Электроотрицательность. Степень окисления и валентность химических элементов. Электроотрицательность как определить по таблице


Относительная электроотрицательность химических элементов (Таблица)

Относительноя электроотрицательность химических элементов (классический вариант)

I

II

III b

IV b

V b

VI b

VII b

VIII b

VIII b

VIII b

I b

II b

III

IV

V

VI

VII

VIII

H

2,1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

He

Li

0,97

Be

1,47

 

 

 

 

 

 

 

 

 

 

B

2,02

C

2,50

N

3,07

O

3,50

F

4,10

Ne

Na

1,01

Mg

1,23

 

 

 

 

 

 

 

 

 

 

Al

1,47

Si

1,74

P

2,10

S

2,60

Cl

2,83

Ar

K

0,91

Ca

1,04

Sc

1,20

Ti

1,32

V

1,45

Сr

1,56

Mn

1,60

Fe

1,64

Co

1,75

Ni

1,75

Cu

1,76

Zn

1,66

Ga

1,82

Ge

2,02

As

2,20

Se

2,48

Br

2,74

Kr

3,00

Rb

0,89

Sr

0,99

Y

1,11

Zr

1,22

Nb

1,23

Mo

1,30

Tc

1,36

Ru

1,42

Rh

1,45

Pd

1,35

Ag

1,42

Cd

1,46

In

1,49

Sn

1,72

Sb

1,82

Te

2,01

I

2,21

Xe

2,60

Cs

0,86

Ba

0,97

La

1,08

Hf

1,23

Ta

1,33

W

1,40

Re

1,46

Os

1,52

Ir

1,55

Pt

1,44

Au

1,42

Hg

1,44

Tl

1,44

Pb

1,55

Bi

1,67

Po

1,76

At

1,96

Rn

2,20

Fr

0,86

Ra

0,97

Ac

1,00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Лантаноиды имеют значения относительных электроотрицательностей в области 1,08 – 1,14;

   1. Актиноиды имеют значения относительных электроотрицательностей в области 1,11 – 1,20;

   3. Условной границей между металлами и неметаллами считается значение относительно электроотрицательности равное 2

Относительная электроотрицательности химических элементов (таблица)

Элемент

Электроотри­цательность

Элемент

Электроотри­цательность

Ac

1,00

F

4,10

Ag

1,42

Fe

1,64

Al

1,47

Fr

0,86

Ar

3,20

Ga

1,82

As

2,11

Ge

2,02

At

 1,90

H

2,10

Au

 1,42

He

5,50

B

 2,01

Hf

1,23

Ba

 0,97

Hg

1,44

Be

 1,47

I

2,21

Bi

 1,67

In

1,49

Br

 2,74

Ir

1,55

C

 2,50

K

0,91

Ca

 1,04

Kr

2,94

Cd

 1,46

La

1,08

Cl

 2,83

Li

0,97

Co

 1,70

Mg

1,23

Cr

 1,56

Mn

1,60

Cs

 0,86

Rn

2,06

Cu

 1,75

Ru

1,42

Mo

 1,30

S

2,60

N

 3,07

Si

2,25

Na

 0,93

Sb

1,82

 

infotables.ru

Электроотрицательность. Степень окисления и валентность химических элементов

Электроотрицательность

Электроотрицательность (ЭО)  — это способность атомов притягивать электроны при связывании с другими атомами.

Электроотрицательность зависит от расстояния между ядром и валентными электронами, и от того, насколько валентная оболочка близка к завершенной. Чем меньше радиус атома и чем больше валентных электронов, тем выше его ЭО.

Фтор является самым электроотрицательным элементом. Во-первых, он имеет на валентной оболочке 7 электронов (до октета недостает всего 1-го электрона) и, во-вторых, эта валентная оболочка (…2s2 2p5) расположена близко к ядру.

Менее всего электроотрицательны атомы щелочных и щелочноземельных металлов. Они имеют большие радиусы и их внешние электронные оболочки далеки от завершения. Им гораздо проще отдать свои валентные электроны другому атому (тогда предвнешняя оболочка станет завершенной), чем «добирать» электроны.

Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют шкалу электроотрицательностей, предложенную американским химиком Л. Полингом.

Разность электроотрицательностей элементов в соединении (ΔX) позволит судить о типе химической связи. Если величина Δ X = 0  –  связь ковалентная неполярная.

При разности электроотрицательностей до 2,0 связь называют ковалентной полярной, например: связь H—F в молекуле фтороводорода HF: Δ X = (3,98 — 2,20) = 1,78

Связи с разностью электроотрицательностей больше 2,0 считаются ионными. Например: связь Na—Cl в соединении NaCl: Δ X = (3,16 — 0,93) = 2,23.

 Степень окисления

Степень окисления (СО) — это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна.

При образовании ионной связи происходит переход электрона от менее электроотрицательного атома к более электроотрицательному, атомы теряет свою электронейтральность, превращается в ионы. возникают целочисленные заряды. При образовании ковалентной полярной связи электрон переходит не полностью, а частично, поэтому возникают частичные заряды (на рисунке ниже HCl). Представим, что электрон перешел полностью от атома водорода к хлору, и на водороде возник целый положительный заряд +1, а на хлоре -1. такие условные заряды и называют степенью окисления.

На этом рисунке изображены степени окисления, характерные для первых 20 элементов.Обратите внимание. Высшая СО как правило равна номеру группы в таблице Менделеева. У металлов главных подгрупп – одна характерная СО, у неметаллов, как правило, наблюдается разброс СО. Поэтому неметаллы образуют большое количество соединений и обладают более «разнообразными» свойствами, по сравнению с металлами.

Примеры определения степени окисления

Определим степени окисления хлора в соединениях:

Те правила, которые мы рассмотрели не всегда позволяют рассчитать СО всех элементов, как например в данной молекуле аминопропана.

Здесь удобно пользоваться следующим приемом:

1)Изображаем структурную формулу молекулы, черточка – это связь, пара электронов.

2) Черточку превращаем в стрелку, направленную к  более ЭО атому. Эта стрелка символизирует переход электрона к атому. Если связаны два одинаковых атома, оставляем черту как есть – нет перехода электронов.

3) Считаем сколько электронов «пришло» и «ушло».

Например, посчитаем заряд первого атома углерода. Три стрелки направленны к атому, значит, 3 электрона пришло, заряд -3.

Второй атом углерода: водород отдал ему электрон, а азот забрал один электрон. Заряд не поменялся, равен нулю. И т.д.

Валентность

Вале́нтность (от лат. valēns «имеющий силу») — способность атомов образовывать определённое число химических связей с атомами других элементов.

В основном, под валентностью  понимается способность  атомов к образованию определённого числа ковалентных связей.  Если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами, т.е. его валентность будет равна n + m. При оценке максимальной валентности следует исходить из электронной конфигурации «возбуждённого»  состояния. Например, максимальная валентность атома бериллия, бора и азота равна 4 (например, в Be(OH)42-, BF4— и Nh5+), фосфора — 5 (PCl5), серы — 6 (h3SO4), хлора — 7 (Cl2O7).

В ряде случаев, валентность может численно совпадать со степенью окисления, но ни коим образом они не тождественны друг другу. Например, в молекулах  N2 и CO реализуется тройная связь (то есть валентность каждого атома равна 3), однако степень окисления азота равна 0, углерода +2, кислорода −2.

 

В азотной кислоте степень окисления азота равна +5, тогда как азот не может иметь валентность выше 4, т.к имеет только 4 орбитали на внешнем уровне (а связь можно рассматривать как перекрывание орбиталей). И вообще, любой элемент второго периода по этой же причине не может иметь валентность большую 4.

Ещё несколько «коварных» вопросов, в которых часто делают ошибки.

himege.ru

В каком соединение полярность связи наименьшая?

Для определения полярности связей самое нужное - иметь под рукой таблицу электроотрицательностей элементов! Её можно посмотреть здесь: <a rel="nofollow" href="http://ru.wikipedia.org/wiki/Электроотрицательность" target="_blank">http://ru.wikipedia.org/wiki/Электроотрицательность</a> А полярность связи тем больше, чем больше разность электроотрицательности между двумя атомами

Полярность зависит от разницы в значениях электроотрицательности, она максимальна в первом случае. Надо понять, как это определять по таблице Менделеева. Не въедешь-пиши. В ряду F O S Cl минимальная ЭО у серы, значит разница в значениях ЭО серы и водорода минимальна, и полярность связи тоже.

Исходные значения: H=2,7 F=9,92 S=5,77 Cl=7,04 O=8,11 -------- считаем разность 1) HF 9,92-2,70=7,22 2) h3O 8,11-2,70=5,41 3) h3S 5,77-2,70=3,07 4) HCl 7,04-2,70=4,34 правильно первый HF выстраиваем в порядке убывания разницы электроотрицательности более полярная связь&lt;-- HF &lt;-- h3O &lt;-- HCl &lt;-- h3S &lt;-- менее полярная связь ------------------ исходные значения взяты с <a rel="nofollow" href="https://ru.wikipedia.org/wiki/Электроотрицательность" target="_blank">https://ru.wikipedia.org/wiki/Электроотрицательность</a>

touch.otvet.mail.ru

Таблица электроотрицательности химических элементов. Химические элементы в порядке возрастания относительной электроотрицательности (X) по Полингу (Pauling)

Таблица электроотрицательности химических элементов.  Химические элементы в порядке возрастания относительной электроотрицательности (X) по Полингу (Pauling)

Электроотрицательность (X)/ Electronegativity  / по Полингу (Pauling) Наименование русский/английский Символ Атомный номер
0,79 (раньше - 0,7) Франций / Francium Fr 87
0,79 Цезий / Caesium = Cesium Cs 55
0,82 Калий / Potassium K 19
0,82 Рубидий / Rubidium Rb 37
0,89 Барий / Barium Ba 56
0,9 Радий / Radium Ra 88
0,93 Натрий / Sodium Na 11
0,95 Стронций / Strontium Sr 38
0,98 Литий / Lithium Li 3
1,0 Кальций / Calcium Ca 20
1,1 Лантан / Lanthanum La 57
1,1 Актиний / Actinium Ac 89
1,1 Иттербий / Ytterbium Yb 70
1,12 Церий / Cerium Ce 58
1,13 Празеодим / Praseodymium Pr 59
1,13 Прометей / Promethium Pm 61
1,13 Америций / Americium Am 95
1,14 Неодим / Neodymium Nd 60
1,17 Самарий / Samarium Sm 62
1,2 Гадолиний / Gadolinium Gd 64
1,22 Диспрозий / Dysprosium Dy 66
1,22 Иттрий / Yttrium Y 39
1,24 Эрбий / Erbium Er 68
1,25 Тулий / Thulium Tm 69
1,27 Лютеций / Lutetium Lu 71
1,28 Кюрий / Curium Cm 96
1,28 Плутоний / Plutonium Pu 94
1,3 Торий / Thorium Th 90
1,3 Берклий / Berkelium Bk 97
1,3 Калифорний / Californium Cf 98
1,3 Эйнштейний / Einsteinium Es 99
1,3 Фермий / Fermium Fm 100
1,3 Менделевий / Mendelevium Md 101
1,3 Нобелий / Nobelium No 102
Электроотрицательность (X)/ Electronegativity  / по Полингу (Pauling) Наименование русский/английский Символ Атомный номер
1,31 Магний / Magnesium Mg 12
1,33 Цирконий / Zirconium Zr 40
1,36 Нептуний / Neptunium Np 93
1,36 Скандий / Scandium Sc 21
1,38 Уран / Uranium U 92
1,5 Тантал / Tantalum Ta 73
1,5 Протактиний / Protactinium Pa 91
1,54 Титан / Titanium Ti 22
1,55 Марганец / Manganese Mn 25
1,57 Бериллий / Beryllium Be 4
1,6 Ниобий / Niobium Nb 41
1,61 Алюминий / Aluminum Al 13
1,62 Талий / Thallium Tl 81
1,65 Цинк / Zinc Zn 30
1,63 Ванадий / Vanadium V 23
1,66 Хром / Chromium Cr 24
1,69 Кадмий / Cadmium Cd 48
1,78 Индий / Indium In 49
1,81 Галлий / Gallium Ga 31
1,83 Железо / Iron Fe 26
1,87 Свинец / Lead Pb 82
1,88 Кобальт / Cobalt Co 27
1,9 Медь / Copper Cu 29
1,9 Рений / Rhenium Re 75
1,9 Кремний / Silicon Si 14
1,9 Технеций / Technetium Tc 43
1,91 Никель / Nickel Ni 28
1,93 Серебро / Silver Ag 47
1,96 Олово / Tin Sn 50
Электроотрицательность (X)/ Electronegativity  / по Полингу (Pauling) Наименование русский/английский Символ Атомный номер
2 Ртуть / Mercury Hg 80
2 Полоний / Polonium Po 84
2,02 Висмут / Bismuth Bi 83
2,04 Бор / Boron B 5
2,05 Сурьма / Antimony Sb 51
2,16 Молибден / Molybdenum Mo 42
2,18 Мышьяк / Arsenic As 33
2,19 Фосфор / Phosphorus P 15
2,2 Водород / Hydrogen H 1
2,2 Иридий / Iridium Ir 77
2,2 Радон / Radon Rn 86
2,2 Астат / Astatine At 85
2,2 Рутений / Ruthenium Ru 44
2,2 Палладий / Palladium Pd 46
2,2 Осмий / Osmium Os 76
2,28 Платина / Platinum Pt 78
2,28 Родий / Rhodium Rh 45
2,36 Вольфрам / Tungsten W 74
2,54 Золото / Gold Au 79
2,55 Углерод / Carbon C 6
2,55 Селен / Selenium Se 34
2,58 Сера / Sulfur S 16
2,6 Ксенон / Xenon Xe 54
2,66 Йод / Iodine I 53
2,96 Криптон / Krypton Kr 36
3,04 Азот / Nitrogen N 7
3,16 Хлор / Chlorine Cl 17
3,44 Кислород / Oxygen O 8
3,98 Фтор / Fluorine F 9

www.dpva.ru

Понятие электроотрицательности — урок. Химия, 8–9 класс.

Все известные химические элементы можно разделить на металлы и неметаллы. 

Металлы — элементы, атомы которых способны отдавать электроны.

Неметаллы  — элементы, атомы которых могут принимать электроны.

При взаимодействии металла с неметаллом атом первого теряет электроны, а атом второго их присоединяет.

 

А что происходит, если взаимодействуют атомы двух неметаллов?

 

Сравним атомы серы и кислорода:

  

O8  +8  2e, 6e;    

    

S16  +16  2e, 8e, 6e.

  

Радиус атома серы больше, валентные электроны слабее связаны с ядром. При образовании связи произойдёт сдвиг электронов от серы к кислороду.

 

Сравним атомы углерода и кислорода:

  

O8  +8  2e, 6e;        

 

C6  +6  2е, 4е.

   

Заряд ядра атома кислорода больше, и притягивать к себе электроны он будет сильнее.

 

Значит, атомы разных неметаллов притягивают к себе электроны неодинаково.

Способность атомов элементов оттягивать к себе общие электронные пары в химических соединениях называется электроотрицательностью (ЭО).

Так как общие электронные пары образуются валентными электронами, то можно сказать, что электроотрицательность — это способность атома притягивать к себе валентные электроны от других атомов.

 

Обрати внимание!

Чем больше электроотрицательность, тем сильнее у элемента выражены неметаллические свойства.

Шкала относительной электроотрицательности Полинга

Абсолютные значения ЭО — неудобные для работы числа. Поэтому обычно используют относительную электроотрицательность по шкале Полинга. За единицу в ней принята ЭО лития.

  

 

По шкале Полинга наиболее электроотрицательным среди элементов, способных образовывать соединения, является фтор, а наименее электроотрицательным — франций. ЭО франция равна \(0,7\), а ЭО  фтора — \(4\). ЭО остальных элементов изменяются в пределах от \(0,7\) до \(4\).

  

  

Как правило, неметаллы имеют ЭО больше двух. У металлов значение ЭО меньше двух. Некоторые элементы (B,Si,Ge,As,Te) со  значениями электроотрицательности, близкими к \(2\), способны проявлять промежуточные свойства.

  

  

Элементы с высокой и низкой электроотрицательностью считаются активными. С высокой — активные неметаллы, с низкой — активные металлы. У первых ЭО близка к \(3\)–\(4\), у вторых — к \(1\).

Изменение электроотрицательности в Периодической системе

С увеличением порядкового номера элементов ЭО изменяется периодически.

В периоде она растёт слева направо при накоплении электронов на внешнем слое.

В группе она убывает сверху вниз при увеличении числа электронных слоёв и увеличении атомных радиусов.

  

Наибольшей ЭО в каждом периоде обладают самые маленькие атомы с семью внешними электронами — атомы галогенов (инертные газы соединений не образуют).

 

Наименьшая ЭО в периоде у самого большого атома с одним внешним электроном — атома щелочного металла.

Обрати внимание!

Значения электроотрицательности элементов позволяют определить:

     — заряды атомов в соединении;

     — сдвиг электронов при образовании химической связи.

Установим, как происходит сдвиг электронов при взаимодействии атомов хлора и серы, cеры и кислорода.

Пример:

хлор и сера расположены в третьем периоде. Электроотрицательность по периоду возрастает слева направо. ЭО хлора больше ЭО серы, значит, электроны будут сдвинуты от серы к хлору. Заряд атома серы будет положительным, а хлора — отрицательным:

 

 Sδ&plus;→Clδ−.

 

Проверим вывод по шкале Полинга. Электроотрицательность хлора равна \(3\), а электроотрицательность серы — \(2,5\). Хлор более электроотрицательный.

Пример:

кислород и сера расположены в шестой А группе. Электроотрицательность по группе сверху вниз уменьшается. ЭО кислорода больше ЭО серы, значит, электроны будут сдвинуты от серы к кислороду. Атом серы имеет положительный заряд, а кислорода  — отрицательный:

 

 Sδ&plus;→Oδ−.

 

По шкале Полинга электроотрицательность кислорода равна \(3,5\), а электроотрицательность серы — \(2,5\). Более электроотрицательный — кислород.

При сравнении ЭО элементов часто используют ряд электроотрицательности, расположив элементы в порядке убывания её значения:

 

F,O,N,Cl,Br,S,C,P,H,Si,Mg,Li,Na.

Источники:

Габриелян О. С. Химия.  8 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. — 71с                                      

Жилин Д. М. Химия. 8 класс. Учебник для общеобразовательных учреждений. М.: Бином. Лаборатория знаний, 2011. — 245с.

www.yaklass.ru

Электроотрицательность - это... Что такое Электроотрицательность?

Эле́ктроотрица́тельность (χ) — фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары.

Современное понятие об электроотрицательности атомов было введено американским химиком Л. Полингом. Он использовал понятие электроотрицательности для объяснения того факта, что энергия гетероатомной связи A—B (A, B — символы любых химических элементов) в общем случае больше среднего геометрического значения гомоатомных связей A—A и B—B.

В настоящее время для определения электроотрицательностей атомов существует много различных методов, результаты которых хорошо согласуются друг с другом, за исключением относительно небольших различий, и во всяком случае внутренне непротиворечивы.

Первая и широко известная шкала относительных атомных электроотрицательностей Полинга охватывает значения от 0,7 для атомов франция до 4,0 для атомов фтора. Фтор — наиболее электроотрицательный элемент, за ним следует кислород (3,5) и далее азот и хлор (3,0). Активные щелочные и щёлочноземельные металлы имеют наименьшие значения электроотрицательности, лежащие в интервале 0,7—1,2, а галогены — наибольшие значения, находящиеся в интервале 4,0—2,5. Электроотрицательность типичных неметаллов находится в середине общего интервала значений и, как правило, близка к 2 или немного больше 2. Электроотрицательность водорода принята равной 2,1. Для большинства переходных металлов значения электроотрицательности лежат в интервале 1,5—2,0. Близки к 2,0 значения электроотрицательностей тяжёлых элементов главных подгрупп. Существует также несколько других шкал электроотрицательности, в основу которых положены разные свойства веществ. Но относительное расположение элементов в них примерно одинаково.

Теоретическое определение электроотрицательности было предложено американским физиком Р. Малликеном. Исходя из очевидного положения о том, что способность атома в молекуле притягивать к себе электронный заряд зависит от энергии ионизации атома и его сродства к электрону, Р. Малликен ввёл представление об электроотрицательности атома А как о средней величине энергии связи наружных электронов при ионизации валентных состояний (например, от А− до А+) и на этой основе предложил очень простое соотношение для электроотрицательности атома:

где J1A и εA — соответственно энергия ионизации атома и его сродство к электрону.

Помимо шкалы Малликена, описанной выше, существует более 20-ти различных других шкал электроотрицательности, среди которых шкала Л. Полинга (основана на энергии связи при образовании сложного вещества из простых), шкала Олреда-Рохова (основана на электростатической силе, действующей на внешний электрон) и др.

Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Электроотрицательность атома зависит от многих факторов, в частности, от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов, составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселённости, т. е. от того, занята атомная орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной. Но, несмотря на известные трудности в интерпретации и определении электроотрицательности, она всегда остаётся необходимой для качественного описания и предсказания природы связей в молекулярной системе, включая энергию связи, распределение электронного заряда и степень ионности, силовую постоянную и т. д.

В период бурного развития квантовой химии как средства описания молекулярных образований (середина и вторая половина XX века) плодотворной оказался подход Л.Полинга, который в числе прочих исследований ввел собственную шкалу электроотрицательностей, в которой из «стандартных» элементов максимальную имеет фтор (), а минимальную — цезий (). Степень ионности связи, то есть вклад структуры, при которой более электроотрицательный атом полностью «забирает» себе валентные электроны, в общую резонансную «картину», в этой теории определяется как

где  — разность электроотрицетельностей образующих связь атомов.

Одним из наиболее развитых в настоящее время подходов является подход Сандерсона. В основу этого подхода легла идея выравнивания электроотрицательностей атомов при образовании химической связи между ними. В многочисленных исследованиях были найдены зависимости между электроотрицательностями Сандерсона и важнейшими физико-химическими свойствами неорганических соединений подавляющего большинства элементов периодической таблицы.[1] Очень плодотворной оказалась и модификация метода Сандерсона, основанная на перераспределении электроотрицательности между атомами молекулы для органических соединений.[2][3][4]

Значения электроотрицательности

Группа I A II A III B IV B V B VI B VII B VIII B VIII B VIII B I B II B III A IV A V A VI A VII A VIII A
Период
1 h3,1 He 
2 Li0,98 Be1,57 B2,04 C2,55 N3,04 O3,44 F3,98 Ne 
3 Na0,99 Mg1,31 Al1,61 Si1,90 P2,19 S2,58 Cl3,16 Ar 
4 K0,82 Ca1,00 Sc1,36 Ti1,54 V1,63 Cr1,66 Mn1,55 Fe1,83 Co1,88 Ni1,91 Cu1,90 Zn1,65 Ga1,81 Ge2,01 As2,18 Se2,55 Br2,96 Kr3,00
5 Rb0,82 Sr0,95 Y1,22 Zr1,33 Nb1,6 Mo2,16 Tc1,9 Ru2,2 Rh3,28 Pd2,20 Ag1,93 Cd1,69 In1,78 Sn1,96 Sb2,05 Te2,1 I2,66 Xe2,60
6 Cs0,79 Ba0,89 Hf1,3 Ta1,5 W2,36 Re1,9 Os2,2 Ir2,20 Pt2,28 Au2,54 Hg2,00 Tl1,62 Pb2,33 Bi2,02 Po2,0 At2,2 Rn2,2
7 Fr0,7 Ra0,9 **  Rf  Db  Sg  Bh  Hs  Mt  Ds  Rg  Cn  Uut  Fl  Uup  Lv  Uus  Uuo 
Лантаноиды La1,1 Ce1,12 Pr1,13 Nd1,14 Pm1,13 Sm1,17 Eu1,2 Gd1,2 Tb1,1 Dy1,22 Ho1,23 Er1,24 Tm1,25 Yb1,1 Lu1,27
Актиноиды **  Ac1,1 Th2,3 Pa1,5 U1,38 Np1,36 Pu1,28 Am1,13 Cm1,28 Bk1,3 Cf1,3 Es1,3 Fm1,3 Md1,3 No1,3 Lr1,291

Примечания

  1. ↑ Sanderson R.T. Chemical Bonds and Bond Energy. N.Y.: Acad.Press, 1976.- 218 p.
  2. ↑ С. С. Бацанов, Структурная химия. Факты и зависимости. — М: Диалог-МГУ, 2000. — 292 с. ISBN 5-89209-597-5
  3. ↑ Н. С. Зефиров, М. А. Кирпиченок, Ф. Ф. Измайлов, М. И. Трофимов, Докл. АН СССР, 296, 1987, 883.
  4. ↑ М. И. Трофимов, Е. А. Смоленский, Известия Академии наук. Серия химическая, 2005, 2166—2176.

См. также

dic.academic.ru

Как определить электроотрицательность

Электроотрицательность - это показатель способности атома элемента притягивать к себе общие электронные пары. Давно было установлено, что в том случае, если химическая связь образована атомами разных элементов, электронная плотность всегда смещена в сторону одного из них в большей или меньшей степени. Тот атом, к которому притянута электронная плотность, в этой паре будет считаться электроотрицательным, а другой, соответственно, электроположительным.

Вам понадобится

Инструкция

completerepair.ru