Деление многочленов "столбиком" ("уголком"). Что такое деление уголком


Деление многочленов "уголком"

Сегодня учимся делить многочлены “уголком”, так, как это делают с обычными числами. Рассмотрим несколько примеров подробно. Например, разделим многочлен на двучлен  (Здесь деление можно произвести без остатка. Этот вопрос – можно или нельзя поделить данный многочлен на предлагаемый двучлен обсуждается в статье “Схема Горнера”). Итак, за работу!

Выписываем наш многочлен и рядом, “на полочке” – двучлен, на который будем делить – все как с числами:

 

Теперь сравниваем старшую степень многочлена и старшую степень делителя, и определяем, во сколько раз первая больше второй (по сути, делим на ):

Результат деления записываем под полочку – это первый “кусочек” ответа:

Теперь нам предстоит умножить полученный одночлен  на двучлен , который стоит на полочке (на наш делитель). Умножаем почленно, сначала на первое слагаемое:

А теперь на второе:

Результаты умножения пишем, как показано, под соответствующие степени делимого многочлена – кубы под кубы, квадраты – под квадраты и т. п.  Теперь производим вычитание:

И сносим вниз следующий одночлен ():

Переходим на новый уровень и продолжаем в том же духе. Опять сравниваем старшие степени и результат деления на  записываем под полочку, получилось (не забудем про минус!):

И опять умножаем полученный одночлен () на оба слагаемых делителя. Сначала на первое слагаемое:

Теперь на второе:

 

И снова вычитаем, и к полученному результату сносим вниз новый одночлен, который собираемся подвергнуть казни операции деления:

 

И вот мы опять на новом уровне! Но… здесь все надо начинать сызнова. Сравниваем старшие степени, делим старшую степень делимого на старшую степень делителя, результат пишем под полку:

 

Умножаем почленно, сначала  на , потом  на :

 

Вычитаем, сносим последнее слагаемое, сравниваем старшие степени, производим деление  на , результат (-15) – пишем под полку.

Ну, чем кончилось данное приключение, понятно:

Деление закончилось без остатка – то есть исходный многочлен поделился на  нацело. Ответ: . Заметим, что исходный многочлен был четвертой степени, деление производили на двучлен первой степени – получили в ответе многочлен третьей степени.

Попробуем еще раз?Разделим многочлен на .

Выполняем те же шаги: сравниваем старшие степени делимого и делителя. Производим деление:

Полученное частное записываем под полочку. Умножаем его почленно на слагаемые делителя: на , затем на  , и наконец на  :

 

Выполняем вычитание, “спускаем” вниз очередное слагаемое делимого. После этого все начинаем сначала: сравниваем старшие члены делимого и делителя…:

 

Дальше – можно уже без комментариев:

 

И наконец:

 

Ответ: . Заметим, что исходный многочлен был третьей степени, деление производили на квадратный трехчлен – получили в ответе двучлен первой степени. Вообще степень делимого многочлена понижается всегда на степень делителя.

Пример 3:

 

 

Во всех примерах получалось разделить многочлен на многочлен без остатка, однако так бывает не всегда. Вот, например, случай, когда остаток от деления ненулевой:

 

Деление необходимо продолжать, пока степень делимого не станет равной, а лучше – меньшей, чем у делителя.

Задача:

при делении многочлена на двучлен  образовался остаток 42. Найти результат деления.

Решение: рассмотрим случай, когда остается остаток от деления. Если  разделить на  и при этом остается остаток N, то это можно записать так: . Тогда V можно найти так: . Определим ту часть многочлена, которая полностью делится на  (без остатка):

 

Теперь произведем деление:

Ответ:  .

Еще задача:

при делении многочлена на двучлен  образовался остаток . Найти результат деления.

Решение:  V можно найти так: . Определим ту часть многочлена, которая полностью делится на  (без остатка):

 

Теперь можно делить:

 

Ответ:  .

Достоинства способа: делить можно что угодно на что угодно, лишь бы степень делимого не была меньше, чем степень делителя. Делить можно на двучлен, на трехчлен и т.д. Делить можно даже в том случае, если остается остаток.

easy-physic.ru

Математика. Деление уголком | Сайт Леонида Некина

Главная > Образование > Математика > МАТЕМАТИКА «С НУЛЯ» (учебник) >

<< Назад  |   Оглавление  |   Далее >>

Деление «уголком» — это, на мой взгляд, самая тяжелая, самая нудная тема во всей школьной математике. Тут нам придется всерьез поднапрячься. Пусть, однако, нас вдохновляет мысль, что весь последующий материал будет значительно легче и приятнее.

Прежде всего, рассмотрим деление на однозначное число. Допустим, мы хотим вычислить значение выражения

648 / 2.

Пользуясь свойствами умножения, мы можем расписать делимое таким образом:

648 =

 6  ∙ 100 +  4  ∙ 10 +  8  =

 3  ∙  2  ∙ 100 +  2  ∙  2  ∙ 10 +  4  ∙  2  =

( 3  ∙ 100 +  2  ∙ 10 +  4 )  ∙  2  =

 324  ∙  2 .

После этого становится очевидно, что частное от деления равно

648 / 2 = 324.

Но это мы взяли самый что ни на есть простейший случай, когда каждую отдельно взятую цифру делимого можно поделить на делитель. А вот пример несколько посложнее:

156 / 2 = ?

Здесь первая цифра оказалась меньше делителя. Поэтому, расписывая делимое, мы не будем отрывать ее от второй цифры:

156 =

 15  ∙ 10 +  6 .

Поскольку число  15  не делится нацело на 2, придется нам прибегнуть к делению с остатком. Представим результат такого деления в виде:

 15  =  7 ∙ 2  +  1  =  14  +  1 .

Теперь мы можем продолжать расписывать наше делимое дальше:

156 =

 15  ∙ 10 +  6  =

( 14  +  1 ) ∙ 10 +  6  =

 14   ∙ 10 +  1  ∙ 10 +  6  =

 14  ∙ 10 +  16  =

 7  ∙  2  ∙ 10 +  8  ∙  2  =

( 7  ∙ 10 +  8 ) ∙  2  =

 78  ∙  2 .

Отсюда моментально получаем ответ:

156 / 2 = 78.

Такого рода расчеты можно проводить в уме и сразу же писать ответ. Но мы сейчас перепишем их в виде краткой таблицы. Умение составлять такие таблицы нам пригодится, когда мы займемся делением на многозначные числа, когда всё окажется не так просто. Делимое и делитель запишем так:

 

 1 

 5 

 6 

 2 

 

   

   

 

   

   

При делении первых двух разрядов ( 15 ) на двойку получается  7  плюс еще какой-то остаток. С этим остатком мы разберемся чуть позже, а пока запишем  семерку  под чертой снизу от делителя (здесь у нас со временем будет выписан полный ответ):

 

 1 

 5 

 6 

 2 

 

   

   

 

 7

   

Умножаем на эту  семерку  наш делитель ( 2 ) и записываем ответ ( 14 ) под первыми двумя разрядами делимого ( 15 ):

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7

   

Теперь настало время вычислить остаток от деления  15-ти  на  2 . Он равен, очевидно,

 15  −  2  ∙  7  =  15  −  14 .

У нас уже всё подготовлено, чтобы выполнить это вычитание «столбиком»:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

   

 

 1 

 

 

 

У нас получается  единица , к которой мы приписываем  шестерку  из следующего разряда делимого:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

   

 

 1 

 6 

 

 

В результате такого приписывания у нас получается число  16 . Мы делим его на наш делитеть ( 2 ) и получаем  8 . Эту  восьмерку  пишем в строке ответа, под чертой снизу от делителя: 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 6 

 

 

Ответ мы получили, однако правила составления таблицы таковы, что нам надо добавить в нее еще две строки. Мы должны формальным образом убедиться, что не потеряли остаток от деления. Умножаем делитель ( 2 ) на последнюю цифру ответа ( 8 ), приписываем результат ( 16 ) снизу к нашей таблице в последние два разряда делимого:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 6 

 

 

 

 1 

 6 

 

 

Вычитаем последнюю строку из предпоследней и получаем 0:

 

 1 

 5 

 6 

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 6 

 

 

 

 1 

 6 

 

 

 

 

 0 

 

 

Этот последний нуль есть не что иное, как остаток от деления, который образовался бы в том случае, если бы мы рассматривали деление с остатком:

156 : 2 = 78 (ост. 0).

Чтобы получше это понять, возьмем похожий пример, в котором, однако, остаток не равен нулю:

157 : 2 = 78 (ост. 1).

Таблица для этого примера выглядит так:

 

 1 

 5 

 7

 2 

 

 1 

 4 

 

 7 

 8 

 

 1 

 7

 

 

 

 1 

 6 

 

 

 

 

 1

 

 

Здесь, опять-таки, остаток стоит в последней строке. Для полноты картины распишем наше делимое в таком виде:

157 =

 14  ∙ 10 +  17  =

 7  ∙  2  ∙ 10 +  8  ∙  2  + 1 =

( 7  ∙ 10 +  8 ) ∙  2  + 1 =

 7 8  ∙  2  + 1

Теперь мы готовы к тому, чтобы делить (нацело или с остатком) на многозначные числа. Это делается при помощи подобной же таблицы (именно из-за ее особого вида данная процедура получила название деление «уголком»). Допустим, требуется выполнить деление с остатком:

135674 : 259 = ?

Приступаем к заполнению таблицы:

 

                

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

 

 

 

 

 

 

 

 

 

В данном случае, чтобы найти первую цифру частного, надо взять первые четыре цифры делимого ( 1356 ) и получившееся число поделить (с остатком) на делитель ( 259 ). Почему надо взять именно первые четыре цифры делимого? Потому что если бы мы взяли хотя бы на одну цифру меньше, то получившееся число ( 135 ) оказалось бы меньше делителя ( 259 ), а это совсем не то, из чего можно было бы извечь полезную информацию. Итак, возьмем первые четыре цифры делимого и рассмотрим следующее деление с остатком:

 1356  :  259  = ?

Тут нам помогут приближенные вычисления, для которых, как мы знаем, вовсе необязательно, чтобы числа делились друг на друга нацело:

 1356  /  259  ≈ 1356 / 300 ≈ 1500 / 300 = 15 / 3 =  5 .

Зная результат приближенного деления, мы можем предположить, что, скорее всего,

 1356  :  259  =  5  (остаток — пока неважно какой).

Конечно, абсолютной уверенности у нас нет. Здесь вместо  пятерки  вполне может стоять  четверка  или  шестерка , однако вряд ли мы ошиблись больше, чем на одну единицу. Имея это в виду, тем не менее берем эту  пятерку  и заносим ее в нашу таблицу в строку ответа. После этого умножаем на нее делитель ( 259 ) и при этом записываем ответ под делимым в подходящие разряды:

 

 

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

   1 

   2 

   4

 

 

 

 

 

 

 259  ∙  5  =  

 1 

 2 

 9 

 5 

 

 

 5 

 

 

Здесь «маленькие» цифры — это побочный продукт процедуры умножения: мы познакомились с ними, когда учились умножать «в столбик». После того как умножение выполнено, они становятся больше не нужны: на них можно просто не обращать внимания. Выражение  259  ∙  5 , написанное слева от таблицы, помещено сюда только ради пояснения того, что мы делаем. К таблице оно, собственно, не принадлежит, и в будущем мы такие пояснения выписывать не будем. Тут важно отметить, что результат нашего умножения ( 1295 ) оказался меньше записанного над ним числа  1356 , составленного из первых четырех цифр делимого. Если бы это было не так, то это означало бы, что приближенное деление дало нам завышенный результат. Нам надо было бы тогда зачеркнуть  пятерку  в строке ответа, на ее место поставить  четверку  — после чего зачеркнуть и переделать все наши последующие вычисления. Но нам на этот раз повезло, и ничего переделывать не требуется.

Теперь выполняем вычитание в столбик и получаем:

 

 

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

   1 

   2 

   4

 

 

 

 

 

 

 259  ∙  5  =  

 1 

 2 

 9 

 5 

 

 

 5 

 

 

 

 

 

 6 

 1 

 

 

 

 

 

Внимательно приглядимся к полученной разности ( 61 ). Очень важно, что она оказалась меньше делителя ( 259 ). В противном случае мы пришли бы к выводу, что приближенное деление дало нам заниженный результат и нам пришлось бы теперь исправлять в строке ответа  пятерку  на  шестерку , а также переделывать все последующие вычисления. К счастью, этого не случилось. Приближенное вычисление нас не подвело, и мы теперь совершенно точно знаем, что,

 1356  :  259  =  5  (ост.  61 ).

Возвращаемся к таблице. К нашему остатку ( 61 ) приписываем  семерку  из следующего разряда делимого и приступаем к нахождению второй цифры ответа. Это делается с помощью точно такой же процедуры, что и раньше. Потом — очередь за третьей цифрой. В конце концов таблица принимает такой вид:

 

 

 1 

 3 

 5 

 6 

 7 

 4 

 2 

 5 

 9 

 

   1 

   2 

   4

 

 

 

 

 

 

 259  ∙  5  =  

 1 

 2 

 9 

 5 

 

 

 5 

 2 

 3 

 

 

 

 6 

 1 

 7 

 

 

 

 

 

 

 

   1

   1

 

 

 

 

 

 259  ∙  2  =   

 

 

 5 

 1 

 8 

 

 

 

 

 

 

 

 

 9 

 9 

 4 

 

 

 

 

 

 

 

   1

  2

 

 

 

 

 259  ∙  3  =   

 

 

 

 7 

 7 

 7 

 

 

 

 

 

 

 

 2 

 1 

 7 

 

 

 

Можно выписывать окончательный ответ:

135674 : 259 = 523 (ост. 217).

Самая большая неприятность в делении «уголком» состоит в том, что приближенные вычисления, к которым приходится прибегать по ходу дела, не дают сразу гарантированно правильного результата и нуждаются иногда в последующей коррекции. Впрочем, по мере тренировки, у нас выработается особое чутье и мы будем уже сразу почти наверняка знать, какие цифры следует писать в строке ответа, чтобы потом ничего больше не надо было исправлять и переделывать.

Разумеется, нам будут попадаться случаи, когда частное содержит нули. Каждый такой нуль позволит сделать в таблице небольшие сокращения. Вот пример такой таблицы:

 

 2 

 6 

 2 

 7

 4 

 0 

 8 

 7 

 

 

   2

   2 

  

 

 

 

 

 

 

 

 2 

 6 

 1 

 

 

 

 3 

 0 

 2 

 0 

 

 

 1 

 7 

 4 

 

 

 

 

 

 

 

   1

   1

 

 

 

 

 

 

 

 

 1 

 7 

 4 

 

 

 

 

 

 

 

 

 

 0 

 

 

 

 

 

Как и в случае умножения «в столбик», для того чтобы было удобнее писать «маленькие» цифры, нам может понадобиться

лист со специальной линовкой для вычислений (формат pdf).

Теперь остается только тренироваться, тренироваться и тренироваться.

 

Из «бесконечного» сборника типовых упражнений

Деление нацело на однозначное число

Деление с остатком на однозначное число

Деление с остатком на однозначное число с возможным «приписыванием» нулей

Деление нацело на двузначное число

Деление с остатком на двузначное число

Деление нацело на трехзначное число

Деление с остатком на трехзначное число

 

 

 

nekin.info

Деление многочленов "столбиком" ("уголком").

Начнём с некоторых определений. Многочленом n-й степени (или n-го порядка) будем именовать выражение вида $P_n(x)=\sum\limits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots+a_{n-1}x+a_n$. Например, выражение $4x^{14}+87x^2+4x-11$ есть многочлен, степень которого равна $14$. Его можно обозначить так: $P_{14}(x)=4x^{14}+87x^2+4x-11$.

Коэффициент $a_0$ называют старшим коэффициентом многочлена $P_n(x)$. Например, для многочлена $4x^{14}+87x^2+4x-11$ старший коэффициент равен $4$ (число перед $x^{14}$). Число $a_n$ называют свободным членом многочлена $P_n(x)$. Например, для $4x^{14}+87x^2+4x-11$ свободный член равен $(-11)$. Теперь обратимся к теореме, на которой, собственно говоря, и будет основано изложение материала на данной странице.

Для любых двух многочленов $P_n(x)$ и $G_m(x)$ можно найти такие многочлены $Q_p(x)$ и $R_k(x)$, что будет выполнено равенство

\begin{equation} P_n(x)=G_m(x)\cdot Q_p(x)+R_k(x) \end{equation}

причём $k < m$.

Словосочетание "разделить многочлен $P_n(x)$ на многочлен $G_m(x)$" означает "представить многочлен $P_n(x)$ в форме (1)". Будем называть многочлен $P_n(x)$ – делимым, многочлен $G_m(x)$ – делителем, многочлен $Q_p(x)$ – частным от деления $P_n(x)$ на $G_m(x)$, а многочлен $R_k(x)$ – остачей от деления $P_n(x)$ на $G_m(x)$. Например, для многочленов $P_6(x)=12x^6+3x^5+16x^4+6x^3+8x^2+2x+1$ и $G_4(x)=3x^4+4x^2+2$ можно получить такое равенство:

$$ 12x^6+3x^5+16x^4+6x^3+8x^2+2x+1=(3x^4+4x^2+2)(4x^2+x)+2x^3+1 $$

Здесь многочлен $P_6(x)$ является делимым, многочлен $G_4(x)$ – делителем, многочлен $Q_2(x)=4x^2+x$ – частным от деления $P_6(x)$ на $G_4(x)$, а многочлен $R_3(x)=2x^3+1$ – остатком от деления $P_6(x)$ на $G_4(x)$. Замечу, что степень остатка (т.е. 3) меньше степени делителя, (т.е. 4), посему условие равенства (1) соблюдено.

Если $R_k(x)\equiv 0$, то говорят, что многочлен $P_n(x)$ делится на многочлен $G_m(x)$ без остатка. Например, многочлен $21x^6+6x^5+105x^2+30x$ делится на многочлен $3x^4+15$ без остатка, так как выполнено равенство:

$$ 21x^6+6x^5+105x^2+30x=(3x^4+15)\cdot(7x^2+2x) $$

Здесь многочлен $P_6(x)=21x^6+6x^5+105x^2+30x$ является делимым; многочлен $G_4(x)=3x^4+15$ – делителем; а многочлен $Q_2(x)=7x^2+2x$ – частным от деления $P_6(x)$ на $G_4(x)$. Остаток равен нулю.

Чтобы разделить многочлен на многочлен часто применяют деление "столбиком" или, как его ещё называют, "уголком". Реализацию этого метода разберём на примерах.

Перед тем, как перейти к примерам, я введу ещё один термин. Он не является общепринятым, и использовать его мы будем исключительно для удобства изложения материала. До конца этой страницы будем называть старшим элементом многочлена $P_n(x)$ выражение $a_{0}x^{n}$. Например, для многочлена $4x^{14}+87x^2+4x-11$ старшим элементом будет $4x^{14}$.

Пример №1

Разделить $10x^5+3x^4-12x^3+25x^2-2x+5$ на $5x^2-x+2$, используя деление "столбиком".

Решение

Итак, мы имеем два многочлена, $P_5(x)=10x^5+3x^4-12x^3+25x^2-2x+5$ и $G_2(x)=5x^2-x+2$. Степень первого равна $5$, а степень второго равна $2$. Многочлен $P_5(x)$ – делимое, а многочлен $G_2(x)$ – делитель. Наша задача состоит в нахождении частного и остатка. Поставленную задачу будем решать пошагово. Будем использовать ту же запись, что и для деления чисел:

Первый шаг

Разделим старший элемент многочлена $P_5(x)$ (т.е. $10x^5$) на старший элемент многочлена $Q_2(x)$ (т.е. $5x^2$):

$$ \frac{10x^5}{5x^2}=2x^{5-2}=2x^3. $$

Полученное выражение $2x^3$ – это первый элемент частного:

Умножим многочлен $5x^2-x+2$ на $2x^3$, получив при этом:

$$ 2x^3\cdot (5x^2-x+2)=10x^5-2x^4+4x^3 $$

Запишем полученный результат:

Теперь вычтем из многочлена $10x^5+3x^4-12x^3+25x^2-2x+5$ многочлен $10x^5-2x^4+4x^3$:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5-(10x^5-2x^4+4x^3)=5x^4-16x^3+25x^2-2x+5 $$

Этот многочлен допишем уже под чертой:

На этом первый шаг заканчивается. Тот результат, что мы получили, можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot 2x^3+5x^4-16x^3+25x^2-2x+5 $$

Так как степень многочлена $5x^4-16x^3+25x^2-2x+5$ (т.е. 4) больше степени многочлена $5x^2-x+2$ (т.е. 2), то процесс деления надобно продолжить. Перейдём ко второму шагу.

Второй шаг

Теперь уже будем работать с многочленами $5x^4-16x^3+25x^2-2x+5$ и $5x^2-x+2$. Точно так же, как и на первом шаге, разделим старший элемент первого многочлена (т.е. $5x^4$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{5x^4}{5x^2}=x^{4-2}=x^2. $$

Полученное выражение $x^2$ – это второй элемент частного. Прибавим к частному $x^2$

Умножим многочлен $5x^2-x+2$ на $x^2$, получив при этом:

$$ x^2\cdot (5x^2-x+2)=5x^4-x^3+2x^2 $$

Запишем полученный результат:

Теперь вычтем из многочлена $5x^4-16x^3+25x^2-2x+5$ многочлен $5x^4-x^3+2x^2$:

$$ 5x^4-16x^3+25x^2-2x+5-(5x^4-x^3+2x^2)=-15x^3+23x^2-2x+5 $$

Этот многочлен допишем уже под чертой:

На этом второй шаг заканчивается. Полученный результат можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot (2x^3+x^2)-15x^3+23x^2-2x+5 $$

Так как степень многочлена $-15x^3+23x^2-2x+5$ (т.е. 3) больше степени многочлена $5x^2-x+2$ (т.е. 2), то продолжаем процесс деления. Перейдём к третьему шагу.

Третий шаг

Теперь уже будем работать с многочленами $-15x^3+23x^2-2x+5$ и $5x^2-x+2$. Точно так же, как и на предыдущих шагах, разделим старший элемент первого многочлена (т.е. $-15x^3$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{-15x^3}{5x^2}=-3x^{2-1}=-3x^1=-3x. $$

Полученное выражение $(-3x)$ – это третий элемент частного. Допишем к частному $-3x$

Умножим многочлен $5x^2-x+2$ на $(-3x)$, получив при этом:

$$ -3x\cdot (5x^2-x+2)=-15x^3+3x^2-6x $$

Запишем полученный результат:

Теперь вычтем из многочлена $-15x^3+23x^2-2x+5$ многочлен $-15x^3+3x^2-6x$:

$$ -15x^3+23x^2-2x+5-(-15x^3+3x^2-6x)=20x^2+4x+5 $$

Этот многочлен допишем уже под чертой:

На этом третий шаг заканчивается. Полученный результат можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot (2x^3+x^2-3x)+20x^2+4x+5 $$

Так как степень многочлена $20x^2+4x+5$ (т.е. 2) равна степени многочлена $5x^2-x+2$ (т.е. 2), то продолжаем процесс деления. Перейдём к четвёртому шагу.

Четвёртый шаг

Теперь уже будем работать с многочленами $20x^2+4x+5$ и $5x^2-x+2$. Точно так же, как и на предыдущих шагах, разделим старший элемент первого многочлена (т.е. $20x^2$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{20x^2}{5x^2}=4x^{2-2}=4x^0=4. $$

Полученное число $4$ – это четвёртый элемент частного. Допишем к частному $4$

Умножим многочлен $5x^2-x+2$ на $4$, получив при этом:

$$ 4\cdot (5x^2-x+2)=20x^2-4x+8 $$

Запишем полученный результат:

Теперь вычтем из многочлена $20x^2+4x+5$ многочлен $20x^2-4x+8$:

$$ 20x^2+4x+5-(20x^2-4x+8)=8x-3 $$

Этот многочлен допишем уже под чертой:

На этом четвёртый шаг заканчивается. Полученный результат можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot (2x^3+x^2-3x+4)+8x-3 $$

Так как степень многочлена $8x-3$ (т.е. 1) меньше степени многочлена $5x^2-x+2$ (т.е. 2), то процесс деления завершён. Частным от деления многочлена $P_6(x)$ на многочлен $G_2(x)$ есть многочлен $Q_3(x)=2x^3+x^2-3x+4$. Остаток от деления $P_6(x)$ на $G_2(x)$ – это многочлен $R_1(x)=8x-3$. По сути, мы представили исходный многочлен $P_6(x)$ в форме (1):

$$ P_6(x)=G_2(x)\cdot Q_3(x)+R_1(x) $$

Ответ: частное от деления – многочлен $2x^3+x^2-3x+4$, остаток – многочлен $8x-3$.

Пример №2

Разделить $4x^3+2x-11$ на $x+5$, используя деление "столбиком".

Решение

Здесь можно использовать схему Горнера (и это было бы несколько менее громоздко). Однако для сугубо демонстрационных целей используем деление "столбиком". Подробные пояснения есть в примере №1, посему здесь укажем только ход решения.

Результат можно записать в такой форме:

$$ 4x^3+2x-11=(x+5)\cdot(4x^2-20x+102)-521 $$

Следовательно, частным от деления $4x^3+2x-11$ на $x+5$ является многочлен $4x^2-20x+102$, а остаток есть число $(-521)$ (по сути, это многочлен нулевого порядка).

Ответ: частное – многочлен $4x^2-20x+102$, остаток – число $-521$.

Пример №3

Разделить $7x^3+9x^2-5x+9$ на $5x^7+10x^6-17x^2+14x-7$.

Решение

Степень делителя (т.е. многочлена $5x^7+10x^6-17x^2+14x-7$) равна $7$. Степень делимого (многочлена $7x^3+9x^2-5x+9$) равна 3. В этом ситуации, когда степень делителя больше степени делимого ($7 > 3$) разложение вида (1) возможно лишь в такой форме:

$$ 7x^3+9x^2-5x+9=0\cdot(5x^7+10x^6-17x^2+14x-7)+7x^3+9x^2-5x+9 $$

Ответ: частное есть 0, остаток – многочлен $7x^3+9x^2-5x+9$.

math1.ru

Как делить уголком

Сейчас калькуляторы встроены во многие гаджеты. Но когда под рукой нет ни одного из них, выручат самые простые навыки. Делить уголком можно не только с помощью карандаша и бумаги, но и веточкой на земле или пальцем на песке.

Вам понадобится

Инструкция

completerepair.ru

Как объяснить ребенку деление столбиком

В процессе обучения в школе очень часто возникает проблема, когда ребенок не смог понять на уроке операцию деления простых чисел. Взрослые думают, что это совсем не сложно. Но школьник сталкивается с этим впервые и не всегда самостоятельно может во всем разобраться.

В такой ситуации родители, набравшись терпения, должны предельно просто и ясно объяснить ему все непонятные моменты. Как правильно и доступно объяснить ребенку деление столбиком, читайте в материалах этой статьи.

Что нужно знать, что бы научиться делить

Прежде, чем приступить к делению, нужно убедиться в том, что ребенок усвоил азы математики – сложение, вычитание.

Надо объяснить ему основы умножения и проверить знание таблицы умножения. Необходимо убедиться, как он выучил разряды чисел.

Без этих основ вряд ли получится проводить арифметические операции с числами. Математика не терпит пробелов в знаниях, поэтому важно вложить этот принцип в голову ребенка с раннего возраста. Даже если какая-то часть материала была пропущена по причине болезни или иного отсутствия на уроке, материал должен быть выучен.

Пробелы в знаниях повлекут за собой трудности в решении задач, примеров, а в старших классах и проблемы в изучении других дисциплин.

Принцип деления для детей

Дальше приступают к формированию самого понимания, что деление – это процесс разделения чего-нибудь на одинаковые части. Проще всего обучить ребенка такому математическому действию – попросить разделить небольшое количество предметов между ним и членами семьи. Используя игровой подход, ему легче уловить суть самого процесса деления.

Так, например, просят разделить апельсин на дольки между ним и членами семьи, чтобы у всех было поровну. Сначала ребенок будет перекладывать по одной штучке. Потом нужно предложить ему подсчитать, сколько долек было изначально, и какое количество досталось каждому.

Надо показать ребенку, что уметь разделить предметы – значит разложить их таким образом, чтобы все получили поровну независимо от количества участников. При этом объясняют, что не всегда их можно разделить на одинаковые части. Приводят пример. Если 10 яблок разделить между папой, мамой и бабушкой, то каждый получит по 3 штуки, а 1 останется.

Чтобы процесс обучения давался ребенку более легко, можно использовать наглядный материал. Используйте счетные палочки, раскладывая их в отдельные «кучки», имитируя деление палочек на несколько равных частей. Можно использовать орешки, семечки, карандаши. Обязательное условие – учитесь играя.

После того, как ребенок усвоил саму суть принципа деления, надо начинать изучать математическую запись этой операции. Объясняют, что деление – операция противоположная умножению. Демонстрируют это с помощью таблицы умножения.

Например, 3х2=6. Надо повторить, что произведение данных чисел равно результату умножения. Потом показать, что операция деления, противоположная умножению и все это показать ребенку. Делят наше произведение «6» на множитель «3», и в результате будет другой множитель.

Задача родителей – объяснить юному дарованию таблицу умножения «наизнанку». Очень важно, чтобы ребенок ее хорошо усвоил. Это знание будет просто необходимо для изучения деления в столбик.

Алгоритм деления в столбик

Для решения примеров делением в столбик рекомендуется пользоваться простым алгоритмом.

  1. Определить в примере, где находится делимое, а где делитель.
  2. Записать делимое и делитель под «уголок».
  3. Определить, какая часть делимого может использоваться для первичного деления.
  4. Определить сколько раз делитель умещается в выбранной части делимого.
  5. Произвести умножение делителя на полученное число под уголком, результат вписать под выбранную часть делимого.
  6. Найти разницу (остаток).
  7. Повторить действия, пока в остатке не окажется 0.

Более подробно этот алгоритм разберем на конкретном примере.

Методика обучения делению в столбик

Чтобы приступить к этому арифметическому действию, нужно познакомить ребенка с названием элементов при делении.

Делимое – число, что подвергается делению, делится на делитель, в результате получается частное.

Объясняют ему саму суть операции деления столбиком. Это такое действие в математике, которое применяют для разделения чисел за счет дробления самого процесса деления на более простые шаги.

Деление в столбик на конкретном примере

Метод деления, основанный на конкретном примере, очень распространен и используется школьниками в дальнейшей учебе. Ребенку предлагается разделить число 945 на 5 в столбик.

Шаг 1. На этом этапе нужно попросить ребенка показать компоненты деления. Если он правильно усвоил выше изложенный материал, то без особых усилий определит: 945 – это делимое, 5 – делитель, результат деления – частное. Собственно, это то, что и необходимо найти.

Шаг 2. Сначала ребенка просят записать рядом 945 и 5, а потом делят их «уголком».

Шаг 3. Следующий этап, просят ребенка рассмотреть делимое и, продвигаясь вправо, предлагают определить самое меньшее число, что больше делителя. Ученик определяет числа: 9, 94 и 945. Самым меньшим из них является 9. Потом спрашивают, сколько раз 5 помещается в числе 9? Ребенок дает ответ, что один раз. Значит, пишут 1 под чертой – первую цифру искомого частного.

Вот и столбик скоро получится.

Шаг 4. На следующем этапе предлагают ребенку умножить 1 на 5 и получают 5. Просят записать результат, который получили, под первой цифрой делимого, и из 9 вычитают 5. Спрашивают ребенка о результате и получают 4.

Здесь важно объяснить ему, что результат вычитания всегда будет меньше делителя. А когда наоборот, значит, неправильно удалось определить, сколько раз 5 содержится в 9. Так как результат получился меньше делителя, его увеличивают с помощью следующей цифры делимого. Ребенок определяет 4 и пишет к четверке.

 

Шаг 5. Дальше задают ему знакомый вопрос о том, сколько раз 5 помещается в 44? Ученик отвечает, что восемь раз. Тогда предлагают записать восьмерку к единице под чертой. Объясняют ребенку, что это будет следующая цифра искомого частного. Просят умножить 5 на 8. Получается 40, и записывают эту цифру под 44.

Шаг 6. На следующем этапе вся операция повторяется. Ученик вычитает 40 из 44, и получает 4 (4 меньше 5, значит, ребенок все делает правильно). Теперь предлагают использовать последнюю цифру делимого — 5, просят приписать ее вниз к четверке и получается число 45.

Снова задают тот же вопрос. Сколько раз 5 помещается в 45? Ребенок отвечает, что девять раз.

Шаг 7. Просят его записать девятку под чертой. Предлагают умножить 5 на 9. Ребенок говорит, что получает в результате 45 и записывает в столбик под 45. Дальше проводит вычитание 45 из 45, и получает 0. Ему объясняют, что это был пример деления числа без остатка.

Когда ребенок неплохо умеет пользоваться таблицей умножения, деление в столбик для него простой задачей. Очень важно с помощью постоянных примеров и упражнений закрепить полученный навык.

Вместо заключения

Если у ребенка возникают проблемы с учебой, родители должны помочь ему преодолеть любые трудности.

Деление в столбик – программа 2-3 класса, конечно. Для родителей это давно забытые знания, но при необходимости и желании все можно восстановить в памяти и помочь своему школьнику.

childage.ru

Деление многочленов уголком

1 октября 2013

Сегодня мы узнаем, как выполняется деление многочленов друг на друга, причем выполнять деление мы будем уголком по аналогии с обычными числами. Это очень полезный прием, который, к сожалению, не изучают в большинстве школ. Поэтому внимательно прослушайте данный видеоурок. Ничего сложного в таком делении нет.

Для начала давайте разделим друг на друга два числа:

\[595:17=35\]

Как можно это сделать? В первую очередь, мы отсекаем столько разрядов, чтобы полученное числовое значение было больше чем то, на которое мы делим. Если мы отсечем один разряд, то получим пять. Очевидно, семнадцать в пять не вмещается, поэтому этого недостаточно. Берем два разряда — у нас выйдет 59 — оно уже больше, чем семнадцать, поэтому мы можем выполнить операцию. Итак, сколько раз семнадцать помещается в 59? Давайте возьмем три. Перемножаем и записываем результат под 59. Итого у нас получилось 51. Вычитаем и у нас вышло «восемь». Теперь сносим следующий разряд — пять. Делим 85 на семнадцать. Берем пять. Перемножим семнадцать на пять и получаем 85. Вычитаем и у нас получается ноль.

Решаем реальные примеры

Задача № 1

Теперь выполним те же самые шаги, но не с числами, а с многочленами. Для примера возьмем такое:

\[\frac{{{x}^{2}}+8x+15}{x+5}=x+3\]

Обратите внимание, если при делении чисел друг на друга мы подразумевали, что делимое всегда больше делителя, то в случае деления полиномов уголком, необходимо, чтобы степень делимого была больше, чем делителя. В нашем случае все в порядке — мы работаем с конструкциями второй и первой степени.

Итак, первый шаг: сравниваем первые элементы. Вопрос: на что нужно домножить $x$, чтобы получилось ${{x}^{2}}$? Очевидно, что на еще один $x$. Умножаем $x+5$ на только что найденное число $x$. У нас есть ${{x}^{2}}+5$, которое вычитаем из делимого. Остается $3x$. Теперь сносим следующее слагаемое — пятнадцать. Снова посмотрим на первые элементы: $3x$ и $x$. На что следует домножить $x$, чтобы вышло$3x$? Очевидно, что на три. Домножаем почленно $x+5$ на три. Когда мы вычтем, то получим ноль.

Как видите, вся операция деления уголком свелась к сравнению старших коэффициентов при делимом и делителе. Это даже проще, чем когда вы делите числа. Тут не требуется выделять какое-то количество разрядов — мы просто на каждом шаге сравниваем старшие элементы. Вот и весь алгоритм.

Задача № 2

Давайте попробуем еще:

\[\frac{{{x}^{2}}+x-2}{x-1}=x+2\]

Первый шаг: посмотрим на старшие коэффициенты. На сколько нужно домножить $x$, чтобы записать${{x}^{2}}$? Домножаем почленно. Обратите внимание, при вычитании у нас получится именно $2x$, потому что

\[x-\left( -x \right)=x+x=2x\]

Сносим -2 и снова сравним первый полученный коэффициент со старшим элементом делителя. Итого у нас вышел «красивый» ответ.

Переходим ко второму примеру:

\[\frac{{{x}^{3}}+2{{x}^{2}}-9x-18}{x+3}={{x}^{2}}-x-6\]

В этот раз в качестве делимого выступает полином третьей степени. Сравним между собой первые элементы. Для того чтобы получилось ${{x}^{3}}$, необходимо $x$ домножить на ${{x}^{2}}$. После вычитания сносим $9x$. Домножаем делитель на $-x$ и вычитаем. В итоге наше выражение полностью разделилось. Записываем ответ.

Задача № 3

Переходим к последней задаче:

\[\frac{{{x}^{3}}+3{{x}^{2}}+50}{x+5}={{x}^{2}}-2x+10\]

Сравниваем ${{x}^{3}}$ и $x$. Очевидно, нужно домножить на ${{x}^{2}}$. В итоге мы видим, что мы получили очень «красивый» ответ. Записываем его.

Вот и весь алгоритм. Ключевых моментов здесь два:

  1. Всегда сравнивайте первую степень делимого и делителя — повторяем это на каждом шаге;
  2. Если в исходном выражении пропущены какие-либо степени, при делении уголком их обязательно следует добавить, но с нулевыми коэффициентами, иначе ответ будет неправильным.

Больше никаких премудростей и хитростей в таком делении нет.

Краткое содержание

Материал сегодняшнего урока нигде и никогда не встречается в «чистом» виде. Его редко изучают в школах. Однако умение делить многочлены друг на друга очень поможет вам при решении уравнений высших степеней, а также всевозможных задач «повышенной трудности». Без данного приема вам придется раскладывать многочлены на множители, подбирать коэффициенты — и результат при этом отнюдь не гарантирован. Однако многочлены можно делить и уголком — так же, как и обычные числа! К сожалению, данный прием не изучают в школах. Многие учителя считают, что деление многочленов уголком — это что-то безумно сложное, из области высшей математики. Спешу вас заверить: это не так. Более того, делить многочлены даже проще, чем обычные числа! Посмотрите урок — и убедитесь в этом сами.:) В общем, обязательно возьмите этот прием на вооружение. Умение делить многочлены друг на друга очень пригодится вам при решении уравнений высших степеней и в других нестандартных задачах.

Я надеюсь, этот ролик поможет тем, кто работает с полиномами, особенно высших степеней. Это относится и к старшеклассникам, и к студентам университетов. А у меня на этом все. До встречи!     

Смотрите также:

  1. Теорема Безу: разложение на множители
  2. Что такое схема Горнера
  3. Тест к уроку «Округление с избытком и недостатком» (1 вариант)
  4. Задача 7 — геометрический смысл производной
  5. Не пишите единицы измерения в задаче B12
  6. Интегрирование по частям

www.berdov.com

Деление и умножение многочленов уголком и столбиком

Теорема

Пусть Pk(x), Qn(x) – многочлены от переменной x степеней k и n, соответственно, причем k ≥ n. Тогда многочлен Pk(x) можно представить единственным способом в следующем виде:(1)   Pk(x) = Sk–n(x) Qn(x) + Un–1(x),где Sk–n(x) – многочлен степени k–n, Un–1(x) – многочлен степени не выше n–1, или нуль.

Доказательство

По определению многочлена: ; ; ; ,где pi , qi – известные коэффициенты, si , ui – неизвестные коэффициенты.

Введем обозначение: .Подставим в (1)   : ;(2)   .Первый член в правой части – это многочлен степени k. Сумма второго и третьего членов – это многочлен степени не выше k – 1. Приравняем коэффициенты при x k:pk = sk-n qn.Отсюда sk-n = pk / qn.

Преобразуем уравнение (2): .Введем обозначение:   .Поскольку sk-n = pk / qn, то коэффициент при x k равен нулю. Поэтому   – это многочлен степени не выше k – 1,   . Тогда предыдущее уравнение можно переписать в виде:(3)   .

Это уравнение имеет тот же вид, что и уравнение (1), только значение k стало на 1 меньше. Повторяя эту процедуру k–n раз, получаем уравнение: ,из которого определяем коэффициенты многочлена Un–1(x).

Итак, мы определили все неизвестные коэффициенты si , ul. Причем sk–n ≠ 0. Лемма доказана.

Деление многочленов

Разделив обе части уравнения (1) на Qn(x), получим:(4)   .По аналогии с десятичными числами, Sk–n(x) называется целой частью дроби или частным, Un–1(x) – остатком от деления. Дробь многочленов, у которой степень многочлена в числителе меньше степени многочлена в знаменателе называется правильной дробью. Дробь многочленов, у которой степень многочлена в числителе больше или равна степени многочлена в знаменателе называется неправильной дробью.

Уравнение (4) показывает, что любую неправильную дробь многочленов можно упростить, представив ее в виде суммы целой части и правильной дроби.

Деление многочленов уголком

По своей сути, целые десятичные числа являются многочленами, у которых переменная равна числу 10. Например, возьмем число 265847. Его можно представить в виде: .То есть это многочлен пятой степени от 10. Цифры 2, 6, 5, 8, 4, 7 являются коэффициентами разложения числа по степеням числа 10.

Поэтому к многочленам можно применить правило деления уголком (иногда его называют делением в столбик), применяемое к делению чисел. Единственное отличие заключается в том, что, при делении многочленов, не нужно переводить числа больше девяти в старшие разряды. Рассмотрим процесс деления многочленов уголком на конкретных примерах.

Пример деления многочленов уголком

Выделить целую часть дроби и найти остаток от деления: .

Решение

Здесь в числителе стоит многочлен четвертой степени. В знаменателе – многочлен второй степени. Поскольку 4 ≥ 2, то дробь неправильная. Выделим целую часть, разделив многочлены уголком (в столбик):

Приведем подробное описание процесса деления. Исходные многочлены записываем в левый и правый столбики. Под многочленом знаменателя, в правом столбике, проводим горизонтальную черту (уголок). Ниже этой черты, под уголком, будет целая часть дроби.

1.1   Находим первый член целой части (под уголком). Для этого разделим старший член числителя на старший член знаменателя:   .

1.2   Умножаем 2x 2 на x 2 – 3x + 5: . Результат записываем в левый столбик:

1.3   Берем разность многочленов в левом столбике: .

Итак, мы получили промежуточный результат: .

Дробь в правой части неправильная, поскольку степень многочлена в числителе (3) больше или равна степени многочлена в знаменателе (2). Повторяем вычисления. Только теперь числитель дроби находится в последней строке левого столбика.2.1   Разделим старший член числителя на старший член знаменателя:   ;

2.2   Умножаем на знаменатель:   ;

2.3   И вычитаем из последней строки левого столбика:   ;Промежуточный результат: .

Снова повторяем вычисления, поскольку в правой части стоит неправильная дробь.3.1   ;3.2   ;3.3   ;Итак, мы получили: .Степень многочлена в числителе правой дроби меньше степени многочлена знаменателя, 1 < 2. Поэтому дробь – правильная.

Ответ

;2x 2 – 4x + 1 – это целая часть;x – 8 – остаток от деления.

Пример 2

Выделить целую часть дроби и найти остаток от деления: .

Решение

Выполняем те же действия, что и в предыдущем примере:Здесь остаток от деления равен нулю: .

Ответ

.

Умножение многочленов столбиком

Также можно умножать многочлены столбиком, аналогично умножению целых чисел. Рассмотрим конкретные примеры.

Пример умножения многочленов столбиком

Найти произведение многочленов: .

Решение

Умножаем многочлены столбиком.

1   Записываем исходные многочлены друг под другом в столбик и проводим черту.

2.1   Умножаем младший член второго многочлена на первый многочлен: .Результат записываем в столбик.

2.2   Умножаем следующий член второго многочлена на первый многочлен: .Результат записываем в столбик, выравнивая степени x.

2.3   Умножаем следующий (старший) член второго многочлена на первый многочлен: .Результат записываем в столбик, выравнивая степени x.

3   После того, как все члены второго многочлена умножили на первый, проводим черту и складываем члены с одинаковыми степенями x: ; ; ; .

Заметим, что можно было записывать только коэффициенты, а степени переменной x можно было опустить. Тогда умножение столбиком многочленов будет выглядеть так:

Ответ

.

Пример 2

Найти произведение многочленов столбиком: .

Решение

При умножении многочленов столбиком важно записывать одинаковые степени переменной x друг под другом. Если некоторые степени x пропущены, то их следует записывать явно, умножив на нуль, либо оставлять пробелы.

В этом примере некоторые степени пропущены. Поэтому запишем их явно, умноженными на нуль: .Умножаем многочлены столбиком.

1   Записываем исходные многочлены друг под другом в столбик и проводим черту.

2.1   Умножаем младший член второго многочлена на первый многочлен: .Результат записываем в столбик.

2.2   Следующий член второго многочлена равен нулю. Поэтому его произведение на первый многочлен также равно нулю. Нулевую строку можно не записывать.

2.3   Умножаем следующий член второго многочлена на первый многочлен: .Результат записываем в столбик, выравнивая степени x.

2.3   Умножаем следующий (старший) член второго многочлена на первый многочлен: .Результат записываем в столбик, выравнивая степени x.

3   После того, как все члены второго многочлена умножили на первый, проводим черту и складываем члены с одинаковыми степенями x: .

Ответ

.

Автор: Олег Одинцов.     Опубликовано: 21-05-2015

1cov-edu.ru