Что такое металлический водород? Что такое металлический водород


Ученым удалось создать металлический водород

Экология потребления.Наука и техника: Новый материал может совершить революцию в ракетостроении и сверхпроводниковой отрасли, однако пока он получен лишь в очень малом количестве.

Исследователи из Гарвардского университета (США) впервые смогли получить в лаборатории металлический водород при низких температурах. Для этого им пришлось создать давление, выше, чем в центре Земли. Хотя металлический водород был предсказан почти столетие тому назад, исключительные трудности на пути получения этого материала долгое время делали его получение в твердой форме недостижимой мечтой. 

 

 

Теоретики ещё в первой половине XX века показали, что обычный водород, существующий в виде двухатомных молекул, при росте давления постепенно потеряет молекулярную структуру. Его молекулы просто развалятся, образовав гораздо более плотно упакованный атомарный водород в твёрдой фазе. 

 

Этот материал, широко распространённый в недрах Юпитера, обладает рядом уникальных свойств, которые делают его крайне многообещающим. По расчётам, он должен быть хорошим проводником — возможно, даже сверхпроводником. А, например, при плавлении металлического водорода должно выделяться в 21 раз больше энергии, чем при сжигании килограмма того же водорода в кислороде. В теории это делает его отличным ракетным топливом, на базе которого можно строить одноступенчатые ракеты и выводить в космос большую полезную нагрузку на ракете умеренных размеров.

Но, чтобы сделать всё это, нужно сперва получить такой водород. На протяжении длительного времени создать нужное для его получения давление удавалось только с помощью алмазных наковален с лазерным нагревом и уплотнением. Температура в таких наковальнях часто измерялась тысячами градусов — даже получив в них металлический водород, исследователи через миллисекунду тут же его теряли. Замерить его металлические свойства при низкой температуре достоверно не удавалось.

В этот раз учёные оптимизировали алмазную наковальню таким образом, чтобы получить металлический водород именно при малых температурах. Наковальня состоит из двух синтетических алмазов конической формы. Чтобы убрать дефекты в алмазах (избежать растрескивания при росте давления), их отполировали алмазной крошкой. Кроме того, их покрыли слоем глинозёма. С его помощью удалось блокировать диффузию водорода при высоких давлениях внутрь алмазов наковальни. 

Диффундирующий водород быстро создаёт в алмазах дефекты, делающие их хрупкими, и дальнейшее сжатие водорода приводит к их разрушению. После модификации ячейку с алмазной наковальней использовали для получения металлического водорода при температуре 5,5 кельвина и давлении в 495 гигапаскалей. Это почти в пять миллионов раз выше атмосферного. 5,5 кельвина — рекордно низкая температура для такого давления. Спектроскопический анализ показал, что водород в новом материале находится в атомарном состоянии, а его плотность соответствует металлическому водороду.

Пока водород удалось получить в очень малых количествах, с помощью которых достоверно удалось прояснить лишь наличие у него свойств металла и высокой отражательный способности — он отражал порядка 0,91 от падавшего на него электромагнитного излучения. Однако в будущем исследователи надеются добиться получения достаточно больших количеств этого материала. В значимых количествах он должен быть метастабилен, как алмаз. Это значит, что хотя для его получения и требуется очень большое давление, однажды возникнув металлический водород остается стабильным даже в обычных условиях — при комнатной температуре и атмосферном давлении. Связано это с тем, что энергия, требующаяся для разрушения связей в таком материале столь велика, что в нормальных условиях такой переход не случится.

Ряд работ предсказывают у металлического водорода сверхпроводимость при комнатной температуре. На сегодня таких сверхпроводников получить ещё не удалось. 

Металлический водород при получении требует больших затрат энергии, и при его переходе в фазу газообразного (обычного) водорода эта энергия быстро высвобождается. В случае его применения в ракетных двигателях он может дать удельный импульс в 1700 секунд. Современные лучшие виды ракетного топлива дают цифры в районе 400 секунд. К тому же металлический водород в силу его метастабильности не потребует криогенных баков и не будет быстро утекать через их стенки в космосе (это ограничивает использование жидкого водорода в ракетах). С таким твёрдым топливом в теории можно создать одноступенчатые ракеты большой грузоподъёмности при умеренных затратах. В NASA его рассматривают как фактор, способный резко изменить расстановку сил в космической индустрии. Проверить, так это или нет возможно только на практике — после улучшения существующих методов его наработки. опубликовано econet.ru 

econet.ru

Что такое металлический водород?

Металлический водород

Твердое вещество. Жидкость. Газ. Материалы, которые окружают нас в нашем обычном, повседневном мире, делятся на три аккуратных лагеря. Нагрейте твердый куб воды (лёд), и когда он достигнет определенной температуры, то переходит в фазу жидкости. Продолжайте проворачивать тепло и в конце концов, у вас будет газ: водяной пар.

Каждый элемент и молекула имеют свою «фазовую диаграмму», карту того, что вы должны ожидать, если примените к ней определенную температуру и давление. Диаграмма уникальна для каждого элемента, потому что она зависит от точной атомно-молекулярной компоновки и того, как она взаимодействует с собой в различных условиях. Поэтому ученым нужно изучать эти диаграммы посредством трудных экспериментов и тщательной теории.

Когда речь заходит о водороде, мы обычно не сталкиваемся с этим вообще, за исключением случаев, когда он подпитывается кислородом, чтобы сделать более привычную воду. Даже когда мы получаем чистый водород — он соединяется как двухатомная молекула, почти всегда как газ. Если вы заманили водород в бутылку и довели его температуру до минус 240 градусов Цельсия, водород станет жидким, а при минус 259 градусов C становится твердым.

Вы могли бы подумать, что на противоположном конце температурной шкалы горячий газ водорода останется … горячим газом. И это правда, если давление будет низким. Но сочетание высокой температуры и высокого давления приводит к некоторому интересному поведению.

Погружаясь в Юпитер

 

Юпитер

На Земле, как мы видели, поведение водорода простое. Но Юпитер — это не Земля, и водород, найденный в изобилии внутри под большими облаками и завихряющимися штормами его атмосферы может быть вытеснен за пределы его обычных пределов.

Погружаясь глубоко под видимую поверхность планеты, давление и температура резко возрастают, и газообразный водород медленно уступает место слою сверхкритического газожидкостного гибрида. Из-за этих экстремальных условий водород не может окунуться в узнаваемое состояние. Слишком жарко, чтобы оставаться жидкостью, но при слишком большом давлении свободно плавать в качестве газа — это новое состояние материи.

Погружаясь глубже, водород становится еще более странным

Даже в своем гибридном состоянии, в тонком слое расположенном под вершинами облаков, водород все еще подпрыгивает, как двухатомная молекула. Но при достаточном давлении (скажем, в миллион раз более интенсивном, чем давление воздуха на Земле на уровне моря) даже те связи молекул недостаточно сильны, чтобы противостоять подавляющим сжатиям.

Ниже, примерно 13 000 км под вершинами облаков, представляет собой хаотическую смесь свободных ядер водорода, которые представляют собой только одиночные протоны, смешанные с освобожденными электронами. Вещество возвращается к жидкой фазе, но то, что делает водород водородом, теперь полностью дезасолируется в его составные части. Когда это происходит при очень высоких температурах и низких давлениях, мы называем это плазмой — то же самое, что и основная часть солнца или молнии.

Но в глубинах Юпитера давление приводит к тому, что водород ведет себя по-другому чем плазма. Вместо этого он приобретает свойства, более похожие на свойства металла. Следовательно: жидкий металлический водород.

Жидкий металлический водород

Большинство элементов на периодической таблице — металлы: они твердые, блестящие и обеспечивают хорошую электрическую проводимость. Элементы получают эти свойства из-за того, что представляют собой при нормальных температурах и давлениях: они соединяются образуя решетку и каждый жертвует один или несколько электронов в общий горшок. Эти диссоциированные электроны свободно перемещаются, прыгая от атома к атому, как им заблагорассудится.

Если вы возьмете стержень золота и растопите его, у вас все еще есть все преимущества электронного обмена металла (кроме твердости), поэтому «жидкий металл» — это не странное понятие. Некоторые элементы, которые обычно не являются металлическими, например углерод, могут использовать эти свойства при определенных условиях.

Итак, «металлический водород» не должен быть странной идеей: это просто неметаллический элемент, который начинает вести себя как металл при высоких температурах и давлениях.

Свойства металлического водорода

Большая проблема состоит в том, что металлический водород не является типичным металлом. У разнородных металлов есть специальная решетка ионов, встроенных в море свободноплавающих электронов. Но урезанный атом водорода — это всего лишь один протон и нет ничего, что протон мог бы сделать, чтобы построить решетку.

Когда вы сжимаете металлический стержень, вы пытаетесь сблизить блокирующие ионы. Электростатическое отталкивание обеспечивает всю опору, чтобы металл был сильным. Но протоны подвешены в жидкости? Как жидкий металлический водород внутри Юпитера поддерживает вес атмосферы над ним?

Ответ — это давление вырождения, квантово-механическая причуда вещества в экстремальных условиях. Исследователи считали, что крайность может быть найдена только в экзотических, ультранизких средах, таких как белые карлики и нейтронные звезды. Даже когда электромагнитные силы перегружены, одинаковые частицы, такие как электроны, могут быть сжаты так плотно вместе — они отказываются разделять одно и то же квантовомеханическое состояние.

Другими словами, электроны никогда не будут разделять один и тот же уровень энергии, а это означает, что они будут накапливаться друг на друге, никогда не приближаясь, даже если вы очень сильно нажимаете.

Другой способ взглянуть на ситуацию — через так называемый принцип неопределенности Гейзенберга: если вы попытаетесь зафиксировать положение электрона, нажав на него, его скорость может стать очень большой, что приведет к силе давления, которая сопротивляется дальнейшему сжатию.

Итак, внутренность Юпитера странная — суп из протонов и электронов, нагретый до температур выше, чем у поверхности Солнца, страдает от давления в миллионы раз сильнее, чем на Земле, и вынужден раскрыть их истинную квантовую природу.

tagweb.ru

Металлический водород

Металлический водород, который находится под давлением порядка четырех с половиной миллионов атмосфер, может иметь наибольшую критическую температуру перехода в ряду высокотемпературных проводников. Согласно предварительным расчетам итало-германской группы ученых физиков-теоретиков, критическая температура элемента равна 242 К (минус тридцать один градус Цельсия).

Газообразный водород превращается в жидкость при температуре 20 К. Если снизить температуру ещё на 6 К, то можно перевести элемент в твердое состояние. Ханингтон и Вигнер в 1935-м году предположили получение водорода в лаборатории. По их мнению, необходимо было использовать высокое давление – около 25 Гпа (один Гпа примерно равен десяти тысячам атмосфер). Так, под воздействием высокого давления элемент превратится в изотоп водорода – из диэлектрического элемента в проводящий. Следует отметить, что газ в исходном состоянии обладает проводящими свойствами. Так же, как и металлы, элемент проводит электричество, при этом он может и не находиться в твердом состоянии. Другими словами, водород может представлять собой и жидкость, обладающую металлическими свойствами.

В 1971-м году в свет вышла работа советских ученых-теоретиков во главе с Каганом. Группа физиков доказывала, что металлический водород может являться метастабильным. Это означает, что после прекращения воздействия повышенным давлением, элемент не перейдет в свое первоначальное состояние – газ, обладающий диэлектрическими свойствами. Вместе с этим до сих пор неясно, будет ли эта стадия достаточно продолжительной для того, чтобы успеть использовать металлический водород.

Первый успех в опытном плане был получен в 1975-м году, в феврале. Группа ученых во главе с Верещагиным создала металлический водород. Под воздействием температуры в 4,2 К в тонком слое элемента при помощи алмазных наковален подвергнутом также воздействию давления порядка 300 Гпа наблюдалось снижение электрического сопротивления газа в миллионы раз. Это свидетельствовало о переходе водорода в металлическое состояние.

Для получения высокого давления применяется алмазная наковальня. Она представлена в виде двух искусственных алмазов, остриями прижимающихся друг к другу при помощи пресса. В итоге на срезе, диаметр которого - порядка нескольких десятых долей миллиметра, образуется необходимое давление. На этом участке в ячейке располагается охлажденный образец. К образцу в этом же месте подводится оборудование: миниатюрные термопары, электроды и прочие измерительные приборы.

Следующим этапом в работе ученых стало выяснение возможности последующего перехода металлического состояния в сверхпроводящее. Первым задался этой проблемой Нейл Эшкрофт. Теоретик предсказал, что у металлического водорода появятся «экзотические» свойства под воздействием высоких температур, превышающих 200 К.

Сравнительно недавно вышла работа немецких и итальянских физиков. Авторы утверждают, что за счет электрон-фононного механизма формирования куперовских пар достигается рекордный показатель критической температуры – 242 К. Вместе с этим, однако, необходимо и воздействие высокого давления – порядка 450 Гпа, а это, в свою очередь, в четыре с половиной миллиона раз превышает атмосферное давление.

При электрон-фононном формировании куперовских пар при движении в периодической решетке в кристалле электрон притягивает ближайшие ионы, заряженные положительно. При этом происходит незначительная деформация решетки, и на короткое время увеличивается концентрация положительного заряда. За счет увеличенной концентрации притягивается другой электрон. Так, притягиваются оба электрона. При ненулевой температуре происходит колебание ионов около своих состояний равновесия. Фононы – это кванты данных колебаний.

fb.ru

Металлический водород - это... Что такое Металлический водород?

Эта статья содержит незавершённый перевод с английского языка.

Вы можете помочь проекту, переведя её до конца.

Металлический водород — совокупность фазовых состояний водорода, находящегося при высоком давлении и претерпевшего фазовый переход. Металлический водород представляет собой вырожденное состояние вещества и обладает некоторыми замечательными свойствами — высокотемпературной сверхпроводимостью и высокой удельной теплотой фазового перехода.

Возможно существование твердой кристаллической и жидкой фазы металлического водорода, в которой отсутствует дальний порядок.

История исследований

В 1935 год Ю. Вигнер и X. Б. Хантингтон предсказали переход водорода в металлическое состояние под действием высокого давления (около 25 ГПа) и потерю валентного электрона ядром[1]. В дальнейшем оценка давления, требуемого для фазового перехода, была повышена, но условия перехода всё же считаются потенциально достижимыми. Предсказание свойств металлического водорода ведется теоретически. Попытки получения, начатые в 1970-х годах, привели к серии опытов М. Еремец в 2008 и А так же Еремец и Троян 2011 годах[2]. Однако, имеются сомнения в получении металлического водорода[3].

Теоретические свойства

Твердый металлический водород

Кристаллическая решетка твердого металлического водорода формируется ядрами водорода (протонами), находящимися друг от друга существенно ближе боровского радиуса, на расстоянии, сравнимом с длиной волны де Бройля электронов. Таким образом, электроны слабо связаны с протонами и формируют свободный электронный газ так же, как в металлах.

Жидкий металлический водород

Жидкий металлический водород образуется при плавлении твердого металлического водорода. В отличие от гелия-4, жидкого при нормальном давлении и температуре ниже 2,17 K, существование жидкого металлического водорода в таких условиях ставится под сомнение. Энергия нулевых колебаний в массиве плотно упакованных протонов велика, и переход от кристаллической фазы ожидается при высоких давлениях. Исследование максимальной точки плавления на диаграмме состояний водорода, проведенное Н. Ашкрофтом, допускает область давлений около 400 ГПа, при которых водород является жидким металлом при низких температурах[4][5]. Егором Бабаевым было предсказано что металлический водород может представлять собой новое агрегатное состояние: металлическую сверхтекучую жидкость.[6][7]

Сверхпроводимость

Металлический водород обладает сверхпроводимостью при температурах, вплоть до комнатной, что гораздо выше, чем в других материалах.

Экспериментальные попытки получения

Ударное сжатие: W. Nellis Предположительно получил металлический водород в экспериментах по ударному сжатию [8] Опыты 2008 и 2011 года. Ударное сжатие. Получение давлением в алмазных наковальнях.

Связь с другими областями физики

Металлический водород может существовать в ядрах планет-гигантов.

Применение

Предлагаются топливные ячейки, использующие отдачу энергии фазового перехода металлического водорода в диэлектрическое состояние при снятии давления.

См. также

Примечания

dic.academic.ru

МЕТАЛЛИЧЕСКИЙ ВОДОРОД - это... Что такое МЕТАЛЛИЧЕСКИЙ ВОДОРОД?

- совокупность фаз высокого давления водорода, обладающих металлич. свойствами. Возможность перехода водорода в металлич. фазу была впервые теоретически рассмотрена Ю. Вигнером и X. Б. Хантингтоном в 1935 [I]-^B дальнейшем по мере развития методов электронной теории металлов ур-ние состояния металлич. фаз водорода исследовалось теоретически. На рис. 1 приведена фазовая диаграмма, полученная путём синтеза результатов этих расчётов с эксперим. и теоретич. данными по ур-нию состояния молекулярного водорода [2]. При атм. давлении и низких темп-pax водород существует в виде диэлектрич. молекулярного кристалла, при повышении давления происходит переход в кри-сталлич. металлич. состояние. При этом в зависимости от темп-ры возможны 3 фазы M. в. При темп-ре T =0 К и давлении r =300-100 ГПа металлизация сопровождается перестройкой кристаллич. структуры, диссоциацией молекул h3 и металлич. кристалл становится атомарным [3]. При T >10 К возможна металлизация с сохранением структуры молекулярного кристалла (пунктир; металлизация такого типа ранее наблюдалась в иоде). При дальнейшем повышении давления или темп-ры наступает плавление металлич. фазы и образуется жидкий атомарный M. в.

Рис. I. Диаграмма состояния водорода.

Водород в металлич. фазе содержится в недрах планет-гигантов Юпитера и Сатурна. Согласно совр. моделям, на Юпитере водород в молекулярной фазе присутствует только до глубин порядка 0,22 радиуса планеты [2]. На большей глубине водород в смеси с Не образует жидкую металлич. фазу (рис. 2, [4]).

Сообщалось о получении M. в. в экспериментах по ударному сжатию и по сжатию в алмазных наковальнях [5], однако надёжных эксперим. данных о давлении перехода и ур-нии металлич. фазы пока нет.

Важность получения M. в. связана с тем, что в нём должен сочетаться ряд уникальных свойств. Во-первых, из-за малой массы атомов аномально велика Де-бая температура Как следствие этого, темп-ра сверхпроводящего перехода Т с в твёрдой фазе при давлении порядка давления металлизации должна превышать 200 К, что значительно выше, чем у всех известных сверхпроводников, т. к..

Во-вторых, M. в. может существовать в виде квантовой жидкости. Малая масса атомов водорода приводит к большой величине амплитуды нулевых колебаний атомов, благодаря чему даже при T =0 К может не происходить кристаллизация. В противоположность известным квантовым жидкостям (3He и 4He) плавление кристаллич. M. в. наступает при возрастании давления. Надёжных расчётных данных о структуре и кривой плавления металлич. фазы пока нет. Согласно нек-рым расчётам, давление, при к-ром происходит плавление при T =0 К, порядка давления, необходимого для металлизации, т. е. в этом случае твёрдой фазы H может не быть.

При снятии давления и обратном переходе из металлич. фазы в диэлектрическую выделяется энергия ~290 МДж/кг, что в неск. раз выше, чем даёт любой известный вид топлива. Перспективы практич. использования M. в. в качестве аккумулятора энергии зависят от того, какие условия требуются для осуществления метастабильной металлич. фазы при частичном снятии внеш. давления и каково её время жизни. Кроме протия 1H металлизация может происходить в кристаллах дейтерия 2H и трития 3H, с той лишь разницей, что квантовые свойства этих кристаллов выражены слабее, а темп-pa сверхпроводящего перехода Т с в них ниже.

Лит.:1) Wignе г E., Hиntingtоn H. В., On the possibility of a metallic modification of hydrogen, "J. Chem. Phys.", 1935, v. 3, p. 746; 2) Stevensоn D. J., Interiors of giant planets, "Ann. Rev. Earth Planet. Sci.", 1982, v. 10, p. 257; 3) Каган Ю.,Пушкарев В., Xолас А., Уравнение состояния металлической фазы водорода, "ШЭТФ", 1977, т. 73, с. 967; 4) Ж а р к о в В. H., Внутреннее строение Земли и планет, 2 изд., M., 1983, гл. 10; 5) Григорьев Ф. В. и др., Экспериментальное определение сжимаемости водорода при плотностях 0,5+ 2 г/см 3, "Письма в ЖЭТФ", 1972, т. 16, с. 286; 6) Ross M., Matter under extreme conditions of temperature and pressure, "Repts Progr. Phys.", 1985, v. 48, p. 1; 7) Min B. I., Jansen H. J. F., Freeman A., Structural properties superconductivity and magnetism of metallic hydrogen, "Phys. Rev. B", 1984, V. 30, № 9, p. 5076. В. В. Авилов.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.

dic.academic.ru

Что такое металлический водород?

Что такое металлический водород?

Что мы знаем об окружающем нас мире? Да ничего. Вообще, все окружающие нас материалы подразделяются на три базовых вполне конкретных лагеря. К примеру, для начала возьмем твердый куб воды — лед. После того, как он достигнет определенной температуры, он изо льда превратится в лед. Если продолжить увеличивать температуру, то в конце концов образуется пар.

Иными словами, каждая молекула имеет свою собственную фазовую диаграмму. Эта диаграмма является своеобразной картой того, что стоит ожидать от молекулы в различных условиях, как она себя поведет при изменениях температуры, давления и прочих параметров. Известно, что для каждого элемента диаграмма совершенно уникальна. И все от того, что есть различия в молекулярно-атомной системе. Ведь внутри этой компоновки могут происходить разные процессы.

Интересно другое, когда начинается разговор о водороде, то мы вдруг обнаруживаем, что практически ничего не слышали о его возможностях. Разве что некоторые реакции, связанные с подпиткой этого элемента кислородом. Но даже когда мы берем его в одиночном состоянии, его крайняя «застенчивость» мешает ему взаимодействовать с иными элементами в единственном числе. Дело в том, что водород практически всегда объединяется в молекулу (обычно в виде газа) и только после этого вступает в реакцию.

Если же водород удастся загнать в бутылку и увеличить температуру до тридцати трех кельвинов, что двести сорок градусов по Цельсию, вещество становится жидким. Ну, а при минус четырнадцати — минус двухсот пятидесяти девяти по Цельсию — водород твердеет.

Логически получается, что при повышенной температуре водород должен оставаться газообразным. Но это при условии низкого давления. Если повысить давление при той же высокой температуре, то можно обнаружить очень интересные последствия.

Космическое поведение водорода

Невероятные трансформации водорода происходят в космосе. На Земле их практически невозможно обнаружить. Возьмем, к примеру, Юпитер. И вот тут найденный водород начинает проявлять свои необычные свойства.

Погруженный в глубину под видимую поверхность планеты, привычный водород под высоким давлением начинает уступать место своему собрату — слою газожидкостного сверхкритичного гибрида. То есть условия слишком жаркие, чтобы оставаться в виде жидкости, но при этом слишком высокое давление, чтобы быть газом.

Но это только начало странностей. Если копнуть в более глубокие слои, то можно обнаружить вовсе невероятные превращения вещества. Какое-то время составные части водорода все еще продолжают как бы подпрыгивать. Но при давлении, превышающем земное связи водорода продолжают сжиматься.  В результате в области ниже тринадцати тысяч километров под облаками появляется некая хаотичная смесь, в которой присутствую отдельные свободные ядра водорода, которые представляют собой одиночные протоны, смешанные с освобожденными электронами. При высоких температурах и низких давлениях этот состав является плазмой.

Вот только условия Юпитера, предлагающие более высокое давление, провоцирую не образование плазмы, а нечто, похожее на металл. Получается жидкий кристаллический металл.

Ученые пришли к выводу, что ничего странного в металлическом водороде нет. Просто бывают условия, при которых то или иное неметаллическое вещество начинает приобретать свойства металла. Вот только водород — не обычный металл, а урезанный атом — протон. В итоге получается нечто вроде жидкого металла. Протон как бы подвешен в жидкости. И если раньше считалось, что подобное может происходить на карликовых звездах, то сегодня оказалось, что такие свойства вещество может проявлять тут же, по соседству в нашей же системе.

Поделиться

Твитнуть

Поделиться

Плюсануть

Поделиться

Твитнуть

Поделиться

Плюсануть

mks-onlain.ru

Что такое металлический водород

Металлический водород (гидроген) – это материал, который обладает уникальными свойствами. При комнатной температуре он является сверхпроводником. Применение такого материала в вычислительной технике позволяет значительно продвинуться в развитии компьютерных технологий. Однако он обладает и серьезным недостатком – высокой ценой производства.

Физические свойства

Металлический водород состоит из сильно сжатых ядер гидрогена. В природе такое вещество встречается внутри газовых гигантов и звезд. Водород находится на первой позиции группы щелочных металлов в Периодической таблице Менделеева. В связи с этим ученые предполагали, что он может обладать ярко выраженными металлическими свойствами. Однако это теоретически возможно только при экстремальных давлениях. Атомные ядра металлического водорода находятся так близко друг к другу, что они разделены только плотной электронной жидкостью, протекающей между ними. Это значительно меньше плотности нейтрония – теоретически существующего вещества с бесконечной плотностью. В металлическом водороде электроны сливаются с протонами, чтобы образовать новый тип частиц - нейтроны. Как и все металлы, материал способен проводить электричество. Именно при подаче тока измеряют степень металлизации такого вещества.

История получения

Этот материал был впервые синтезирован в лабораторных условиях совсем недавно - в 1996 году. Это произошло в Ливерморской национальной лаборатории. Время существования металлического водорода было очень недолгим – около одной микросекунды. Потребовались температура около тысячи градусов и давление свыше миллиона атмосфер, чтобы добиться такого эффекта. Это стало полной неожиданностью для самих экспериментаторов, так как ранее считалось, что для получения металлического водорода требуется очень низкая температура. В предыдущих экспериментах твердый водород подвергался давлению до 2500000 атмосфер. При этом заметная металлизация отсутствовала. Эксперимент по сжатию горячего водорода был произведен только для того, чтобы измерить различные свойства материала при этих условиях, а не с целью получения металлического водорода. Тем не менее, он увенчался полным успехом.

Хотя металлический водород, произведенный в Национальной лаборатории Лоуренса Ливермора, и был в твердом агрегатном состоянии, появилась теория, что это вещество можно получить и в жидком виде. С помощью расчетов было установлено, что такой материал может быть сверхпроводником при комнатной температуре, хотя это свойство пока неприменимо для практических целей, так как расходы на создание давления в миллион атмосфер гораздо выше, чем количество полученного материала в денежном эквиваленте. Однако есть небольшая вероятность того, что метастабильный металлический водород может существовать в природе. По предположениям специалистов он сохраняет свои параметры даже при отсутствии давления.

Считается, что металлический водород существует в ядрах крупных газовых гигантов в нашей солнечной системе. К ним относятся Юпитер и Сатурн, а также водородная оболочка вблизи ядра Солнца

completerepair.ru