Мутация - это изменение генома. Основные виды и примеры. Что такое генная мутация


Генные мутации | Биология

Виды генных мутаций:

Генные мутации возникаю чаще, чем хромосомные и геномные, но менее значительно меняют структуру ДНК, в основном касаются только химической структуры отдельно взятого гена. Представляют собой замену, удаление или вставку нуклеотида, иногда нескольких. Также к генным мутациям относятся транслокации (перенос), дупликации (повторение), инверсии (переворот на 180°) участков гена, но не хромосомы.

Генные мутации происходят при репликации ДНК, кроссинговере, возможны в остальные периоды клеточного цикла. Механизмы репарации не всегда устраняют мутации и повреждения ДНК. Кроме того сами могут служить источником генных мутаций. Например, при объединении концов разорванной хромосомы часто теряется несколько нуклеотидных пар.

Если системы репарации перестают нормально функционировать, то происходит быстрое накопление мутаций. Если мутации возникают в генах, кодирующих ферменты репарации, то может нарушится работа одного или нескольких его механизмов, в результате чего количество мутаций сильно возрастет. Однако иногда бывает обратный эффект, когда мутация генов ферментов репарации приводит к снижению частоты мутаций других генов.

Помимо первичных мутаций в клетках могут происходить и обратные, восстанавливающие исходный ген.

Большинство генных изменений, как и мутаций двух других видов, вредны. Появление мутаций, обусловливающих полезные признаки для определенных условий среды, происходит редко. Однако именно они делают возможным процесс эволюции.

Генные мутации затрагивают не генотип, а отдельные участки гена, что, в свою очередь, обуславливает появление нового варианта признака, т. е. аллели, а не нового признака как такового. Мутон — это элементарная единица мутационного процесса, способная приводить к появлению нового варианта признака. Зачастую, для этого достаточно изменить одну пару нуклеотидов. С этой точки зрения мутон соответствует одной паре комплементарных нуклеотидов. С другой стороны, не все генные мутации являются мутонами с точки зрения последствий. Если изменение нуклеотидной последовательности не влечет за собой изменения признака, то с функциональной точки зрения мутации не произошло.

Одной паре нуклеотидов соответствует и рекон — элементарная единица рекомбинации. При кроссинговере в случае нарушения рекомбинации происходит неравный обмен участками между конъюгирующими хромосомами. В результате происходит вставка и выпадение нуклеотидных пар, что влечет сдвиг рамки считывания, в дальнейшем нарушение синтеза пептида с необходимыми свойствами. Таким образом для искажения генетической информации достаточно одной лишней или потерянной пары нуклеотидов.

Частота спонтанных генных мутаций находится в пределах от 10-12 до 10-9 на каждый нуклеотид ДНК на каждое деление клетки. Для проведения исследований ученые подвергают клетки воздействию химических, физических и биологических мутагенов. Вызванные таким образом мутации, называются индуцированными, их частота выше.

Замена азотистых оснований

Если происходит изменение только одного нуклеотида в ДНК, то такая мутация называется точечной. В случае мутаций по типу замены азотистых оснований одна комплементарная нуклеотидная пара молекулы ДНК заменяется в ряду циклов репликации на другую. Частота подобных происшествий составляет около 20% от общей массы всех генных мутаций.

Примером подобного является дезаминирование цитозина, в результате чего образуется урацил.

В ДНК образуется нуклеотидная пара Г-У, вместо Г-Ц. Если ошибка не будет репарирована ферментом ДНК-гликолазой, то при репликации произойдет следующее. Цепи разойдутся, напротив гуанина будет установлен цитозин, а напротив урацила — аденин. Таким образом, одна из дочерних молекул ДНК будет содержать аномальную пару У-А. При ее последующей репликации в одной из молекул напротив аденина будет установлен тимин. Т. е. в гене произойдет замена пары Г-Ц на А-Т.

Другим примером является дезаминирование метилированного цитозина, в результате которого образуется тимин. В последствии может возникнуть ген с парой Т-А вместо Ц-Г.

Могут быть и обратные замены: пара А-Т при определенных химических реакциях может заменяться на Ц-Г. Например, в процессе репликации к аденину может присоединиться бромурацил, который при следующей репликации присоединяет к себе гуанин. В следующем цикле гуанин свяжется с цитозином. Таким образом в гене пара А-Т заменится на Ц-Г.

Замена одного пиримидина на другой пиримидин или одного пурина на другой пурин называется транзицией. Пиримидинами являются цитозин, тимин, урацил. Пуринами — аденин и гуанин. Замена пурина на пиримидин или пиримидина на пурин называется трансверсией.

Точечная мутация может не привести ни к каким последствиям из-за вырожденности генетического кода, когда несколько кодонов-триплетов кодируют одну и ту же аминокислоту. Т. е. в результате замены одного нуклеотида может образоваться другой кодон, но кодирующий ту же аминокислоту, что и старый. Такая замена нуклеотидов называется синонимической. Их частота около 25% от всех замен нуклеотидов. Если же смысл кодона меняется, он начинает кодировать другую аминокислоту, то замена называется мисенс-мутацией. Их частота около 70%.

В случае мисенс-мутации при трансляции в пептид будет включена не та аминокислота, в результате чего его свойства изменятся. От степени изменения свойств белка зависит степень изменения более сложных признаков организма. Например, при серповидно-клеточной анемии в белке заменена лишь одна аминокислота — глутамин на валин. Если же глутамин заменяется на лизин, то свойства белка меняются не сильно, т. е. обе аминокислоты гидрофильны.

Точечная мутация может быть такой, что на месте кодирующего аминокислоту кодона возникает стоп-кодон (УАГ, УАА, УГА), прерывающий (терминирующий) трансляцию. Это нонсенс-мутации. Иногда бывают и обратные замены, когда на месте стоп-кодона возникает смысловой. При любой подобной генной мутации функциональный белок уже не может быть синтезирован.

Сдвиг рамки считывания

К генным относятся мутации обусловленные сдвигом рамки считывания, когда происходит изменение количества нуклеотидных пар в составе гена. Это может быть как выпадение, так и вставка одной или нескольких нуклеотидных пар в ДНК. Генных мутаций по типу сдвига рамки считывания больше всего. Наиболее часто они возникают в повторяющихся нуклеотидных последовательностях.

Вставка или выпадение нуклеотидных пар может произойти в следствие воздействия определенных химических веществ, которые деформируют двойную спираль ДНК.

Рентгеновское облучение может приводить к выпадению, т. е. делеции, участка с большим количеством пар нуклеотидов.

Вставки нередки при включении в нуклеотидную последовательность так называемых подвижных генетических элементов, которые могут менять свое положение.

К генным мутациям приводит неравный кроссинговер. Чаще всего он происходит в тех участках хромосом, где локализуются несколько копий одного и того же гена. При этом кроссинговер происходит так, что в одной хромосоме возникает делеция участка. Этот участок переносится на гомологичную хромосому, в которой возникает дупликация участка гена.

Если происходит делеция или вставка числа нуклеотидов не кратного трем, то рамка считывания сдвигается, и трансляция генетического кода зачастую обессмысливается. Кроме того, может возникнуть нонсенс-триплет.

Если количество вставленных или выпавших нуклеотидов кратно трем, то, можно сказать, сдвиг рамки считывания не происходит. Однако при трансляции таких генов в пептидную цепь будут включены лишние или утрачены значащие аминокислоты.

Инверсия в пределах гена

Если инверсия участка ДНК происходит внутри одного гена, то такую мутацию относят к генным. Инверсии более крупных участков относятся к хромосомным мутациям.

Инверсия происходит вследствие поворота участка ДНК на 180°. Часто это происходит при образовании петли в молекуле ДНК. При репликации в петле репликация идет в обратном направлении. Далее этот кусок сшивается с остальной нитью ДНК, но оказывается перевернутым наоборот.

Если инверсия случается в смысловом гене, то при синтезе пептида часть его аминокислот будет иметь обратную последовательность, что скажется на свойствах белка.

biology.su

Генные мутации. Понятие о генных болезнях.

1. Определение изменчивости. Классификация ее форм.

Изменчивость – есть общее свойство живых организмов, заключающееся в изменении наследственных признаков в ходе онтогенеза (индивидуального развития).

Изменчивость организмов делят на два крупных типа:

1. фенотипическую, не затрагивающую генотип и не передающуюся по наследству;

2. генотипическую, изменяющую генотип и поэтому передаю­щуюся по наследству.

Генотипическая изменчивость подразделяется на комбинативную и мутационную.

Мутационная изменчивость включает геномные, хромосомные и генные мутации.

Геномные мутации подразделяется на полиплоидию и анеуплоидию

Хромосомные мутации подразделяется на делеции, дупликации, инверсии, транслокации

 

2. Фенотипическая изменчивость. Норма реакции генетически детерминиро­ванных признаков. Адаптивный характер модификаций. Фенокопии.

Фенотипическая изменчивость (или ненаследственная, модификационная) – это изменение фенотипических признаков организма под действием факторов внешней среды, без изменения генотипа.

Например: окраска шерсти у гималайского кролика в зависимости от температуры среды обитания.

Норма реакции – это диапазон изменчивости, в пределах которого один и тот же генотип способен давать различные фенотипы.

1. широкая норма реакции – когда колебания признака идут в широких пределах (например: загар, количество молока).

2. узкая норма реакции – когда колебания признака незначительны (например: жирность молока).

3. однозначная норма реакции – когда признак не изменяется, ни при каких условиях (например: группы крови, цвет глаз, разрез глаз).

Адаптивный характер модификаций заключается в том, что модификационная изменчивость позволяет организму адаптироваться к изменяющимся условиям среды. Поэтому модификации всегда полезны.

Если во время эмбриогенеза на организм воздействуют неблагоприятные факторы, то могут появляться фенотипические изменения, выходящие за пределы нормы реакции и не носящие адаптивного характера, их называют морфозы развития. Например, ребёнок рождается без конечностей или с заячьей губой.

Фенокопии – это морфозы развития, которые очень трудно отличить от наследственных изменений (заболеваний).

Например: если беременная женщина переболела краснухой, у неё может родиться ребёнок с катарактой. Но эта патология может появиться и в результате мутации. В первом случае речь идет о фенокопии.

Диагноз «фенокопия» важен для будущего прогноза, так как при фенокопии генетический материал не изменяется, то есть остается в норме.

 

3. Комбинативная изменчивость. Значение комбинативной изменчивости в обеспечении генетического разнообразия людей.

Комбинативная изменчивость – это возникновение у потомков новых комбинаций генов, которых не было у их родителей.

Комбинативная изменчивость связана:

с кроссинговером в профазу мейоза 1.

с независимым расхождением гомологичных хромосом в анафазу мейоза 1.

со случайным сочетанием гамет при оплодотворении.

Значение комбинативной изменчивости – обеспечивает генетическое разнообразие особей в пределах вида, что важно для естественного отбора и эволюции.

 

4. Мутационная изменчивость. Основные положения теории мутаций.

Гюго де Фриз голландский ученый ввел в 1901 году термин "мутация".

Мутация – это явление прерывистого скачкообразного изменения наследственного признака.

Процесс возникновения мутаций называется мутагенез, а организм, который приобретает новые признаки в процессе мутагенеза, называется – мутант.

Основные положения теории мутаций по Гюго де Фризу.

1. мутации возникают внезапно без всяких переходов.

2. возникшие формы вполне устойчивы.

3. мутации являются качественными изменениями.

4. мутации происходят в различных направлениях. они могут быть как полезными, так и вредными.

5. одни и те же мутации могут возникать повторно.

 

5. Классификация мутаций.

I. По происхождению.

1. Спонтанные мутации. Самопроизвольные мутации или естественные, возникают в обычных природных условиях.

2. Индуцированные мутации. Вызванные мутации или искусственные, возникают при воздействии на организм мутагенных факторов.

а. физические (ионизирующее излучение, УФЛ, высокая температура и т.п.)

б. химические (соли тяжёлых металлов, азотистая кислота, свободные радикалы, бытовые и промышленные отходы, лекарства).

в. биологические (вирусы, продукты жизнедеятельности паразитов).

II. По месту возникновения.

а. Соматические мутации возникают в соматических клетках и наследуются потомками тех клеток, в которых возникли. Из поколения в поколение не передаются.

б. Генеративные мутации возникают в половых клетках и передаются из поколения в поколение.

в.

III. По характеру изменений фенотипа.

1. Морфологические мутации, характеризующиеся изменением строения органа или организма в целом.

2. Физиологические мутации, характеризующиеся изменением ф-й органа или организма в целом.

3. Биохимические мутации связанные с изменением макромолекулы.

IV. По влиянию на жизнеспособность организма.

1. Летальные мутации в 100% случаев приводят к гибели организма из-за несовместимых с жизнью дефектов.

2. Полулетальные мутации приводят к гибели в 50-90% случаев. Обычно организмы с такими мутациями не доживают до репродуктивного периода.

3. Условно летальные мутации, в одних условиях организм погибает, а в других условиях выживает (галактоземия).

4. Полезные мутации повышают жизнеспособность организма и используются в селекции.

V. По характеру изменения наследственного материала.

1. Генные мутации.

2. Хромосомные мутации.

 

6. Генные мутации, определение. Механизмы возникновения спонтанных генных мутаций.

Генные мутации или точковые мутации – это мутации, которые возникают в генах на уровне нуклеотидов, при этом изменяется структура гена, изменяется молекула мРНК, изменяется последовательность аминокислот в белке, в организме изменяется признак.

Виды генных мутаций:

- миссенс мутации – замена 1 нуклеотида в триплете на другой приведет к тому, что в полипептидную цепь белка будет включаться другая аминокислота, которой в норме не должно быть, а это приведет к тому, что изменятся свойства и функции белка.

Пример: замена глутаминовой кислоты на валин в молекуле гемоглобина.

ЦТТ – глутаминовая кислота, ЦАТ – валин

Если такая мутация происходит в гене, который кодирует β цепь белка гемоглобина, то в β цепь вместо глютаминовой кислоты включается валин → в результате такой мутации изменяются свойства и функции белка гемоглобина и вместо нормального HbA появляется HbS, в результате у человека развивается серповидноклеточная анемия (форма эритроцитов изменяется).

- нонсенс мутации – замена 1 нуклеотида в триплете на другой приведет к тому, что генетически значащий триплет превратится в стоп кодон, что приводит к обрыву синтеза полипептидной цепи белка. Пример: УАЦ – тирозин. УАА – стоп кодон.

- мутации со сдвигом рамки считывания наследственной информации.

Если в результате генной мутации у организма будет появляться новый признак (например, полидактилия), то они называются неоморфные.

если в результате генной мутации организм утрачивает признак (например, при ФКУ исчезает фермент) то они называются аморфные.

- сеймсенс мутации – замена нуклеотида в триплете приводит к появлению триплета-синонима, который кодирует тот же самый белок. Это связано с вырожденностью генетического кода. Например: ЦТТ – глютамин ЦТЦ – глютамин.

Механизмы возникновения генных мутаций (замена, вставка, выпадение).

ДНК состоит из 2-х полинуклеотидных цепей. Сначала изменение возникает в 1-й цепи ДНК – это полумутационное состояние или “первичное повреждение ДНК”. Каждую секунду в клетке имеет место 1 первичное повреждение ДНК.

Когда повреждение переходит на вторую цепь ДНК то, говорят о том, что произошла фиксация мутации, то есть возникла “полная мутация”.

Первичные повреждения ДНК возникают при нарушении механизмов репликации, транскрипции, кроссинговера

 

7. Частота генных мутаций. Мутации прямые и обратные, доминантные и рецессивные.

У человека частота мутаций = 1х10–4 – 1х10–7, то есть в среднем 20–30% гамет у человека в каждом поколении являются мутантными.

У дрозофилы частота мутаций = 1х10–5, то есть 1 гамета из 100 тысяч несет генную мутацию.

а. Прямая мутация (рецессивная) – это мутация гена из доминантного состояния в рецессивное состояние: А → а.

б. Обратная мутация (доминантная) – это мутация гена из рецессивного состояния в доминантное состояние: а → А.

Генные мутации встречаются у всех организмов, гены мутируют в различных направлениях, а также с различной частотой. Гены, которые редко мутируют называются – стабильные, а гены, которые часто мутируют называются – мутабельные.

 

8. Закон гомологических рядов в наследственной изменчивости Н.И.Вави­лова.

Мутирование происходит в самых различных направлениях, т.е. случайно. Однако эти случайности подчиняются закономерности, обна­руженной в 1920г. Вавиловым. Он сформулировал закон гомологичных рядов в наследственной изменчивости.

"Виды и роды генетичес­ки близкие характеризуются сходными рядами наследственной измен­чивости с такой правильностью, что, зная ряд форм в пределах одно­го вида, можно предвидеть существование параллельных форм у других видов и родов".

Этот закон позволяет предсказать наличие определённого признака у особей различных родов одного семейства. Так было предска­зано наличие в природе безалкалоидного люпина, т.к. в семействе бобовых есть роды бобов, гороха, фасоли, не содержащие алкалоиды.

В медицине закон Вавилова позволяет использовать животных, генетически близких человеку, в качестве генетических моделей. На них ставят эксперименты по изуче­нию генетических болезней. Например, катаракта изучается на мышах и собаках; гемофилия – на собаках, врождённая глухота – на мышах, морских свинках, собаках.

Закон Вавилова позволяет предвидеть появление индуцирован­ных мутаций, неизвестных науке, которые могут использоваться в се­лекции для создания ценных для человека форм растений.

 

9. Антимутационные барьеры организма.

- Точность репликации ДНК. Иногда в ходе репликации возникают ошибки, тогда включаются механизмы самокоррекции, которые направлены на устранение неправильного нуклеотида. Важную роль играет фермент ДНК-полимераза, и частота ошибок снижается в 10 раз (с 10–5до 10–6).

- Вырожденность генетического кода. 1 аминокислоту могут кодировать несколько триплетов, поэтому замена 1 нуклеотида в триплете в ряде случаев не искажает наследственную информацию. Например, ЦТТ и ЦТЦ – глутаминовая кислота.

- Экстракопирование некоторых генов отвечающих за важные макромолекулы: рРНК, тРНК, белки гистоны, т.е. образуется много копий этих генов. Эти гены входят в состав умеренно повторяющихся последовательностей.

- Избыточность ДНК – 99% является избыточной и мутагенный фактор чаще попадает в эти 99% бессмысленных последовательностей.

- Парность хромосом в диплоидном наборе. В гетерозиготном состоянии многие вредные мутации не проявляются.

- Выбраковка мутантных половых клеток.

- Репарация ДНК.

 

10. Репарация генетического материала. .

Репарация ДНК – удаление первичных повреждений из ДНК и замена их нормальными структурами.

Выделяют две формы репарации: световую и темновую

 

А. Световая репарация (или ферментативная фотореактивация). Ферменты репарации активны только в присутствии света. Эта форма репарации направлена на удаление первичных повреждений ДНК вызванных действием УФЛ.

Под действием УФЛ в ДНК активируются пиримидиновые азотистые основания, что приводит к тому, что возникают связи между пиримидиновыми азотистыми основаниями, которые располагаются рядом в одной цепи ДНК, то есть образуются пиримидиновыедимеры. Чаще всего возникают связи: Т=Т; Т=Ц; Ц=Ц.

В норме в ДНК пиримидиновых димеров нет. Образование их приводит к тому, что искажается наследственная информация и нарушается нормальный ход репликации и транскрипции, что приводит впоследствии к генным мутациям.

Суть фотореактивации: в ядре существуют специальный (фотореактивирующий) фермент, который активен только в присутствии света, этот фермент разрушает пиримидиновые димеры, то есть разрывает связи, которые возникли между пиримидиновыми азотистыми основаниями под действием УФЛ.

Темновая репарация происходит в темноте и на свету, то есть активность ферментов не зависит от присутствия света. Она делится на дорепликативная репарацию и пострепликативную репарацию.

Дорепликативная репарация происходит до репликации ДНК, в этом процессе участвует много ферментов:

o Эндонуклеаза

o Экзонуклеаза

o ДНК- полимераза

o ДНК - лигаза

Допустим, в ДНК имеется первичное повреждение.

1 этап. Фермент эндонуклеаза находит поврежденный участок и разрезает его.

 

2 этап. Фермент экзонуклеаза удаляет поврежденный участок из ДНК (эксцизия) в результате образуется брешь.

3 этап. Фермент ДНК полимераза синтезирует недостающий участок. Синтез происходит по принципу комплементарности.

 

4 этап. Ферменты лигазы соединяют или сшивают вновь синтезированный участок с цепью ДНК. Таким образом, первичное повреждение в ДНК устраняется.

 

Пострепликативная репарация.

Допустим, в ДНК имеется первичное повреждение.

1 этап. Начинается процесс репликации ДНК. Фермент ДНК-полимераза синтезирует новую цепь полностью комплементарную старой неповрежденной цепи.

2 этап. Фермент ДНК полимераза синтезирует другую новую цепь, но участок, где находится повреждение, он обходит. В результате во второй новой цепи ДНК образовалась брешь.

3 этап. По окончании репликации фермент ДНК полимераза синтезирует недостающий участок комплементарно новой цепи ДНК.

 

4 этап. Затем фермент лигаза соединяют вновь синтезированный участок с цепью ДНК, где имелась брешь. Таким образом, первичное повреждение ДНК не перешло на другую новую цепь, то есть не произошла фиксация мутации.

В дальнейшем первичное повреждение ДНК может быть ликвидировано в ходе дорепликативной репарации.

 

11. Мутации, связанные с нарушением репарации ДНК и их роль в патологии.

Способность к репарации у организмов выработалась и закрепилась в ходе эволюции. Чем выше активность репарирующих ферментов, тем стабильнее наследственный материал. За ферменты репарации отвечают соответствующие гены, поэтому если происходит мутация в этих генах, то снижается активность репарирующих ферментов. У человека при этом возникают тяжелые наследственные заболевания, которые связаны со снижением активности репарирующих ферментов.

Таких заболеваний у человека больше 100. Некоторые из них:

Анемия Фанкони – уменьшение количества эритроцитов, потеря слуха, нарушения в ССС, деформация пальцев, микроцефалия.

Сидром Блума – малый вес новорождённого, замедление роста, повышенная восприимчивость в вирусной инфекции, повышенный риск онкологических заболеваний. Характерный признак: при непродолжительном пребывании на солнечном свету на коже лица появляется пигментация в форме бабочки (расширение кровеносных капилляров).

Пигментная ксеродермия – на коже от света появляются ожоги, которые скоро перерождаются в рак кожи (у таких больных рак возникает в 20.000 раз чаще). Больные вынуждены жить при искусственном освещении.

Частота заболевания – 1 : 250.000 (Европа, США), и 1 : 40.000 (Япония)

Два вида прогерий – преждевременное старение организма.

 

12. Генные болезни, механизмы их развития, наследования, частота воз­никновения.

Генные болезни (или молекулярные болезни) достаточно широко представлены у человека, их насчитывается более 1000.

Особую группу среди них составляют врожденные дефекты обмена веществ. Впервые эти заболевания описал А. Гарод в 1902 году. Симптоматика этих заболеваний различна, но всегда имеет место нарушение превращения веществ в организме. При этом одни вещества будут в избытке, другие в недостатке. Например, в организм поступает вещество (А) и превращается далее под действием ферментов в вещество (В). Далее вещество (В) должно превращаться в вещество (С), но этому мешает мутационный блок

( ), в результате вещество (С) будет в недостатке, а вещество (В) в избытке.

 

А → В С

Примеры некоторых болезней, обусловленных врожденным дефектом обмена веществ.

ФКУ (фенилкетонурия, врожденное слабоумие). Генное заболевание, наследуется по аутосомно-рецессивному типу, встречается с частотой = 1:10.000. Фенилаланин является незаменимой аминокислотой для построения белковой молекулы и, кроме того, служит предшественником гормонов щитовидной железы (тироксина), адреналина и меланина. Аминокислота фенилаланин в клетках печени должна превращаться с помощью фермента (фенилаланин-4-гидроксилазы) в тирозин. Если отсутствует фермент, отвечающий за данное превращение, или снижена его активность то содержание фенилаланина в крови будет резко повышено, а содержание тирозина понижено. Избыток фенилаланина в крови приводит к появлению его производных (фенилуксусной, фенилмолочной, фенилпировиноградной и других кетоновых кислот), которые выделяются с мочой, а также оказывают токсическое воздействие на клетки центральной нервной системы, что приводит к слабоумию.

При своевременной постановке диагноза и переводе младенца на диету, лишенную фенилаланина, развитие заболевания можно предупредить.

Альбинизм общий. Генное заболевание, наследуется по аутосомно-рецессивному типу. В норме аминокислота тирозин участвует в синтезе тканевых пигментов. Если возникает мутационный блок, отсутствует фермент или снижена его активность, то тканевые пигменты не синтезируются. В этих случаях кожа имеет молочно-белый цвет, волосы очень светлые, вследствие отсутствия пигмента в сетчатке просвечивают кровеносные сосуды, глаза имеют красновато-розовый цвет, и повышенную чувствительность к свету.

Алькапнонурия. Генное заболевание, наследуется по аутосомно-рецессивному типу, встречается с частотой = 3-5:1.000.000. Заболевание связано с нарушением превращения гомогентизиновой кислоты, в результате чего эта кислота накапливается в организме. Выделяясь с мочой, эта кислота приводит к развитию заболеваний почек, кроме того, подщелоченная моча при этой аномалии быстро темнеет. Также заболевание проявляется окрашиванием хрящевых тканей, в пожилом возрасте развивается артрит. Таким образом, заболевание сопровождается поражением почек и суставов.

Генные болезни, связанные с нарушением обмена углеводов.

Галактоземия. Генное заболевание, наследуется по аутосомно-рецессивному типу, встречается с частотой = 1:35.000-40.000 детей.

В крови новорождённого содержится моносахарид галактоза, который образуется при расщеплении дисахарида молока лактозы на глюкозу и галактозу. Галактоза непосредственно не усваивается организмом, она должна быть переведена специальным ферментом в усваиваемую форму – глюкоза-1-фосфат.

Наследственная болезнь галактоземия обусловлена нарушением функции гена, контролирующего синтез белка-фермента, превращающего галактозу в усваиваемую форму. В крови больных детей будет очень мало этого фермента и много галактозы, что устанавливается биохимическим анализом.

Если диагноз поставлен в первые дни после рождения ребенка, то его кор­мят смесями, где нет молочного сахара, и ребёнок нормально развива­ется. В противном случае ребёнок вырастает слабоумным.

Муковисцидоз. Генное заболевание, наследуется по аутосомно-рецессивному типу, встречается с частотой = 1:2.000-2.500. Заболевание связано с мутацией гена, который отвечает за белок-переносчик, встроенный в плазматическую мембрану клеток. Этот белок регулирует проницаемость мембраны к ионам Na и Ca. Если нарушена проницаемость этих ионов в клетках экзокринных желез, то железы начинают вырабатывать густой, вязкий секрет, который закрывает протоки экзокринных желез.

Выделяют легочную и кишечную формы муковисцидоза.

Синдром Марфана. Генное заболевание, наследуется по аутосомно-доминантному типу. Связано с нарушением обмена белка фибриллина в соединительной ткани, что проявляется комплексом признаков: «паучьи» пальцы (арахнодактилия), высокий рост, подвывих хрусталика, пороки сердца и сосудов, повышенный выброс в кровь адреналина, сутулость, впалая грудь, высокий свод стопы, слабость связок и сухожилий и т.д. Впервые описано в 1896 году французским педиатром Антонио Марфаном.

 

ЛЕКЦИЯ 10 Структурные мутации хромосом.

1. Структурные мутации хромосом (хромосомные аберрации).

Выделяют следующие виды хромосомных аберраций.

– делеции

– дупликации

– инверсии

– кольцевые хромосомы

– транслокации

– транспозиции

При данных мутациях изменяется структура хромосом, изменяется порядок расположения генов в хромосомах, изменяется доза генов в генотипе. Эти мутации встречаются у всех организмов, они бывают:

- спонтанные (вызваны фактором неизвестной природы) и индуцированные (природа фактора, вызвавшего мутацию известна)

- соматические (затрагивающие наследственный материал соматических клеток) и генеративные (изменения наследственного материала гамет)

- полезные и вредные (последнее гораздо чаще)

- сбалансированные (система генотипа не изменяется, значит, не меняется и фенотип) и несбалансированные (изменяется система генотипа, а значит, изменяется и фенотип

Если мутация затрагивает две хромосомы, говорят о межхромосомных перестройках.

Если мутация затрагивает 1 хромосому, говорят о внутрихромосомных перестройках.

 

2. Механизмы возникновения структурных мутаций хромосом.

- гипотеза «разрыв-соединение». Предполагают, что в одной или нескольких хромосомах происходят разрывы. Образуются участки хромосом, которые затем соединяются, но в иной последовательности. Если разрыв происходит до репликации ДНК, то в этот процесс вовлекаются 2 хроматиды – это изохроматидный разрыв. Если разрыв происходит после репликации ДНК, то вовлекается в процесс 1 хроматида – это хроматидный разрыв.

- вторая гипотеза: между негомологичными хромосомами происходит процесс подобный кроссинговеру, т.е. негомологичные хромосомы обмениваются участками.

 

3. Делеции, их сущность, формы, фенотипический эффект. Псевдодоминирование..

Делеция (нехватка) – потеря участка хромосомы.

в хромосоме может произойти 1 разрыв, и она потеряет концевой участок, который будет разрушен ферментами (дефишенси)

в хромосоме может быть два разрыва с потерей центрального участка, который также будет разрушен ферментами (интерстициальная делеция).

В гомозиготном состоянии делеции всегда летальны, в гетерозиготном состоянии они проявляются множественными пороками развития.

Выявление делеций:

- дифференциальное окрашивание хромосом

- по фигуре петли, которая образуется во время коньюгации гомологичных хромосом в профазу мейоза 1. Петля возникает на нормальной хромосоме.

Впервые делеция была изучена у мушки дрозофилы, при этом произошла потеря участка Х хромосомы. В гомозиготном состоянии эта мутация летальна, а в гетерозиготном состоянии она проявляется фенотипически вырезкой на крыле (Notch-мутация). При анализе этой мутации было выявлено особое явление, которое получило название псевдодоминирование. При этом фенотипически проявляется рецессивный аллель, так как участок хромосомы с доминантным аллелем утрачен вследствие делеции.

У человека делеции чаще происходят в хромосомах с 1 по 18. Например, делеция короткого плеча пятой хромосомы в гетерозиготном состоянии проявляется фенотипически, как синдром "кошачьего крика". Ребёнок рож­дается с большим числом патологий, живет от 5 дней до месяца (очень редко до 10 лет), его плач напоминает резкое мяуканье кота.

В 21 или 22 хромосоме стволовых кроветворных клеток может произойти интерстициальная делеция. В гетерозиготном состоянии она проявляется фенотипически как злокачественная анемия.

 

4. Дупликации, инверсии, кольцевые хром-мы. Механизм возникновения. Фенотипическое проявление.

Дупликация – удвоение какого-то участка хромосомы (этот участок может повторяться многократно). Дупликации могут быть прямыми и обратными.

При данных мутациях увеличивается доза генов в генотипе, и в гомозиготном состоянии эти мутации летальны. В гетерозиготном состоянии они проявляются множественными пороками развития. Однако эти мутации могли играть определенную роль в ходе эволюции. Таким образом могли возникнуть семейства генов гемоглобина.

Возможно, многократно повторяющиеся последовательности нуклеотидов ДНК появились в результате дупликаций.

Выявление дупликаций:

- дифференциальное окрашивание.

- фигура петли в профазу мейоза 1. Петля возникает на мутировавшей хромосоме.

Инверсия – отрыв участка хромосомы, поворот его на 180° и присоединение на старое место. При инверсиях доза генов не меняется, но изменяется порядок расположения генов в хромосоме, т.е. изменяется группа сцепления. Концевых инверсий не бывает.

В гомозиготном состоянии инверсии летальны, в гетерозиготном состоянии они проявляются множественными пороками развития.

Выявление инверсий:

- дифференциальное окрашивание.

- фигура в виде двух противоположно расположенных петель в профазу мейоза 1.

Инверсии бывают 2 видов:

парацентрическая инверсия, которая не затрагивает центромеру, т.к. разрывы происходят в пределах одного плеча хромосомы

перицентрическая инверсия, которая затрагивает центромеру, т.к. разрывы происходят по обе стороны от центромеры.

При перицентрической инверсии может изменяться конфигурация хромосомы (если концы поворачиваемых участков не симметричны). А это делает невозможным в последующем конъюгацию.

Фенотипическое проявление инверсий наиболее мягкое по сравнению с другими хромосомными абберациями. Если рецессивные гомозиготы погибают, то у гетерозигот чаще всего наблюдается бесплодие.

Кольцевые хромосомы. В норме в кариотипе человека кольцевых хромосом нет. Они могут появляться при действии на организм мутагенных факторов, особенно радиоактивного облучения.

При этом в хромосоме происходит 2 разрыва, и образовавшийся участок замыкается в кольцо. Если кольцевая хромосома содержит центромеру, то образуется – центрическое кольцо. Если центромеры нет, то образуется – ацентрическое кольцо, оно разрушается ферментами и не наследуется.

Выявляются кольцевые хромосомы при кариотипировании.

В гомозиготном состоянии эти мутации летальны, а в гетерозиготном состоянии фенотипически проявляются, как делеции.

Кольцевые хромосомы являются маркерами радиоактивного облучения. Чем больше доза радиоактивного облучения, тем больше кольцевых хромосом, и тем хуже прогноз.

 

5. Транслокации, их сущность. Реципрокные транслокации, их характеристика и медицинское значение. Робертсоновские транслокации и их роль в наследственной патологии.

Транслокация – это перемещение участка хромосомы. Бывают взаимные (реципрокные) и не взаимные (транспозиции) транслокации.

Реципрокные транслокации происходят в тех случаях, когда две негомологичные хромосомы обмениваются своими участками.

Особую группу транслокаций составляют робертсоновские транслокации (центрические слияния). Им подвергаются акроцентрические хромосомы – они теряют короткие плечи, а их длинные плечи соединяются.

 
 
Причина 4-5% случаев рождения ребёнка-дауника – робертсоновские транслокации. При этом происходит перемещение длинного плеча 21 хромосомы на одну из хромосом группы D (13, 14, 15, чаще вовлекается 14 хромосома).

 

Типы яйцеклеток сперматозоид зигота Последствия

14 + 14, 21 14,14,21 моносомия 21 (леталь)

14/21,21 + 14, 21 14/21,21,14,21 трисомия 21 (дауник)

21 + 14, 21 21,14,21, моносомия 14 (леталь)

14,14/21 + 14, 21 14,14/21,14,21 трисомия 14 (леталь)

14/21 + 14, 21 14/21,14,21 фенотипически здоров

 

Как видим, женщина с робертсоновской транслокацией может родить здорового ребенка.

Потеря коротких плеч не влияет ни на что, так как там находятся ядрышкообразующие зоны, а они есть и в других хромосомах.

У больного с транслокационной формой синдрома Дауна в клетках 46 хромосом. В яичнике после транслокации будет 45 хромосом. Однако при сбалансированной мутации у женщины будет 45 хромосом.

Выявление транслокаций:

- дифференциальное окрашивание.

- фигура креста в профазу мейоза 1.

 

6. Траспозиции. Мобильные генетические элементы. Механизмы перемещения по геному и значение.

Если транслокации не носят характера взаимности, то говорят о транспозиции.

Особую группу транспозонов составляют Мобильные Генетические Элементы (МГЭ), или прыгающие гены, которые обнаружены у всех организмов. У мушки дрозофилы они составляют 5% генома. У человека МГЭ объединяют в семейство ALU.

МГЭ состоят из 300- 400 нуклеотидов, повторяющихся в геноме у человека 300 тыс. раз.

На МГЭ концах находятся повторы нуклеотидов, состоящие при из 50-100 нуклеотидов. Повторы могут быть прямыми и обратными. Повторы нуклеотидов, по-видимому, влияют на перемещение МГЭ.

Выделяют два варианта перемещения МГЭ по геному.

1. с помощью процесса обратной транскрипции. Для этого необходим фермент обратная транскриптаза (ревертаза). Этот вариант протекает в несколько этапов:

на ДНК фермент РНК-полимераза (другое название – транскриптаза) синтезирует иРНК,

на иРНК фермент обратная транскриптаза синтезирует одну цепь ДНК,

фермент ДНК-полимераза обеспечивает синтез второй цепочки ДНК,

синтезированный фрагмент замыкается в кольцо,

кольцо ДНК встраивается в другую хромосому или в другое место этой же хромосомы.

2. с помощью фермента транспозазы, который вырезает МГЭ и переносит его в другую хромосому или в другое место этой же хромосомы

В ходе эволюции МГЭ играли положительную роль, т.к. они осуществляли перенос генетической информации от одних видов организмов к другим. Важную роль в этом играли ретровирусы, которые содержат в качестве наследственного материала РНК, а также содержат обратную транскриптазу.

МГЭ перемещаются по геному очень редко, одно перемещение на сотни тысяч событий в клетке (частота перемещений 1 х 10–5).

В каждом конкретном организме МГЭ положительной роли не играют, т.к. перемещаясь по геному, они изменяют работу генов, вызывают генные и хромосомные мутации.

 

7. Индуцированный мутагенез. Физические, химические и биологические мутагенные факторы.

Индуцированные мутации возникают при действии на организм мутагенных факторов, которые делятся на 3 группы:

- Физические (УФЛ, рентгеновское и радиационное излучения, электромагнитные поля, высокие температуры).

Так ионизирующее излучение может действовать непосредственно на молекулы ДНК и РНК, вызывая в них повреждения (генные мутации). Косвенное воздействие этого

мутагена на наследственный аппарат клеток заключается в образовании генотоксических веществ (Н2О2, ОН-, О2-,).

- Химические мутагенные факторы. Существует свыше 2 млн. химических веществ, способных вызывать мутации. Это соли тяжелых металлов, химические аналоги азотистых оснований (5-бромурацил), алкилирующие соединения (СН3, С2 Н5).

- Биологические (вирусы, продукты жизнедеятельности паразитов, МГЭ).

8. Радиационные мутации. Генетическая опасность загрязнения окружающей среды.

Радиационные мутации это мутации, вызванные радиацией. В 1927 году американский генетик, Генрих Мелёр впервые показал, что облучение рентгеновскими лучами приводит к существенному увеличению частоты мутаций у дрозофилы. Эта работа положила начало новому направлению в биологии – радиационной генетике. Благодаря многочисленным работам, проведенным за последние десятилетия, мы теперь знаем, что при попадании элементарных частиц (кванты, электроны, протоны и нейтроны) в ядро происходит ионизация молекул воды с образованием свободных радикалов (ОН-, О2-). Обладая большой химической активностью, они вызывают разрывы ДНК, повреждение нуклеотидов или их разрушение; всё это приводит к возникновению мутаций.

Так как человек является открытой системой, то различные факторы загрязнения окружающей среды могут попадать в человеческий организм. Многие из этих факторов могут изменять или повреждать наследственный материал живых клеток. Последствия воздействия этих факторов столь серьезны, что человечество не может игнорировать загрязнение окружающей среды.

9. Мутагенез и канцерогенез.

Впервые мутационную теорию рака в 1901 году предложил Гюго Де Фриз. В наши дни существует много теорий канцерогенеза.

Одна из них генная теория канцерогенеза. Известно, что в геноме человека содержится более 60 онкогенов, способных регулировать клеточное деление. Они находятся в неактивном состоянии в виде протоонкогенов. Под действием различных мутагенных факторов протоонкогены активируются и переходят в состояние онкогенов, которые вызывают интенсивную пролиферацию клеток и развитие опухолей.

 

ЛЕКЦИЯ 11Мутации числа хромосом. Гаплоидия, полиплоидия,

Анеуплоидия.

1. Сущность мутаций числа хромосом, причины и механизмы возникновения.

Каждый вид организмов характеризуется своим кариотипом. Постоянство кариотипа в ряду поколений поддерживается благодаря процессам митоза и мейоза. Иногда в ходе митоза или мейоза нарушается расхождение хромосом, в результате возникают клетки с измененным числом хромосом. В клетках может изменяться число целых гаплоидных наборов хромосом, в таком случае возникают такие мутации как:

Гаплоидия – одинарный набор хромосом (n)

Полиплоидия – увеличение числа хромосом кратное гаплоидному набору (3n, 4n и т.д.)

Анэуплоидия – изменение числа отдельных хромосом (46 +1).

Набор хромосом может измениться как в соматических клетках, так и в половых.

Причины нарушения расхождения хромосом:

увеличение вязкости цитоплазмы

изменение полярности клетки

нарушение функции веретена деления.

Все эти причины приводят к так называемому явлению “анафазного отставания”.

Это значит, что в анафазу митоза или мейоза хромосомы распределяются неравномерно, т.е. какая-то хромосома или группа хромосом не успевают за остальными хромосомами и теряется для одной из дочерних клеток.

 

2. Гаплоидия, характер изменения кариотипа, распространенность, феноти­пическое проявление.

Гаплоидия – это уменьшение числа хромосом в клетках организма до гаплоидного. В клетках резко уменьшается количество хромосом и доза генов, то есть изменяется система генотипа, а значит, изменяется и фенотип.

Т

Похожие статьи:

poznayka.org

Генные мутации. Примеры генных мутаций. Виды генных мутаций :: SYL.ru

Мутации на генном уровне являются молекулярными, не видимыми в световом микроскопе структурными изменениями ДНК. К ним относят любые трансформации дезоксирибонуклеиновой кислоты, вне зависимости от их влияния на жизнеспособность и локализации. Некоторые виды генных мутаций не оказывают никакого воздействия на функции и структуру соответствующего полипептида (белка). Однако большая часть таких трансформаций провоцирует синтез дефектного соединения, утратившего способность выполнять свои задачи. Далее рассмотрим генные и хромосомные мутации более подробно.

Характеристика трансформаций

Наиболее распространенными патологиями, которые провоцируют генные мутации человека, являются нейрофиброматоз, адрено-генитальный синдром, муковисцидоз, фенилкетонурия. В этот список можно также включить гемохроматоз, миопатии Дюшенна-Беккера и прочие. Это далеко не все примеры генных мутаций. Их клиническими признаками выступают обычно нарушения метаболизма (обменного процесса). Генные мутации могут состоять в:

Классификация

В соответствии с типом молекулярной трансформации существуют следующие генные мутации:

Молекулярные трансформации, захватывающие от 1 до нескольких звеньев, рассматриваются как точечные изменения.

Отличительные черты

Генные мутации имеют ряд особенностей. В первую очередь следует отметить их способность переходить по наследству. Кроме того, мутации могут спровоцировать трансформацию генетических сведений. Некоторые из изменений могут быть отнесены к так называемым нейтральным. Такие генные мутации не провоцируют каких-либо нарушений в фенотипе. Так, благодаря врожденности кода одна и та же аминокислота может кодироваться двумя триплетами, имеющими отличия только по 1 основанию. Вместе с тем определенный ген может мутировать (трансформироваться) в несколько разных состояний. Именно такого рода изменения провоцируют большую часть наследственных патологий. Если приводить примеры генных мутаций, то можно обратиться к группам крови. Так, у элемента, контролирующего их системы АВ0, присутствует три аллеля: В, А и 0. Их сочетание определяют группы крови. Относящаяся к системе АВ0 считается классическим проявлением трансформации нормальных признаков у людей.

Геномные трансформации

Эти трансформации имеют свою классификацию. В категорию геномных мутаций относят изменения в плоидности не измененных структурно хромосом и анеуплоидии. Такие трансформации определяются специальными методами. Анеуплоидия представляет собой изменение (увеличение – трисомию, уменьшение – моносомию) количества хромосом диплоидного набора, некратное гаплоидному. При кратном увеличении числа говорят о полиплоидии. Они и большая часть анеуплоидий у людей считаются летальными изменениями. Среди наиболее распространенных геномных мутаций выделяют:

Провоцирующий фактор

Причиной, по которой развивается анеуплоидия, считается нерасхождение хромосом в процессе клеточного деления на фоне формирования половых клеток либо утрата элементов вследствие анафазного отставания, в то время как при движении к полюсу гомологичное звено может отстать от негомологичного. Понятие "нерасхождение" указывает на отсутствие разделения хроматид либо хромосом в митозе либо мейозе. Это нарушение может привести к мозаицизму. В этом случае одна клеточная линия будет нормальной, а другая – моносомной.

Нерасхождение при мейозе

Такое явление считается наиболее частым. Те хромосомы, которые должны в норме делиться при мейозе, остаются соединенными. В анафазе они отходят к одному клеточному полюсу. В результате формируется 2 гаметы. В одной из них присутствует добавочная хромосома, а в другой не достает элемента. В процессе оплодотворения нормальной клетки с лишним звеном развивается трисомия, гаметы с недостающим компонентом – моносомия. При формировании моносомной зиготы по какому-нибудь аутосомному элементу развитие прекращается на начальных этапах.

Хромосомные мутации

Эти трансформации представляют собой структурные изменения элементов. Как правило, они визуализируются в световой микроскоп. В хромосомные мутации обычно вовлекается от десятков до сотен генов. Это провоцирует изменения в нормальном диплоидном наборе. Как правило, такие аберрации не вызывают трансформации последовательности в ДНК. Однако при изменении количества генных копий развивается генетический дисбаланс из-за недостатка либо переизбытка материала. Существует две большие категории данных трансформаций. В частности, выделяют внутри- и межхромосомные мутации.

Влияние среды

Люди эволюционировали в качестве групп изолированных популяций. Они достаточно долго проживали в одинаковых условиях среды. Речь, в частности, идет о характере питания, климатогеографических характеристиках, культурных традициях, возбудителях патологий и прочем. Все это привело к закреплению специфических для каждой популяции сочетаний аллелей, являвшихся наиболее соответствующими для условий проживания. Однако вследствие интенсивного расширения ареала, миграций, переселения стали возникать ситуации, когда бывшие в одной среде полезные сочетания определенных генов в другой перестали обеспечивать нормальное функционирование ряда систем организма. В связи с этим часть наследственной изменчивости обуславливается неблагоприятным комплексом непатологических элементов. Таким образом, в качестве причины генных мутаций в данном случае выступают изменения внешней среды, условий проживания. Это, в свою очередь, стало основой для развития ряда наследственных заболеваний.

Естественный отбор

С течением времени эволюция протекала в более специфичных видах. Это также способствовало расширению наследственного разнообразия. Так, сохранялись те признаки, которые могли исчезать у животных, и наоборот, отметалось то, что оставалось у зверей. В ходе естественного отбора люди приобретали также и нежелательные признаки, которые имели прямое отношение к болезням. К примеру, у человека в процессе развития появились гены, способные определять чувствительность к полиомиелиту либо дифтерийному токсину. Став Homo sapiens, биологический вид людей в некотором роде "заплатил за свою разумность" накоплением и патологических трансформаций. Данное положение считается основой одной из базовых концепций учения о генных мутациях.

www.syl.ru

Генные мутации

Генные мутации – это причина, по которой происходит формирование разнородной по клиническим проявлениям группы заболеваний, которая носит название «генные болезни». Общая частота их возникновения в человеческой популяции от двух до четырех процентов.

Изменение (мутация) генов является провоцирующим к развитию многих форм наследственных заболеваний фактором. В современной медицине описано более трех тысяч таких патологий. Самым распространенным проявлением заболеваний является ферментопатия. Считается, что генные мутации могут затрагивать эмбриональные, транспортные и структурные белки. Патологические изменения способны реализовываться в различные периоды онтогенеза (развития). Их большая часть характерна для внутриутробного (до 25% всех наследственных патологий) и для допубертатного (до полового созревания) периода (порядка 45%). Генные мутации проявляются и в пубертатном (период полового созревания) и юношеском периоде (около 25%). Относительно незначительное количество (порядка 10%) патологических изменений выявляется старше двадцати лет.

Наследственные болезни классифицируются по типу наследования (аутосомно-рецессивные, аутосомно-доминантные и прочие), в зависимости от органа или системы, более вовлеченной в патологический процесс (эндокринные, нервно-мышечные, глазные и прочие), с учетом характера метаболического дефекта (связанные с расстройством углеводного, минерального липидного обмена и др.). К самостоятельной группе относят заболевания, возникшие на фоне несовместимости плода и матери по антигенам в группах крови.

Спровоцированные гаметическими мутациями, патологии наследуются в соответствии с законами Менделя. Возможно возникновение новых или развитие унаследованных от прошлых поколений изменений. В таких случаях патологические структуры распределяются во все клетки организма.

Возникнуть генные мутации могут в одной из клеток на разных этапах дробления зиготы. В таких случаях организм становится мозаичным по данной структуре. Другими словами, в одних клетках функционирует нормальная аллель (форма гена), а в других – мутантная. Доминирование мутации проявляется фенотипически (клиническими признаками) в соответствующих клетках и провоцирует развитие заболевания. При этом есть достаточная вероятность возникновения менее тяжелой степени патологии, в отличие от полных мутантов.

Специалисты классифицируют изменения функционального и структурного характера.

Структурные генные мутации подразделены на транзицию - замену одного пуринового основания (соединения органические природные, производные пурина) на другое, или одного пиримидинового основания (органические соединения – производные пиримидина) на другое пиримидиновое основание; при этом кодон (единица кода генетического) изменяется только тот, в котором случилась замена. Существует также такое понятие, как «трансверсия». В этом случае имеет место замена пиримидиновых оснований пуриновыми или наоборот. При этом изменяется также тот кодон, в котором случалась замена. Кроме того, существует и мутация сдвигом рамки считывания. При этом происходит выпадение (делеция) или вставка (инсерция) нескольких или одной пары нуклеотидов. В соответствии с участком выпадения или вставки может изменяться большее или меньшее количество кодонов.

Мутации в функциональных генах представляют собой изменение нетранскрибируемой (кодирующей) части в молекуле ДНК. Это провоцирует расстройство регуляции функционирования структурных элементов. В результате может повышаться или снижаться скорость синтеза у соответствующего белка в различной степени.

fb.ru

это изменение генома. Основные виды и примеры :: SYL.ru

Что такое мутация? Это, вопреки ошибочным представлениям, не всегда нечто страшное или опасное для жизни. Под термином подразумевают изменение генетического материала, происходящее под влиянием внешних мутагенов или собственно среды организма. Такие изменения могут быть полезными, не влиять на функции внутренних систем или же, наоборот, приводить к серьезным патологиям.

Разновидности мутаций

Принято подразделять мутации на геномные, хромосомные и генные. О них и поговорим более детально. Геномные мутации - это изменения в структуре наследственного материала, кардинальным образом влияющие на геном. К ним относятся, прежде всего, увеличение или уменьшение числа хромосом. Геномные мутации - это патологии, часто встречающиеся в растительном и животном мире. У человека обнаружено только три их разновидности.

Хромосомные мутации - это стойкие скачкообразные изменения. Они связаны со структурой нуклеопротеидной единицы. К ним относится: делеция - выпадение участка хромосомы, транслокация - перемещение группы генов с одной хромосомы на другую, инверсия - полный поворот небольшого фрагмента. Генные мутации - это наиболее частая разновидность изменения генетического материала. Встречается гораздо чаще, чем хромосомная.

Полезные и нейтральные мутации

К безвредным мутациям, которые встречаются у людей, относятся гетерохромия (радужки глаз разного цвета), транспозиция внутренних органов, аномально высокая плотность костей. Существуют также полезные видоизменения. Например, иммунитет к СПИДу, малярии, тетрохроматическое зрение, гипосомния (снижение потребности во сне).

Последствия геномных мутаций

Геномные мутации - это причины самых серьезных генетических патологий. Из-за изменения числа хромосом организм не может нормально развиваться. Геномные мутации почти всегда приводят к умственной отсталости. К ним относится трисомия 21-ой хромосомы - наличие трех копий вместо нормальных двух. Она является причиной синдрома Дауна. Дети с этим заболеванием испытывают трудности в учебе, отстают в психическом и эмоциональном развитии. Перспективы их полноценной жизни зависят, прежде всего, от степени умственной отсталости и эффективности занятий с больным.

Еще одно страшное отклонение - моносомия Х-хромосомы (наличие одной копии вместо двух). Приводит к другой тяжелой патологии - синдрому Шерешевского-Тернера. Страдают этим заболеванием только девочки. К основным симптомам относят низкий рост, половое недоразвитие. Часто имеет место легкая форма олигофрении. Для лечения применяются стероиды и половые гормоны. Как видно, геномная мутация - это причина тяжелейших патологий развития.

Некоторые хромосомные патологии

Наследственные болезни, вызванные мутацией сразу нескольких генов или любым нарушением структуры хромосомы, называют хромосомными заболеваниями. Самая распространенная из них - синдром Ангельмана. Это наследственное заболевание вызвано отсутствием нескольких генов 15-ой материнской хромосомы. Болезнь проявляется в раннем возрасте. Первые признаки - снижение аппетита, отсутствие или бедность речи, постоянная беспричинная улыбка. Дети с этой патологией испытывают трудности с обучением и общением. Тип наследования недуга до сих пор изучается.

Сходное с синдромом Ангельмана заболевание - синдром Прадера-Вилли. Здесь также имеет место отсутствие генов 15-ой хромосомы, только не материнской, а отцовской. Основные симптомы: ожирение, гиперсомния, косоглазие, низкий рост, задержка психического развития. Это заболевание сложно диагностировать без генетического анализа. Как и для многих наследственных заболеваний, полноценная терапия не разработана.

Некоторые генные заболевания

К генным заболеваниям относятся нарушения обмена веществ, которые вызывает моногенная мутация. Это нарушения метаболизма углеводов, белков, липидов, синтеза аминокислот. Знакомое многим заболевание, фенилкетонурия, вызвано мутацией единственного из многих генов 12-ой хромосомы. В результате изменения одна из незаменимых аминокислот фенилаланин не превращается в тирозин. Больным этим генетическим заболеванием приходится избегать любых пищевых продуктов, содержащих даже незначительное количество фенилаланина.

Одно из самых серьезных заболеваний соединительной ткани, фибродисплазия, также вызвано моногенной мутацией на 2-ой хромосоме. У больных мышцы и связки со временем закостеневают. Течение заболевания очень тяжелое. Полноценное лечение не разработано. Тип передачи по наследству - аутосомно-доминантный. Еще одним опасным недугом является болезнь Вильсона - редкая патология, которая проявляется нарушением метаболизма меди. Болезнь вызывает мутация гена на 13-ой хромосоме. Заболевание проявляется накоплением меди в нервной ткани, почках, печени, роговице глаз. На краях радужной оболочки можно заметить так называемые кольца Кайзера-Флейшнера - важный симптом при диагностике. Обычно первый признак наличия синдрома Вильсона - нарушения в работе печени, ее патологическое увеличение (гепатомегалия), цирроз.

Как видно из этих примеров, генная мутация - это часто причина серьезных и на данный момент неизлечимых заболеваний.

www.syl.ru

Генные мутации

По характеру действия генные мутации могут быть доминант­ными или рецессивными. Чаще мутантный ген обладает рецессив­ным эффектом. Нормальный аллель подавляет при этом дейст­вие измененного гена. По характеру влияния мутантных генов на контроль биосинтеза белков и ферментов выделяют пять типов мутаций: гипоморфные, гиперморфные, антиморфные, неоморф-ные и аморфные.

Если ген мутирует в рецессивное состояние, то для мутантно-го аллеля чаще всего характерно уменьшение количества того же самого биохимического продукта, синтез которого определяется исходным доминантным аллелем данного гена. Такие мутации называют гипоморфными. При гиперморфных генных мутациях в отличие от гипоморфных количество биохимического продукта, синтезируемого под контролем данного гена, не уменьшается, а увеличивается. К антиморфным генным мутациям относятся му­тации, при которых мутантный аллель вызывает образование продукта, тормозящего синтез или действие продукта исходного аллеля этого гена. Неоморфные генные мутации характеризуются тем, что мутантный аллель определяет синтез в организме биохи­мического продукта, отличающегося от продукта, специфичного для исходного немутантного аллеля и не взаимодействующего с этим продуктом. Иногда в организме в результате данной мута­ции перестает вырабатываться продукт, характерный для данного гена, т. е. ген полностью инактивируется. Такая мутация называ­ется аморфной.

Генные мутации могут представлять дефекты репликации, спирализации, репарации ДНК, посттрансляционные нарушения синтеза структурных белков и т. д.

Молекулярный механизм и причины возникновения генных му­таций. Изучение молекулярной природы генных мутаций пока­зало наличие в структуре ДНК следующих типов изменений, соответствующих участкам отдельных генов: 1) замена (транзи-ции и трансверсии) одних нуклеотидов на другие; 2) вставка или добавление отдельных нуклеотидов в цепочку ДНК; 3) делеция (потеря) отдельных нуклеотидов; 4) делеции групп оснований; 5) инверсия — поворот на 180е отдельных оснований; 6) транспози­ции — перенос пар оснований внутри гена на новое место.

По характеру влияния на процессы транскрипции и трансля­ции выделяют три основные категории генных мутаций:

1)миссенс-мутации (транзиции, трансверсии). Возни­кают при замене нуклеотида внутри кодона. Это приводит к вставке на определенном месте в цепи полипептида иной амино­кислоты. В результате может измениться физиологическая роль белка, что создает фон для действия естественного отбора;

2) нонсенс-мутации (транзиции, трансверсии) — по-

явление внутри гена концевых кодонов за счет замены отдель­ных оснований в пределах кодонов. В результате процесс транс­ляции обрывается в месте появления терминального кодона;

3) мутации сдвига рамки чтения. Возникают при появлении внутри гена вставок оснований и делеций. Это приводит к изменению смыслового прочтения информации гена в процессах синтеза белка вследствие новых комбинаций основа­ний в триплетах, так как триплеты после выпадения или вставки приобретают новый, состав кодона из-за сдвига на одно основа­ние. В результате вся цепь полипептида после генной мутации в ДНК получает иные аминокислоты. Мутации, возникающие у животных, имеют разную судьбу. Часть прямых мутаций может нивелироваться обратными изменениями генов. В результате об­ратных мутаций полностью или частично восстанавливается ак­тивность мутантного гена. Обратные мутации возникают редко.

Распространение мутации в породе или популяции животных определяется характером ее действия на биологические или хо­зяйственные признаки животных. Мутации могут быть полез­ными, нейтральными и вредными. Так, у овец кара­кульской породы основной окраской шерсти является черная. Однако в результате мутаций появляются животные с целой гаммой расцветок. Шкурки ягнят цветной окраски на мировом рынке ценятся высоко. Поэтому ученые и специалисты стремят­ся создать целые стада с цветной окраской шерсти. В зверовод­стве за счет мутаций получены разных окрасок норки, песцы и лисицы.

Мутации могут затрагивать участки ДНК, ответственные как за качественные, так и за количественные признаки. Однако мута­ции генов, ответственных за проявление количественных призна­ков, труднее улавливать, так как одинарный ген количественного признака обладает слабовыраженным эффектом в отличие от гена, обусловливающего качественный признак. Некоторые мута­ции существенно не влияют на хозяйственные признаки, их отно­сят к категории нейтральных; например у черно-пестрого скота иногда рождаются красно-пестрые телята.

В основном мутации — явление вредное. Они вызывают урод­ства и различные аномалии у животных (подробно примеры таких мутаций приведены в последующих главах).

Понятие о мутабильности генов. Гены-мутаторы. Исследова­ния, проведенные на мухе-дрозофиле и других объектах, указы­вают на различия по частоте мутаций в разных хромосомах. По данным Н. П. Дубинина, частота возникновения летальных му­таций в Х-хромосомах дрозофилы составляет в среднем 0,15 % за поколение; в Y-хромосоме — 0,5 %. Мутация гена, обусловли­вающая желтый цвет мухи, возникает с частотой 0,29 на 10 тыс. гамет, а мутации вырезки на крыльях — 1,5. Таким образом, способность к мутациям у отдельных генов различна.

На дрозофиле, бактерии кишечной палочки и других организ­мах показано наличие генов, ускоряющих спрятанную частоту мутаций в других генах. Эти гены получили название генов-му-таторов. Впервые существование гена-мутатора широкого дейст­вия обнаружил у мухи-дрозофилы Г. Г. Тиняков в 1939 г. Пола­гают, что гены-мутаторы воздействуют на определенные этапы репликации ДНК, например на нарушение нормального синтеза азотистых оснований, изменение свойств ДНК-полимеразы.

Причины и факторы спонтанного мутагенеза. В обычных или естественных условиях среды возникновение мутаций носит как бы случайный характер. Действительно, и у самых опытных ма­шинисток иногда обнаруживают ошибки при перепечатывании текстов, которые могут быть растиражированы в миллионах эк­земпляров газет или книг. Подобно этому не исключается «опе­чатка» при самокопировании или репликации ДНК в одной клетке, которая может стать достоянием целого клона дочерних клеток'йли, если мутантная клетка половая, унаследована всеми клетками потомка.

Спонтанный мутационный процесс зависит как от внутрен­них, так и от внешних (абиотических и биотических) факторов. Среди абиотических факторов наибольшее значение имеют есте­ственный фон радиации, различные химические соединения, по­павшие в биосферу.

Замечено, что мутации чаще встречаются у растений и живот­ных в районах с повышенной естественной и искусственной (техногенной) радиоактивностью.

Частота возникновения спонтанных мутаций зависит от гено­типа, возраста, физиологического состояния организма и т. д. У старых самок ожидаются более частые случаи нерасхождения, хромосом при созревании яйцеклеток. При длительном хранении гамет с большей частотой могут происходить изменения в ДНК. Это вероятно при нарушении сроков осеменения животных.

studfiles.net

Мутации в генах

Если из вышесказанного стало ясно, что делают гены, то должно быть также ясно, что изменение структуры гена, последовательности нуклеотидов может приводить к изменениям кодируемого этим геном белка. Изменения в структуре гена называют мутациями. Эти изменения в структуре гена могут возникать по разным причинам, начиная от случайных ошибок при удвоении ДНК и кончая действием на ген ионизирующей радиации или особых химических веществ, которые называют мутагенами. Первый тип изменений приводит к так называемым спонтанным мутациям, а второй — к индуцированным мутациям. Мутации в генах могут возникать в половых клетках, и тогда они будут передаваться в следующее поколение и некоторые из них приведут к развитию наследственного заболевания. Мутации в генах возникают также в соматических клетках. В этом случае они будут наследоваться только в определенном клоне клеток, который произошел от мутантной клетки. Известно, что мутации генов соматических клеток в некоторых случаях могут стать причиной возникновения рака.

Типы генных мутаций

Одним из наиболее частых типов мутаций является замещение одной пары азотистых оснований. Такое замещение может не иметь никаких последствий для структуры полипептидной цепи, кодируемой геном, вследствие вырожденности генетического кода. Замещение третьего азотистого основания в триплете почти никогда не будет иметь каких-либо последствий. Подобные мутации называют молчащими заменами. В то же время однонуклеотидные замены способны вызвать замещение одной аминокислоты на другую вследствие изменения генетического кода мутировавшего триплета.

Однонуклеотидная замена основания в триплете может превратить его в стоп-кодон. Так как эти кодоны мРНК останавливают трансляцию полипептидной цепи, то синтезированная полипептидная цепь оказывается укороченной по сравнению с нормальной цепью. Мутации, вызывающие образование стоп-кодона, называют нонсенс-мутациями.

В результате нонсенс-мутации, при которой происходит замена А—Т на Г—Ц в молекуле ДНК, в полипептидной цепи синтез прекращается на стоп-кодоне.

Однонуклеотидная замена в нормально расположенном стоп-кодоне, напротив, может сделать его осмысленным, и тогда мутантная мРНК, а затем и мутантный полипептид оказываются длиннее нормальных.

Следующий класс молекулярных мутаций — это делеции (утраты) или инсерции (вставки) нуклеотидов. Когда делетируется или вставляется тройка нуклеотидов, то, если этот триплет является кодирующим, в составе полипептида либо исчезает определенная аминокислота, либо появляется новая аминокислота. Однако если в результате делеции или инсерции вставляется или удаляется число нуклеотидов, не кратное трем, то меняется или утрачивается смысл для всех остальных, следующих за вставкой или делецией кодонов молекулы мРНК. Такие мутации называются мутациями сдвига рамки считывания. Нередко они приводят к образованию стоп-кодона в следующей за инсерцией или делецией последовательности нуклеотидов мРНК.

Генная конверсия — это прямой перенос фрагмента одного аллеля в другой аллель или фрагмента псевдогена в ген. Так как в псевдогене имеется множество мутаций, то такой перенос нарушает структуру нормального гена и может рассматриваться как мутация. Для осуществления генной конверсии между псевдогеном и геном необходимы их спаривание и последующий атипичный кроссинговер, при котором происходят разрывы в нитях ДНК.

Недавно открыт новый и совершенно неожиданный тип мутаций, который проявляется увеличением числа повторов (чаще всего тринуклеотидных), но описаны также случаи увеличения числа повторов, состоящих из 5 и даже 12 нуклеотидов, расположенных как в экзонах генов, так и интронах или даже нетранслируемых областях генов. Эти мутации называются динамическими или нестабильными. Большинство заболеваний, обусловленных мутациями, связанными с расширением зоны повторов, — наследственные неврологические заболевания. Это хорея Гентингтона, спинальная и бульбарная мышечная атрофия, спиноцеребеллярные атаксии, миотоническая дистрофия, атаксия Фридрейха.

Механизм расширения зоны повторов до конца не выяснен. В популяции у здоровых индивидуумов обычно наблюдают некоторую изменчивость по числу нуклеотидных повторов, обнаруженных в различных генах. Число нуклеотидных повторов наследуется как в поколениях, так и во время деления соматических клеток. Однако после того как число повторов, разное для разных генов, превысит определенный критический порог, который также различен для разных генов, они обычно становятся нестабильными и могут увеличиваться в размерах либо во время мейоза, либо в первых делениях дробления оплодотворенной яйцеклетки.

Эффекты мутации генов

Фенотипический эффект мутаций может выражаться либо в утрате функции, либо в приобретении новой функции.

Большинство аутосомно-рецессивных заболеваний является следствием утраты функции соответствующим мутантным геном. Это проявляется резким снижением активности ферментов (чаще всего), что может быть обусловлено уменьшением либо их синтеза, либо их стабильности. В том случае, когда функция соответствующего белка полностью отсутствует, мутацию гена с таким эффектом называют нулевым аллелем. Одна и та же мутация у разных индивидуумов может проявляться различно вне зависимости от того, на каком уровне оценивают ее эффекты: молекулярном, биохимическом или фенотипическом. Причины этих различий могут заключаться как во влиянии на проявление мутации других генов, так и внешнесредовых причин, если их понимать достаточно широко.

Среди мутаций с утратой функции принято выделять доминантно негативные мутации. К ним относят такие мутации, которые не только приводят к снижению или утрате функции собственного продукта, но и нарушают функцию соответствующего нормального аллеля. Наиболее часто проявления доминантно негативных мутаций обнаруживают в белках, состоящих из двух и более полипептидных цепей, таких, например, как коллагены.

Естественно было ожидать, что при репликации ДНК, происходящей во время каждого клеточного деления, должно возникать довольно много молекулярных мутаций. Однако этого на самом деле нет, поскольку в клетках происходит репарация повреждений ДНК. Известно несколько десятков ферментов, участвующих в этом процессе. Они распознают измененное основание, удаляют его, разрезая нить ДНК, и замещают правильным основанием, используя для этого комплементарную неповрежденную нить ДНК.

Распознавание ферментами репарации измененного основания в цепи ДНК происходит благодаря тому, что нарушается правильное спаривание измененного нуклеотида с комплементарным основанием второй цепи ДНК. Существуют также механизмы репарации и других видов повреждений ДНК. Считают, что в норме репарируется более 99% всех вновь возникающих молекулярных мутаций. Если, однако, происходят мутации в генах, контролирующих синтез ферментов репарации, то частота спонтанных и индуцированных мутаций резко возрастает, и это повышает риск развития различных онкологических заболеваний.

Изменение структуры гена, последовательности нуклеотидов может приводить к изменениям кодируемого этим геном белка. Изменения в структуре гена называют мутациями. Мутации могут возникать по разным причинам, начиная от случайных ошибок при удвоении ДНК и кончая действием на ген ионизирующей радиации или особых химических веществ, которые называют мутагенами.

Мутации можно классифицировать в зависимости от характера изменения последовательности нуклеотидов: делеции, инсерции, замещения и др. или от характера изменений при биосинтезе белка: миссенс, нонсенс-мутации сдвига рамки считывания и др.

Различают также мутации стабильные и динамические.

Фенотипический эффект мутаций может выражаться либо в утрате функции, либо в приобретении новой функции.

Большинство вновь возникающих мутаций исправляется с помощью ферментов репарации ДНК.

Моногенные заболевания

В соматических клетках органов и тканей человека каждый ген представлен двумя копиями (каждая копия называется аллелем). Общее число генов составляет приблизительно 30 000 (точное число генов в геноме человека пока неизвестно).

Фенотип

На организменном уровне мутантные гены изменяют фенотип особи.

Под фенотипом понимают сумму всех внешних характеристик человека, причем когда мы говорим о внешних характеристиках, то при этом имеем в виду не только действительно внешние признаки, такие как рост или цвет глаз, но и различные физиологические и биохимические характеристики, которые могут измениться в результате действия генов.

Фенотипические признаки, с которыми имеет дело медицинская генетика, это наследственные болезни и симптомы наследственных болезней. Совершенно очевидно, что между симптомами наследственного заболевания, такими, скажем, как отсутствие ушной раковины, судороги, умственная отсталость, кисты в почках, и изменением одного белка в результате мутации в каком-то конкретном гене дистанция огромная.

Мутантный белок, являющийся продуктом мутантного гена, должен каким-то образом взаимодействовать с сотнями или даже тысячами других белков, кодируемых другими генами, чтобы в конце концов изменился какой-то нормальный или появился патологический признак. Кроме того, продукты генов, участвующих в становлении любого фенотипического признака, могут взаимодействовать с факторами окружающей среды и модифицироваться под их влиянием. Фенотип в отличие от генотипа может меняться в течение жизни, генотип при этом остается постоянным. Самое яркое тому свидетельство — наш собственный онтогенез. В течение жизни внешне мы меняемся, старея, а генотип — нет. За одним и тем же фенотипом могут стоять разные генотипы, и, напротив, при одном и том же генотипе фенотипы могут различаться. Последнее утверждение подкрепляется результатами изучения монозиготных близнецов. Их генотипы идентичны, а фенотипически они могут различаться по массе тела, росту, поведению и другим характеристикам. Вместе с тем, когда мы имеем дело с моногенными наследственными болезнями, мы видим, что обычно действие мутантного гена не скрывается многочисленными взаимодействиями его патологического продукта с продуктами других генов или с факторами окружающей среды.

Похожие статьи

medn.ru