, что 3,1415926 < < 3,1415927, используя алгоритм Лю Хуэя применительно к 12288-угольнику. Это значение оставалось самым точным приближением числа в течение последующих 900 лет.

Классический период

До II тысячелетия было известно не более 10 цифр . Дальнейшие крупные достижения в изучении связаны с развитием математического анализа, в особенности с открытием рядов, позволяющих вычислить с любой точностью, суммируя подходящее количество членов ряда. В 1400-х годах Мадхава из Сангамаграма (англ. Madhava of Sangamagrama) нашёл первый из таких рядов:

Этот результат известен как ряд Мадхавы — Лейбница, или ряд Грегори — Лейбница (после того как он был заново обнаружен Джеймсом Грегори и Готфридом Лейбницем в XVII веке). Однако этот ряд сходится к очень медленно, что приводит к сложности вычисления многих цифр числа на практике — необходимо сложить около 4000 членов ряда, чтобы улучшить оценку Архимеда. Однако преобразованием этого ряда в

Мадхава смог вычислить как 3,14159265359, верно определив 11 цифр в записи числа. Этот рекорд был побит в 1424 году персидским математиком Джамшидом ал-Каши, который в своём труде под названием «Трактат об окружности» привёл 17 цифр числа , из которых 16 верные.

Первым крупным европейским вкладом со времён Архимеда был вклад голландского математика Людольфа ван Цейлена, затратившего десять лет на вычисление числа с 20-ю десятичными цифрами (этот результат был опубликован в 1596 году). Применив метод Архимеда, он довёл удвоение до n-угольника, где n = 60·229. Изложив свои результаты в сочинении «Об окружности» («Van den Circkel»), Лудольф закончил его словами: «У кого есть охота, пусть идёт дальше». После смерти в его рукописях были обнаружены ещё 15 точных цифр числа . Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число иногда называли «лудольфовым числом», или «константой Лудольфа».

Примерно в это же время в Европе начали развиваться методы анализа и определения бесконечных рядов. Первым таким представлением была формула Виета:

,

найденная Франсуа Виетом в 1593 году. Другим известным результатом стала формула Валлиса:

,

выведенная Джоном Валлисом в 1655 году.

Аналогичные произведения:

Произведение, доказывающее родственную связь с числом Эйлера e :

В Новое время для вычисления используются аналитические методы, основанные на тождествах. Перечисленные выше формулы малопригодны для вычислительных целей, поскольку либо используют медленно сходящиеся ряды, либо требуют сложной операции извлечения квадратного корня.

Первую эффективную формулу нашёл в 1706 году Джон Мэчин (англ. John Machin)

Разложив арктангенс в ряд Тейлора

,

можно получить быстро сходящийся ряд, пригодный для вычисления числа с большой точностью.

Формулы такого типа, в настоящее время известные как формулы Мэчина (англ. Machin-like formula), использовались для установки нескольких последовательных рекордов и остались наилучшими из известных методов для быстрого вычисления в эпоху компьютеров. Выдающийся рекорд был поставлен феноменальным счетчиком Иоганном Дазе (англ. Johann Dase), который в 1844 году по распоряжению Гаусса применил формулу Мэчина для вычисления 200 цифр в уме. Наилучший результат к концу XIX века был получен англичанином Вильямом Шенксом (англ. William Shanks), у которого ушло 15 лет для того, чтобы вычислить 707 цифр, хотя из-за ошибки только первые 527 были верными. Чтобы избежать подобных ошибок, современные вычисления подобного рода проводятся дважды. Если результаты совпадают, то они с высокой вероятностью верные. Ошибку Шенкса обнаружил один из первых компьютеров в 1948 году; он же за несколько часов подсчитал 808 знаков .

Теоретические достижения в XVIII веке привели к постижению природы числа , чего нельзя было достичь лишь только с помощью одного численного вычисления. Иоганн Генрих Ламберт доказал иррациональность в 1761 году, а Адриен Мари Лежандр в 1774 году доказал иррациональность . В 1735 году была установлена связь между простыми числами и , когда Леонард Эйлер решил знаменитую Базельскую проблему (англ. Basel problem) — проблему нахождения точного значения

,

которое составляет . И Лежандр, и Эйлер предполагали, что может быть трансцендентным, что было в конечном итоге доказано в 1882 году Фердинандом фон Линдеманом.

Считается, что книга Уильяма Джонса «Новое введение в математику» c 1706 года первая ввела в использование греческую букву для обозначения этой константы, но эта запись стала особенно популярной после того, как Леонард Эйлер принял её в 1737 году. Он писал:

Существует множество других способов отыскания длин или площадей соответствующей кривой или плоской фигуры, что может существенно облегчить практику; например, в круге диаметр относится к длине окружности как 1 к

Эра компьютерных вычислений

Эпоха цифровой техники в XX веке привела к увеличению скорости появления вычислительных рекордов. Джон фон Нейман и другие использовали в 1949 году ЭНИАК для вычисления 2037 цифр , которое заняло 70 часов. Ещё одна тысяча цифр была получена в последующие десятилетия, а отметка в миллион была пройдена в 1973 году. Такой прогресс имел место не только благодаря более быстрому аппаратному обеспечению, но и благодаря алгоритмам. Одним из самых значительных результатов было открытие в 1960 году быстрого преобразования Фурье, что позволило быстро осуществлять арифметические операции над очень большими числами.

В начале XX века индийский математик Сриниваса Рамануджан обнаружил множество новых формул для , некоторые из которых стали знаменитыми из-за своей элегантности и математической глубины. Одна из этих формул — это ряд:

.

Братьями Чудновскими в 1987 году найдена похожая на неё:

,

которая даёт примерно по 14 цифр на каждый член ряда. Чудновские использовали эту формулу для того, чтобы установить несколько рекордов в вычислении в конце 1980-х, включая то, в результате которого в 1989 году было получено 1 011 196 691 цифр десятичного разложения. Эта формула используется в программах, вычисляющих на персональных компьютерах, в отличие от суперкомпьютеров, которые устанавливают современные рекорды.

В то время как последовательность обычно повышает точность на фиксированную величину с каждым следующим членом, существуют итеративные алгоритмы, которые на каждом шагу умножают количество правильных цифр, требуя, правда, высоких вычислительных затрат на каждом из таких шагов. Прорыв в этом отношении был сделан в 1975 году, когда Ричард Брент (англ. Richard P. Brent) и Юджин Саламин (англ. Eugene Salamin (mathematician)) независимо друг от друга открыли алгоритм Брента — Саламина (англ. Gauss–Legendre algorithm), который, используя лишь арифметику, на каждом шагу удваивает количество известных знаков.[9] Алгоритм состоит из установки начальных значений

и итераций:

пока an и bn не станут достаточно близки. Тогда оценка даётся формулой

При использовании этой схемы 25 итераций достаточно для получения 45 миллионов десятичных знаков. Похожий алгоритм, увеличивающий на каждом шаге точность в четыре раза, был найден Джонатаном Боруэйном (англ. Jonathan Borwein) Питером Боруэйном (англ. Peter Borwein).[10] При помощи этих методов Ясумаса Канада и его группа, начиная с 1980 года, установили большинство рекордов вычисления вплоть до 206 158 430 000 знаков в 1999 году. В 2002 году Канада и его группа установили новый рекорд — 1 241 100 000 000 десятичных знаков. Хотя большинство предыдущих рекордов Канады были установлены при помощи алгоритма Брента — Саламина, вычисление 2002 года использовало две формулы типа мэчиновских, которые работали медленнее, но радикально снижали использование памяти. Вычисление было выполнено на суперкомпьютере Hitachi из 64 узлов с 1 терабайтом оперативной памяти, способном выполнять 2 триллиона операций в секунду.

Важным развитием недавнего времени стала формула Бэйли — Боруэйна — Плаффа (англ. Bailey–Borwein–Plouffe formula), открытая в 1997 году Саймоном Плаффом (англ. Simon Plouffe) и названная по авторам статьи, в которой она впервые была опубликована[11]. Эта формула,

примечательна тем, что она позволяет извлечь любую конкретную шестнадцатеричную или двоичную цифру числа без вычисления предыдущих.[11] С 1998 до 2000 года распределённый проект PiHex использовал видоизменённую формулу ББП Фабриса Беллара для вычисления квадриллионного бита числа , который оказался нулём.[12]

В 2006 году Саймон Плафф, используя PSLQ, нашёл ряд красивых формул.[13] Пусть q = eπ, тогда

и другие вида

где q = eπ, k — нечётное число, и a, b, c — рациональные числа. Если k — вида 4m + 3, то эта формула имеет особенно простой вид:

для рационального p у которого знаменатель — число, хорошо разложимое на множители, хотя строгое доказательство ещё не предоставлено.

В августе 2009 года учёные из японского университета Цукубо рассчитали последовательность из 2 576 980 377 524 десятичных разрядов.[14]

31 декабря 2009 года французский программист Фабрис Беллар на персональном компьютере рассчитал последовательность из 2 699 999 990 000 десятичных разрядов.[15]

2 августа 2010 года американский студент Александр Йи и японский исследователь Сигэру Кондо (яп.)русск. рассчитали последовательность с точностью в 5 триллионов цифр после запятой.[16][17]

19 октября 2011 года Александр Йи и Сигэру Кондо рассчитали последовательность с точностью в 10 триллионов цифр после запятой[18][19].

Рациональные приближения

Нерешённые проблемы

Метод иглы Бюффона

На разлинованную равноудалёнными прямыми плоскость произвольно бросается игла, длина которой равна расстоянию между соседними прямыми, так что при каждом бросании игла либо не пересекает прямые, либо пересекает ровно одну. Можно доказать, что отношение числа пересечений иглы с какой-нибудь линией к общему числу бросков стремится к при увеличении числа бросков до бесконечности.[26] Данный метод иглы базируется на теории вероятностей и лежит в основе метода Монте-Карло.[27]

Стихотворение для затвердевания в памяти 8-11 знаков числ π:

Чтобы нам не ошибаться,Надо правильно прочесть:Три, четырнадцать, пятнадцать,Девяносто два и шесть.

Надо только постаратьсяИ запомнить всё как есть:Три, четырнадцать, пятнадцать,Девяносто два и шесть.

Три, четырнадцать, пятнадцать,Девять, два, шесть, пять, три, пять.Чтоб наукой заниматься,Это каждый должен знать.

Можно просто постаратьсяИ почаще повторять:«Три, четырнадцать, пятнадцать,Девять, двадцать шесть и пять».

Запоминанию может помогать соблюдение стихотворного размера:

Три, четырнадцать, пятнадцать, девять два, шесть пять, три пятьВосемь девять, семь и девять, три два, три восемь, сорок шестьДва шесть четыре, три три восемь, три два семь девять, пять ноль дваВосемь восемь и четыре, девятнадцать, семь, один

Существуют стихи, в которых первые цифры числа π зашифрованы в виде количества букв в словах:

Это я знаю и помню прекрасно:Пи многие знаки мне лишни, напрасны.Доверимся знаньям громаднымТех, пи кто сосчитал, цифр армаду.

Раз у Коли и АриныРаспороли мы перины.Белый пух летал, кружился,Куражился, замирал,Ублажился,Нам же далГоловную боль старух.Ух, опасен пуха дух!

— Георгий Александров

Дополнительные факты

Памятник числу «пи» на ступенях перед зданием Музея искусств в Сиэтле

В культуре

См. также

Примечания

  1. ↑ PI
  2. ↑ Это определение пригодно только для евклидовой геометрии. В других геометриях отношение длины окружности к длине её диаметра может быть произвольным. Например, в геометрии Лобачевского это отношение меньше, чем .
  3. ↑ Lambert, Johann Heinrich. Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques, стр. 265–322.
  4. ↑ Доказательство Клейна приложено к работе «Вопросы элементарной и высшей математики», ч. 1, вышедшей в Гёттингене в 1908 году.
  5. ↑ Weisstein, Eric W. Постоянная Гельфонда (англ.) на сайте Wolfram MathWorld.
  6. ↑ 1 2 Weisstein, Eric W. Иррациональное число (англ.) на сайте Wolfram MathWorld.
  7. ↑ Модулярные функции и вопросы трансцендентности
  8. ↑ Weisstein, Eric W. Pi Squared (англ.) на сайте Wolfram MathWorld.
  9. ↑ Brent, Richard (1975), Traub, J F, ed., "«Multiple-precision zero-finding methods and the complexity of elementary function evaluation»", Analytic Computational Complexity (New York: Academic Press): 151–176, <http://wwwmaths.anu.edu.au/~brent/pub/pub028.html>   (англ.)
  10. ↑ Jonathan M Borwein. Pi: A Source Book. — Springer, 2004. — ISBN 0387205713 (англ.)
  11. ↑ 1 2 David H. Bailey, Peter B. Borwein, Simon Plouffe. On the Rapid Computation of Various Polylogarithmic Constants // Mathematics of Computation. — 1997. — В. 218. — Т. 66. — С. 903—913. (англ.)
  12. ↑ Fabrice Bellard. A new formula to compute the nth binary digit of pi  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 11 января 2010.
  13. ↑ Simon Plouffe. Indentities inspired by Ramanujan’s Notebooks (part 2)  (англ.). Архивировано из первоисточника 22 августа 2011. Проверено 11 января 2010.
  14. ↑ Установлен новый рекорд точности вычисления числа π
  15. ↑ Pi Computation Record
  16. ↑ Число «Пи» рассчитано с рекордной точностью
  17. ↑ 1 2 5 Trillion Digits of Pi — New World Record (англ.)
  18. ↑ Определено 10 триллионов цифр десятичного разложения для π
  19. ↑ 1 2 Round 2… 10 Trillion Digits of Pi
  20. ↑ Weisstein, Eric W. Мера иррациональности (англ.) на сайте Wolfram MathWorld.
  21. ↑ Weisstein, Eric W. Pi (англ.) на сайте Wolfram MathWorld.
  22. ↑ en:Irrational number#Open questions
  23. ↑ Some unsolved problems in number theory
  24. ↑ Weisstein, Eric W. Трансцендентное число (англ.) на сайте Wolfram MathWorld.
  25. ↑ An introduction to irrationality and transcendence methods
  26. ↑ Обман или заблуждение? Квант № 5 1983 год
  27. ↑ Г. А. Гальперин. Биллиардная динамическая система для числа пи.
  28. ↑ Лудольфово число. Пи. Pi.
  29. ↑ Статья в Los Angeles Times «Желаете кусочек »? (название обыгрывает сходство в написании числа и слова pie (англ. пирог)) (англ.).
  30. ↑ Chinese student breaks Guiness record by reciting 67,890 digits of pi
  31. ↑ Interview with Mr. Chao Lu
  32. ↑ How can anyone remember 100,000 numbers? — The Japan Times, 17.12.2006.
  33. ↑ Pi World Ranking List
  34. ↑ The Indiana Pi Bill, 1897  (англ.)
  35. ↑ В. И. Арнольд любит приводить этот факт, см. например книгу Что такое математика (ps), стр. 9.

Литература

Ссылки

dvc.academic.ru

ЧИСЛО ПИ - это... Что такое ЧИСЛО ПИ?

  • число — Прие моч ное Источник: ГОСТ 111 90: Стекло листовое. Технические условия оригинал документа Смотри также родственные термины: 109.    Число бетатронных колебаний …   Словарь-справочник терминов нормативно-технической документации

  • число — сущ., с., употр. очень часто Морфология: (нет) чего? числа, чему? числу, (вижу) что? число, чем? числом, о чём? о числе; мн. что? числа, (нет) чего? чисел, чему? числам, (вижу) что? числа, чем? числами, о чём? о числах   математика 1. Числом… …   Толковый словарь Дмитриева

  • ЧИСЛО — ЧИСЛО, числа, мн. числа, чисел, числам, ср. 1. Понятие, служащее выражением количества, то, при помощи чего производится счет предметов и явлений (мат.). Целое число. Дробное число. Именованное число. Простое число. (см. простой1 в 1 знач.).… …   Толковый словарь Ушакова

  • ЧИСЛО — абстрактное, лишенное особенного содержания обозначение какоголибо члена некоторого ряда, в котором этому члену предшествует или следует за ним какой нибудь др. определенный член; абстрактный индивидуальный признак, отличающий одно множество от… …   Философская энциклопедия

  • Число — Число  грамматическая категория, выражающая количественные характеристики предметов мысли. Грамматическое число  одно из проявлений более обшей языковой категории количества (см. Категория языковая) наряду с лексическим проявлением («лексическое… …   Лингвистический энциклопедический словарь

  • ЧИСЛО e — Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e kt, где k число,… …   Энциклопедия Кольера

  • число — а; мн. числа, сел, слам; ср. 1. Единица счёта, выражающая то или иное количество. Дробное, целое, простое ч. Чётное, нечётное ч. Считать круглыми числами (приблизительно, считая целыми единицами или десятками). Натуральное ч. (целое положительное …   Энциклопедический словарь

  • ЧИСЛО — ср. количество, счетом, на вопрос: сколько? и самый знак, выражающий количество, цифра. Без числа; нет числа, без счету, многое множество. Поставь приборы, по числу гостей. Числа римские, арабские или церковные. Целое число, ·противоп. дробь.… …   Толковый словарь Даля

  • ЧИСЛО — ЧИСЛО, а, мн. числа, сел, слам, ср. 1. Основное понятие математики величина, при помощи к рой производится счёт. Целое ч. Дробное ч. Действительное ч. Комплексное ч. Натуральное ч. (целое положительное число). Простое ч. (натуральное число, не… …   Толковый словарь Ожегова

  • ЧИСЛО Е — ЧИСЛО «Е» (ЕХР), иррациональное число, служащее основанием натуральных ЛОГАРИФМОВ. Это действительное десятичное число, бесконечная дробь, равная 2,7182818284590...., является пределом выражения (1/ ) при п, стремящемся к бесконечности. По сути,… …   Научно-технический энциклопедический словарь

  • число — Количество, наличность, состав, численность, контингент, сумма, цифра; день.. Ср. . См. день, количество . небольшое число, несть числа, расти числом... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские… …   Словарь синонимов

  • dic.academic.ru