Происхождение гранита, условия залегания. Гранит происхождение


описание, фото, состав, свойства, применение, месторождения камня

Гранит (с лат. granum — гранула, зерно) — широко распространенная интрузивная магматическая порода кислого состава. Эффузивным аналогом гранита является липарит. Наличие гранитного слоя является ключевым отличием континентальной земной коры от океанической. 

Физические свойства гранита

Окраска у гранитов  светлая, обусловлена в основном цветом полевых шпатов: светло-серая, желтоватая, розовая, красноватая. Строение зернистое (равномернозернистое или неравномернозернистое), причем может быть крупнозернистое, среднезернистое, мелкозернистое, тонкозернистое. Плотность 2,54-2,78 г/см3. Твердость по шкале Мооса 5-7. Прочность на сжатие достигает 300 МПа. Температура плавления 1260ºС.

Отличительные признаки. Для гранита характерно зернистое строение, большая твердость (оставляет царапину на стекле), содержание полевого шпата и кварца, светлая окраска, небольшая плотность. Гранит очень похож на сиенит и нефелиновый сиенит. Различие том, что в сиените и нефелиновом сиените кварц отсутствует; отличие от нефелинового сиенита в отсутствии нефелина.

Состав и фото гранита

Минералогический состав гранита. В основном состоит из полевого шпата 60-65%, много кварца 25-35%, в небольшом количестве присутствуют слюды 5-10%, иногда роговая обманка. Темноцветные минералы (роговая обманка, биотит) составляют примерно 5-10% породы.

В случае содержания биотита порода получает название биотитового гранита, содержания мусковита – мусковитового гранита, при содержании роговой обманки – роговообманкового гранита, если содержит роговую обманку и биотит – роговообманково-биотитового гранита и т.д.

Химический состав. SiO2 68-72%, Al2O3 15-18%, Na2O 3-6%, Fe3O4 1-5%, CaO 1,5-4%, MgO до 1,5% и др.

Разновидности: Гранит-рапакиви (гнилой камень) – гранит с крупными зернами полевых шпатов. Структура: крупнозернистая.

Гранит Гранитные камни Срез гранита-рапакиви

Происхождение гранита

Гранит — интрузивная магматическая порода. Гранитный магматизм присущ зонам сталкивания континентальных плит, где мощность континентальной земной коры возрастает. Также граниты могут образоваться за счет перекристаллизации осадочных и других пород под воздействием высокой температуры, высокого давления и химически активных веществ. Этот процесс получил название «гранитизация».

Таким образом, граниты могут иметь магматогенное происхождение и могут образовываться за счет гранитизации. Формы залегания: большей частью батолиты, штоки, лакколиты, реже дайки значительной мощности. Формы отдельности: плитняковая, матрацевидная.

Применение гранита

Гранит применяется как строительный и облицовочный материал. Из гранита изготавливают блоки, плиты, карнизы, бордюры, детали различных машин и агрегатов для целлюлозно-бумажной, пищевой (крахмально-паточной), станкостроительной, металлургической и фарфоро-фаянсовой промышленности. Так как гранит, в отличие от металла, не поддаётся воздействию кислот и солей, не боится влаги.

Из него изготовляют жернова и вальцы для мельниц. Гранитные плитки – материал для изготовления оснований точных приборов. Гранитный щебень важный материал для изготовления железобетонных изделий и конструкций, гранитные блоки – для декоративного оформления зданий. Из гранита делают памятники, столешницы, лестницы, брусчатку.

В горной системе Блэк-Хилс, в горе Рашмор, сложенной гранитами в честь 150-летия истории США высечен всемирно известный барельеф с портретами четырёх президентов.

Портреты президентов США в гранитах горы Рашмор: Джордж Вашингтон, Томас Джефферсон, Теодор Рузвельт, Авраам Линкольн

Месторождения гранита

Месторождения гранитов имеются на каждом материке нашей планеты. Наиболее крупные месторождения гранитов имеются в местах выхода кристаллического фундамента на поверхность в Карелии: Купецкое, Дугорецкое. Крупнейшим в Европе является Шкурлатское месторождение в Воронежской области (близ города Павловска). Гранит-рапакиви более 100 лет добывается в Ленинградской области на карьере «Возрождение».

На Урале гранит добывается на Мансуровском, Южно-Султаевском, Головыринском месторождениях.  Серые и розовые граниты встречаются на Кавказе (Кабардино-Балкария) и в Якутии (Талое).

Граниты кирпично-красного цвета добывают на Верхне-Чебулинском месторождении Кемеровской области, бежевого цвета на Удаловском месторождении республики Алтай. Крупнозернистая порода розовато-оранжевого оттенка найдена на Ушканском месторождении Красноярского края. Высоко декоративный амазонитовый голубовато-зеленый гранит добывается на двух месторождениях Читинской области: Чалотуйском и Этыкинском.

Крупные месторождения гранита известны на Скандинавском полуострове (связаны с выходами кристаллического фундамента на поверхность) и США.

www.geolib.net

Происхождение гранита

 

Гранит (итал. granito, от лат. granum — зерно), магматическая горная порода, богатая кремнезёмом. Одна из самых распространённых пород в земной коре. Состоит из калиевого полевого шпата (ортоклаза, микроклина), кислого плагиоклаза (альбита, олигоклаза), кварца, а также слюды (биотита или мусковита), амфибола и редко пироксена. Структура гранита обычно полнокристаллическая, нередко порфировидная и гнейсовидно-полосчатая. Гранит преобладает среди интрузивных пород и занимает существенное место в геологическом строении Урала, Кавказа, Украины, Карелии, Кольского полуострова, Средней Азии, Сибири и др. Гранитные интрузии имеют возраст от архея до кайнозоя. Обычно граниты залегают среди горных пород в форме батолитов, лакколитов, штоков, жил и др. В процессе формирования гранитных тел и их охлаждения возникает закономерная система трещин, благодаря которой гранит в естественных обнажениях имеют характерную параллелепипедальную, столбчатую или пластообразную отдельность.

История камня

В конце XVIII века ученые всерьез полагали, что граниты образовались путем осаждения кристаллов на дне океана, заполненного морской водой. Эта гипотеза поддерживалась научной школой нептунистов, которую возглавлял немецкий геолог А.Г. Вернер (1749-1817). Однако уже в начале XIX века ошибочность такой интерпретации стала очевидной, и она уступила место концепции плутонистов, которые привели убедительные доказательства в пользу того, что граниты возникли в результате охлаждения и затвердевания силикатных расплавов - магм, поднимавшихся из глубин Земли. Первым сформулировал эту идею англичанин Дж. Геттон (1726-1797).  В середине XX века происхождение гранитов стало предметом новой дискуссии. В качестве альтернативы представлений о магматической природе этих пород была высказана идея о возможности формирования гранитов путем преобразования (трансформации) пород иного состава при их взаимодействии с горячими водными растворами, которые приносят компоненты, необходимые для создания гранита, и выносят (растворяют) "лишние" химические элементы. Идея гранитизации земной коры под влиянием горячих растворов продолжает развиваться и в наши дни.

Ранние дискуссии о природе гранитов происходили в то время, когда состав и условия залегания этих пород были известны лишь в общих чертах, а физико-химические процессы, которые могли привести к их образованию, оставались неисследованными. Во второй половине XX века ситуация коренным образом изменилась. К тому времени был накоплен большой объем информации о положении гранитов в земной коре, подробно изучен состав этих пород. Споры о возможном происхождении гранитов с позиций здравого смысла уступили место строгим термодинамическим расчетам и прямым экспериментам, воспроизводящим зарождение гранитных магм и их последующую кристализацию. Естественно, при этом возникли новые проблемы, однако уровень научной дискуссии стал совершенно иным.

Автором одной из первых гипотез о происхождении гранитов стал Боуэн. На основании экспериментов и наблюдений за природными объектами он установил, что кристаллизация базальтовой магмы происходит по ряду законов. Минералы в ней кристаллизуются в такой последовательности (ряд Боуэна), что расплав непрерывно обогащается кремнием, натрием, калием и другими легкоплавкими компонентами. Поэтому Боуэн предположил, что граниты могут являться последними диференциатами базальтовых расплавов.

Общие сведения о граните

Термин "гранит" отражает зернистое строение породы, хорошо заметное невооруженным глазом (от лат. granum - зерно). В древности этим словом называли любые крупнозернистые горные породы. В современной геологической литературе термин "гранит" употребляется в более узком смысле. Им обозначают полнокристаллические горные породы, которые состоят из Ca-Na и K-Na полевых шпатов (CaAl2Si2O8-NaAlSi3O8 и KAlSi3O8-NaAlSi3O8), кварца (SiO2) и некоторого количества Fe-Mg силикатов, чаще всего это темная слюда - биотит: K(Mg, Fe, Al)3(Al, Si)4O10(OH, F)2. Полевые шпаты в сумме составляют около 60% объема породы, кварц - не менее 30%, а Fe-Mg силикаты - до 10%. Для валового химического состава гранитов характерно высокое содержание кремнезема (SiO2), которое колеблется от 68-69 до 77-78 мас.%. Кроме того, граниты содержат 12-17 мас.% Al2O3, 7-11 мас.% суммы CaO + Na2O + K2O и до нескольких массовых процентов суммы Fe2O3 + FeO + MgO [1, 2]. Размер минеральных зерен в гранитах обычно варьирует от 1 до 10 мм. Отдельные кристаллы розового K-Na полевого шпата нередко достигают нескольких сантиметров в поперечнике и хорошо видны на поверхности полированных гранитных плит.

Фото: Alan Levine

Условия залегания гранитов

Граниты - породы, характерные для верхней части континентальной земной коры. Они неизвестны на дне океанов, хотя на некоторых океанических островах, например в Исландии, распространены довольно широко. Граниты формировались на протяжении всей геологической истории континентов. По данным изотопной геохронологии, самые древние породы гранитного состава датируются 3,8 млрд лет, а самые молодые граниты имеют возраст 1-2 млн лет.

Кварц-полевошпатовые гранитные породы образуют тела, которые первоначально не выходили на дневную поверхность. По геологическим данным, верхние контакты гранитных тел в момент образования располагались на глубине от нескольких сот метров до 10-15 км. В настоящее время граниты обнажены благодаря последующему подъему и размыву пород кровли. Согласно статистическим подсчетам, граниты составляют около 77% объема всех магматических тел, затвердевших на глубине в верхней части континентальной земной коры.

Различают перемещенные и неперемещенные гранитные тела. Перемещенные граниты возникли в результате внедрения гранитной магмы и последующего затвердевания магматического расплава на той или иной глубине. Форма тел, сложенных перемещенными гранитами, весьма разнообразна - от небольших жил толщиной 1-10 м до крупных плутонов, занимающих сотни квадратных километров по площади и нередко сливающихся в протяженные плутонические пояса. Наряду с относительно тонкими гранитными пластинами (< 1-2 км по вертикали) известны плутоны, уходящие на глубину нескольких километров. Например, Эльджуртинский плутон на Северном Кавказе пересечен четырехкилометровой скважиной, которая не достигла нижнего контакта гранитов. В Береговом хребте Перу в Южной Америке граниты обнажены в интервале более 4 км и уходят на неизвестную пока глубину.

Главные доказательства магматического  перемещенных гранитов  сводятся к следующему. Во-первых, формирование гранитных тел сопровождается локальными деформациями окружающих пород, которые указывают на активное внедрение гранитного расплава. Во-вторых, вблизи контактов с гранитами вмещающие породы испытали преобразования, вызванные нагревом. Судя по минеральным ассоциациям, возникшим в ходе этого процесса, начальная температура гранитных тел была выше температуры затвердевания гранитной магмы, которая, следовательно, была внедрена в жидком состоянии. Наконец, и в настоящее время происходят вулканические извержения, выносящие к поверхности магмы гранитного состава.

В отличие от перемещенных гранитов, которые затвердевали значительно выше области своего зарождения, неперемещенные граниты кристаллизовались примерно на том самом месте, где возникли. Если перемещенные граниты - это обычно однородные породы, заполняющие те или иные объемы, то неперемещенные граниты чаще встречаются в виде полос, линз, пятен, измеряемых миллиметрами и сантиметрами в поперечнике, которые перемежаются с породами иного состава. Подобные образования называют мигматитами (от греч. мигма - смесь). Явные признаки активного механического внедрения гранитного материала в мигматитах отсутствуют; часто складывается впечатление, что этот материал пассивно замещает исходный субстрат. Отсюда и возникли представления о гранитизации тех или иных участков земной коры. Мигматиты формировались на глубине 5-7 км и более. Преобладающая их часть была образована в докембрийское время более 600 млн лет назад; возраст многих мигматитов измеряется миллиардами лет.

Мигматиты и более крупные тела древних неперемещенных гранитов часто рассматривают как затвердевшие зоны генерации гранитной магмы, выведенные на современную дневную поверхность в результате последующего подъема земной коры. Поскольку глубоко размытые мигматитовые комплексы обнажены в одних местах, а менее глубинные перемещенные граниты - в других, проследить прямые соотношения между ними не удается.

Гранитные магмы общий термин, используемый для описания магмы, близкой по составу к граниту, то есть, содержащие более 10% из кварца. Граниты связаны с вулканическими областями, континентальных щитов и орогенных поясов. Существует, две возможных теории происхождения гранита. Одна из них, известная как магматических теория гласит, что гранит является производным от дифференциации гранитной магмы. Вторая, известная как теория гранитизации гласит, что гранит образуется "на месте" в результате ультраметаморфизма. Существуют свидетельства, о правильности этих теорий и современным пониманием является то, что гранит рождается в результате обоих процессов, а во многих случаях, от сочетания двух.

Состав источников гранитных магм

Количественные соотношения между кварцем и полевыми шпатами в гранитах зависят от нескольких переменных, в том числе от давления. Учитывая теоретически рассчитанные и экспериментально подтвержденные зависимости, было установлено, что источники гранитных магм, отвечающих по составу реально наблюдаемым породам, расположены в континентальной земной коре на глубине от 10-15 до 30-40 км, где литостатическое давление равно 300-1000 МПа.

Формирование низкокалиевых существенно плагиоклазовых гранитов связывают с частичным плавлением менее кремнекислых кварц-плагиоклаз-амфиболовых магматических пород, залегающих в нижней части континентальной земной коры. Сами эти породы были когда-то выплавлены из вещества верхней мантии Земли, залегающей на глубине более 40 км. Реакции плавления, приводящие к образованию гранитов, сводятся к дегидратации амфибола при нагревании корового вещества и переходу в расплав кварца и части плагиоклаза. Возможность получения низкокалиевых гранитных магм таким способом доказана многочисленными экспериментами. Показано, что к аналогичному результату приводит и частичное плавление кварц-гранат-пироксеновых пород, устойчивых в зонах более высокого давления. Модель хорошо согласуется с геохимическими особенностями низкокалиевых гранитов и начальным изотопным составом Pb, Sr, Nd, который соответствует изотопным меткам мантийного вещества. Вслед за И.В. Бельковым и И.Д. Батиевой, низкокалиевые граниты можно обозначить как первичнокоровые (сокращенно Р-граниты от английского термина "primary crustal granites"). Во все эпохи гранитообразования эти граниты появляются первыми и увеличивают объем гранитного вещества в земной коре. К этой генетической группе относятся и самые древние гранитные породы с возрастом около 3,8 млрд лет.

Низкокалиевые Р-граниты, образованные на ранних стадиях геологической истории, занимают значительную часть континентальной земной коры и позднее неоднократно испытывали различные преобразования, в том числе и повторное плавление. В результате возникали разнообразные по составу граниты, которые в классификации австралийских петрологов Б. Чаппелла и А. Уайта выделены как I-граниты (igneous granites). Термин подчеркивает магматогенную природу корового вещества, вовлеченного в частичное плавление.

I-гранитам противопоставляются S-граниты (sedimentary granites), источником которых, по Чаппеллу и Уайту, служат метаморфизованные (преобразованные в условиях высоких температур и давлений) осадочные кварц-полевошпатовые породы. В отличие от умеренно глиноземистых I-гранитов с не очень высокими содержаниями калия S-граниты богаты калием и пересыщены глиноземом, то есть (2Ca + Na + K) < Al, в них много слюды и часто содержатся высокоглиноземистые минералы. S-граниты лишены магнетита, что указывает на восстановительные условия зарождения и кристаллизации гранитных магм. Это обусловлено обогащением метаморфизованных осадочных пород графитом. Расплавы, затвердевающие в виде S-гранитов, обогащены водой и имеют относительно низкую начальную температуру. Они затвердевают на довольно большой глубине и, как правило, не имеют вулканических аналогов.

В качестве особой генетической группы выделяют также А-граниты (alkaline, anhydrous, anorogenic granites). Эти породы обогащены щелочными металлами (Na и K) и содержат относительно мало алюминия так, что нередко (2Ca + Na + K) > Al. Судя по составу минералов, расплавы были бедны водой, но обогащены фтором. Если I- и S-граниты распространены в подвижных геологических поясах, то А-граниты тяготеют к стабильным блокам земной коры. Источниками А-гранитов служат кварц-полевошпатовые породы земной коры, испытавшие преобразования под воздействием глубинных щелочных растворов. Возможно, эти породы первоначально представляли собой "сухие" твердые остатки от предшествующих эпизодов частичного плавления; значительная часть воды была удалена с ранними порциями гранитного расплава.

Рис. 1. Составы природных гранитов по О. Таттлу и Н. Боуэну, 1958. На диаграмме отражена плотность распределения точек, характеризующих составы гранитов. Внутренняя темная область соответствует максимуму плотности.



biofile.ru

из каких минералов состоит порода

Гранит — это камень, имеющий природное происхождение. Он добывается во многих местах нашей планеты и есть вероятность, что его нет на других планетах Солнечной системы. Поэтому именно гранит в разных источниках называется «визитной карточкой Земли». Это одна из самых прочных пород в мире. В состав гранита входит большинство известных минералов: полевой шпат, кварц, а также слюдяные образования, имеющие различное происхождение.

Гранит — это минерал или горная порода? Такой вопрос часто задают люди, которые только начинают интересоваться геологией и минералогией. По своей сути — это горная порода. Как уже было сказано, он включает в себя разные минералы, и состав его неоднороден, в отличие от минералов (например, кварц, аметист, хризолит), которые однородны и по структуре, и по цвету.

Горная порода гранит распространена в нашей жизни повсеместно: в виде железнодорожных насыпей, надгробных памятников, облицовок стен, уличных элементов декорированных украшений. Гранитные изделия давно представляются людям самыми обычными и примелькавшимися взгляду. Часто мы просто проходим мимо, не заостряя внимания на том, каким разным может быть этот удивительный камень. Желающие могут познакомиться с ним поближе: ведь мало кто задумывается о том, из чего состоит гранит и какова история его возникновения.

Как возник гранит

Принято считать, что имеется два естественных способа, с помощью которых образовывался этот природный камень. Он мог возникнуть из расплавившейся магмы (застывшей вулканической лавы). В глубине земной коры магма медленно остывает, превращается в окаменелую структуру, в которой миллионы лет кристаллизуются зерна породы гранит, имеющие разную величину. Не случайно само название его происходит от латинского слова «granum», что означает «зерно».

Натуральный камень гранит образуется в природе и другим способом. Осадочная горная порода, а также глиновидный песок и разнопородные камни постепенно смещались путем тектонических процессов в глубины земной коры. Там, под действием высоких температур и давления, вещества расплавлялись и возникал такой процесс, как гранитизация.

Больше всего образование гранита происходит в так называемых местах коллизии. Две континентальные плиты сталкиваются друг с другом, из-за чего возникает увеличение слоя коры на континенте. Многие ученые полагают, что именно в результате утолщения коллизионных слоев коры появляются слои расплава гранита — на глубине от 10 до 20 км. Это явление получило название гранитного магматизма. Оно наиболее характерно для Андских батолитов, а также для островных дуг.

Где находятся гранитные месторождения

Основное место, где залегает гранит — это горные массивы-батолиты, протяженность которых составляет около 4 км, а площадь — несколько гектаров. Иногда при добыче видно, что образовалось несколько слоев камня: гранит и его осадочная порода. Сам камень выглядит в виде широких пластов, чередующихся с представителями осадочных и метаморфических видов.

Как и другие полезные ископаемые, которые не являются большой редкостью, гранит получил распространение практически везде: его можно обнаружить на любом материке. Благодаря тому, что в течение миллионов лет древние горные породы постепенно вытесняли наверх более молодые образования, он вышел на поверхность и стал доступен для добычи. Подробнее о том, где добывают гранит →

Химико-минералогический состав

Как уже было сказано, гранит представляет собой камень, имеющий зернистую структуру в форме кристаллов. Химическая формула гранита представлена такими базовыми элементами, как железо, кальций, магний и разнообразные щелочи.

Главные его составляющие — это кварц, минералы темноцветной формации и полевой шпат. Шпат обеспечивает те или иные оттенки, а если в камне много полупрозрачного зерна, значит, в его состав входит много кварца.

В зависимости от того, какие породы входят в тот или иной камень, минералогический состав гранита может быть разным. Например, если в нем преобладает плагиоклаз, а полевого шпата мало, он называется плагигранит. Если же в камне, напротив, полевого шпата больше, а темноцветов меньше — это аляскит.

Химический состав породы имеет такую схему:

В зависимости от того, какие полевые шпаты входят в состав камня, будет изменяться и его цвет. Самым распространенным является серый, на котором могут появляться разные оттенки: голубой, розоватый, красный, реже — зеленоватый. Окраска также зависит и от того, что входит в состав гранита из темноцветных минералов. Если искателям попадается порода, состоящая из биотита или роговой обманки, камень будет окрашен в темные тона. Существует довольно редкий вид, называемый янцевским, который имеет ярко выраженный оттенок зеленоватого цвета.

Свойства

Гранит — это горная порода, которая отличается завидной прочностью, поэтому именно она применяется в сфере строительства с давних времен. Камень служит очень долго, стоек к дождям и ветрам, способен выдерживать любые климатические условия. Мало кому известно о том, что пирамиды в Египте частично выполнены из гранитных блоков. Именно из этого камня были построены многие сооружения в Индии и древнем Риме. Обрабатывается и полируется он довольно легко, а степень полировки можно довести до того, что поверхность плиты даже станет зеркальной.

По сравнению с мрамором, этот материал прочнее в два раза по причине того, что в состав гранита входит кварц. Во время обработки применяются алмазные сверла. Известно, что, несмотря на свою красоту и великолепие, мрамор очень чувствителен к температурным перепадам, чего о граните не скажешь: он прекрасно сохраняет свои показатели эксплуатации в самых суровых условиях. Благодаря своей прочной структуре, камень подвержен поражению грибком гораздо меньше, чем другие материалы. О сходстве и различиях гранита и мрамора читайте здесь →

Уровень поглощения влаги у породы низкая: в этом ключевую роль играет мелкозернистая структура гранита. Если она более плотная — речь идет о породе с самыми лучшими свойствами. Они зависят от происхождения гранита. Происхождение камня, в свою очередь, определяет глубина его залегания, она влияет на его плотность и прочность.

То, что гранит относится к самым прочным материалам, а его эксплуатационные свойства всегда находятся на должной высоте, во многом обеспечивается тем, что он почти не вбирает в себя влагу. Именно это стало главной причиной использования камня для оформления набережных. Кстати, подавляющее большинство гранитных берегов Невы была построена еще при Петре I, что лишний раз подтверждает долговечность гранита.

Геохимическая классификация гранитоидов Уайта и Чаппела

Для удобства обозначения того или иного вида гранитного камня в середине 70-х годов прошлого столетия был сделан краткий анализ гранитоидов на основании их самых распространенных типов.

В этом анализе было выделено четыре типа камня — S, I, M, A:

Химический состав гранита S по большинству элементов близок к гранитоидам I при различиях в том, что камни S содержат мало кальция и натрия. В дальнейшем классификации появилась разновидность гранита типа А, отличающаяся по составу от камней субщелочного типа и состоящая из большого количества некогерентных химических элементов.

Классификация гранитоидов по структуре зерна

Размер и строение зерен у разных видов камня отличается друг от друга.

На основании этого гранит бывает следующих видов:

Камень мелкозернистой разновидности будет иметь самый высокий уровень противостояния механическим повреждениям. Для него характерно более равномерное истирание со временем, устойчивость к ветрам и высоким температурам. Мелкозернистая фракция — всегда самая дорогостоящая. Она практически не вбирает в себя воду и при этом отличается высокой устойчивостью к пожарам.

При строительстве домов нередко используется крупнозернистый вид гранита. Он более дешевый, поэтому после пожаров часто можно увидеть лестницы из гранита, которые растрескались и больше непригодны к использованию.

Названия гранита, исходя из минерального состава

В зависимости от того, каков основной минеральный состав гранита, называются различные виды камней по-разному:

Разновидности гранита на основании его структуры

Структура зерен камня также бывает разной.

Ниже представлены основные виды гранита, названные, исходя именно из структуры его зерен:

  1. Порфировидный — характеризуется ярко выделяющимися длинноватыми вставками. Они отличаются от основной массы камня тем, что выступают из нее. Это кварц, ортоклаз, микроклин.
  2. Гранит пегматоидный — отличается симметричным и равномерным уровнем зернистости.
  3. Рапакиви — финский вид камня с округлыми вставками (красными с серым или серо-зеленым обрамлением).
  4. Гнейсовидный — самый обычный камень, имеющий мелкозернистую структуру.

Конечно, человеку, который впервые сталкивается с тем, что разновидностей гранита очень много, бывает непросто разобраться в том, какой из них является самым лучшим. Все зависит от того, с какой целью планируется применить этот материал. Вариантов применения очень много, а качество и надежность гранита значительно выше, чем у более популярного мрамора.

Известно, что мрамор быстро темнеет и портится под влиянием перепадов температур и высокой влажности, а гранит будет стоять очень долгое время, не меняя ни структуры, ни исходного цвета камня. К тому же, для любителей белого камня есть особые породы гранита, которые, при проведении должной обработки, неотличимы от мрамора на первый взгляд.

Благодаря прекрасным эксплуатационным характеристикам гранита, зарекомендовавшим себя в течение многих столетий, всегда имеется возможность использовать его в качестве надежного строительного материала, а также для выполнения элементов декора. Поскольку любое изделие из этого камня неприхотливо в использовании, особенного ухода этот камень не требует. Он выстоит перед любой непогодой и будет служить веками.

Единственный минус гранита — то, что среди стройматериалов он обладает наибольшим весом, что непременно должно быть учтено при проектировании мостов, монолитных домов и иных крупногабаритных сооружений.

kamen.expert

Гранит — wiki.web.ru

Грани́т (granito, от granum — зерно) — кислая плутоническая горная порода нормального ряда из семейства гранитов. Состоит из кварца, плагиоклаза калиевого полевого шпата и слюд — биотита и/или мусковита. Граниты очень широко распространены в континентальной земной коре. Эффузивные аналоги гранитов — риолиты

Минеральный состав

Разновидности гранитов

По структурно-текстурным особенностям выделяют следующие разновидности:

По содержанию темноцветных минералов выделяют следующие разновидности гранита:

По разновидностям калиевого полевого шпата выделяются разновидности:

Проблема происхождения гранитов

Граниты играют огромную роль в строении верхних оболочек Земли. Но в отличие от магматических пород основного состава (габбро, базальт, анортозит, норит, троктолит), аналоги которых распространены на Луне и планетах земной группы, граниты встречаются только на нашей планете и пока не установлены среди метеоритов или на других планетах солнечной системы. Среди геологов существует выражение «Гранит — визитная карточка Земли».

С другой стороны, есть веские основания полагать, что Земля возникла из такого же вещества, что и другие планеты земной группы. Первичный состав Земли реконструируется как близкий составу хондритов. Из таких пород могут выплавляться базальты, но никак не граниты.

Эти факты привели первых же петрологов к постановке проблемы происхождения гранитов, проблемы, привлекавшей внимание геологов много лет, но и до сих пор далёкой от полного решения.

Автором одной из первых гипотез о происхождении гранитов стал Боуэн — отец экспериментальной петрологии. На основании экспериментов и наблюдений за природными объектами он установил, что кристаллизация базальтовой магмы проиходит по ряду законов. Минералы в ней кристаллизуются в такой последовательности (ряд Боуэна), что расплав непрерывно обогащается кремнием, натрием, калием и другими легкоплавкими компонентами. Поэтому Боуэн предположил, что граниты могут являться последними дифференциатами базальтовых расплавов.

Геохимические классификации гранитов

Широко известной за рубежом является классификация Чаппела и Уайта, продолженная и дополненная Коллинзом и Валеном. В ней выделяется 4 типа гранитоидов: S-, I-, M-, A-граниты. В 1974 г. Чаппел и Уайт ввели понятия о S- и I-гранитах, основываясь на том, что состав гранитов отражает материал их источника. Последующие классификации также в основном придерживаются этого принципа.

Различие в составе источников S- и I-гранитов устанавливаются по их геохимии, минералогии и составу включений. Различие источников предполагает и различие уровней генерации расплавов: S — супракрустальный верхнекоровый уровень, I — инфракрустальный более глубинный и не редко более мафический. В геохимическом отношении S- и I-граниты имеют близкие содержания большинства петрогненных и редких элементов, но есть и существенные различия. S -граниты относительно обеднены CaO, Na2O, Sr, но имеют более высокие концентрации K2O и Rb, чем I-граниты. Эти различия обусловлены тем, что источник S-гранитов прошёл стадию выветривания и осадочной дифференциации. К M типу относятся граниты, являющиеся конечным дифференциатом толеит-базальтовой магмы или продуктом плавления метатолеитового источника. Они широко известны под названием океанических плагиогранитов и характерны для современных зон СОХ и древних офиолитов. Понятие А-гранитов было введено Эби. Им показано, что они варьируют по составу от субщелочных кварцевых сиенитов до щелочных гранитов с щелочными темноцветами, резко обогащены некогерентными элементами, особенно HFSE. По условиям образования могут быть разделены на две группы. Первая, характерная для океанических островов и континентальных рифтов, представляет собой продукт дифференциации щелочно-базальтовой магмы. Вторая, включает внутриплитные плутоны, не связанные непосредственно с рифтогенезом, а приуроченные к горячим точкам. Происхождение этой группы связывают с плавлением нижних частей континентальной коры под влиянием дополнительного источника тепла. Экспериментально показано, что при плавлении тоналитовых гнейсов при Р=10 кбар образуется обогащенный фтором расплав по петрогенным компонентам сходный с А-гранитами и гранулитовый (пироксенсодержащий) рестит.

Геодинамические обстановки гранитного магматизма

Наибольшие объёмы гранитов образуются в зонах коллизии, где сталкиваются две континетальные плиты и происходит утолщение континентальной коры. По мнению некоторых исследователей, в утолщённой коллизионной коре образуется целый слой гранитного расплава на уровне средней коры (глубина 10 — 20км). Кроме того, гранитный магматизм характерен для активных континентальных окраин (Андские батолиты), и, в меньшей степени, для островных дуг.

В очень малых объёмах граниты образуются в срединно-океанических хребтах, о чём свидетельствует наличие обособлений плагиогранитов в офиолитовых комплексах.

Нерешенные проблемы гранитообразования

Изменения

При выветривании гранитов из полевых шпатов образуется каолин и другие глинистые минералы, кварц обычно остаётся неизменным, а слюды желтеют и часто называются «кошачьим золотом».

Необычный орбикулярный гранит из Финляндии. Коллекция музея геологии докембрия Института геологии Карельского филиала АН. Фото Д.Тонкачеева

Граниты и полезные ископаемые

С гранитами связаны месторождения Sn, W, Mo, Li, Be, B, Rb, Bi, Ta, Au Эти элементы концентрируются в поздних порциях гранитного расплава и в постмагматическом флюиде. Поэтому их месторождения связаны с апогранитами, пегматитами, грейзенами и скарнами. Для скарнов также характерны месторождения Сu, Fe, Au.

Применение

Гранит является одной из самых плотных, твердых и прочных пород. Используется в строительстве в качестве облицовочного материала. Кроме того, гранит имеет низкое водопоглощение и высокую устойчивость к морозу и загрязнениям. Вот почему он оптимален для мощения как внутри помещения, так и снаружи. В интерьере гранит применяется также для отделки стен, лестниц, создания столешниц и колонн.

Ссылки

wiki.web.ru

Гранит - это... Что такое Гранит?

Гранит

Грани́т (итал. granito, от лат. granum — зерно) — кислая магматическая интрузивная горная порода. Состоит из кварца, плагиоклаза, калиевого полевого шпата и слюд — биотита и/или мусковита. Граниты очень широко распространены в континентальной земной коре. Эффузивные аналоги гранитов — риолиты. Плотность гранита — 2600 кг/м³, прочность на сжатие до 300 МПа.

Цвет - серо-розовый, чёрный, жёлто-серый.

Минеральный состав

Проблема происхождения гранитов

Гранитные скалы.

Граниты играют огромную роль в строении коры континентов Земли. Но в отличие от магматических пород основного состава (габбро, базальт, анортозит, норит, троктолит), аналоги которых распространены на Луне и планетах земной группы, о существовании гранитов на других планетах солнечной системы имеются лишь косвенные признаки. Так имеются косвенные признаки существования гранитов на Венере.[1] Среди геологов существует выражение «Гранит — визитная карточка Земли».

С другой стороны, есть веские основания полагать, что Земля возникла из такого же вещества, что и другие планеты земной группы. Первичный состав Земли реконструируется как близкий составу хондритов. Из таких пород могут выплавляться базальты, но никак не граниты.

Эти факты привели первых же петрологов к постановке проблемы происхождения гранитов, проблемы, привлекавшей внимание геологов много лет, но и до сих пор далёкой от полного решения.

Автором одной из первых гипотез о происхождении гранитов стал Н. Боуэн — отец экспериментальной петрологии. На основании экспериментов и наблюдений за природными объектами он установил, что кристаллизация базальтовой магмы происходит по ряду законов. Минералы в ней кристаллизуются в такой последовательности (ряд Боуэна), что расплав непрерывно обогащается кремнием, натрием, калием и другими легкоплавкими компонентами. Поэтому Боуэн предположил, что граниты могут являться последними дифференциатами базальтовых расплавов.

Разновидности гранитов

По особенностям минерального состава среди гранитов выделяются следующие разновидности:

По структурно-текстурным особенностям выделяют следующие разновидности:

Геохимические классификации гранитов

Широко известной за рубежом является классификация Чаппела и Уайта, продолженная и дополненная Коллинзом и Валеном. В ней выделяется 4 типа гранитоидов: S-, I-, M-, A-граниты. В 1974 г. Чаппел и Уайт ввели понятия о S- и I-гранитах, основываясь на том, что состав гранитов отражает материал их источника. Последующие классификации также в основном придерживаются этого принципа.

Различие в составе источников S- и I-гранитов устанавливаются по их геохимии, минералогии и составу включений. Различие источников предполагает и различие уровней генерации расплавов: S — супракрустальный верхнекоровый уровень, I — инфракрустальный более глубинный и нередко более мафический. В геохимическом отношении S- и I-граниты имеют близкие содержания большинства петрогненных и редких элементов, но есть и существенные различия. S -граниты относительно обеднены CaO, Na2O, Sr, но имеют более высокие концентрации K2O и Rb, чем I-граниты. Эти различия обусловлены тем, что источник S-гранитов прошёл стадию выветривания и осадочной дифференциации. К M типу относятся граниты, являющиеся конечным дифференциатом толеит-базальтовой магмы или продуктом плавления метатолеитового источника. Они широко известны под названием океанических плагиогранитов и характерны для современных зон СОХ и древних офиолитов. Понятие А-гранитов было введено Эби. Им показано, что они варьируют по составу от субщелочных кварцевых сиенитов до щелочных гранитов с щелочными темноцветами, резко обогащены некогерентными элементами, особенно HFSE. По условиям образования могут быть разделены на две группы. Первая, характерная для океанических островов и континентальных рифтов, представляет собой продукт дифференциации щелочно-базальтовой магмы. Вторая, включает внутриплитные плутоны, не связанные непосредственно с рифтогенезом, а приуроченные к горячим точкам. Происхождение этой группы связывают с плавлением нижних частей континентальной коры под влиянием дополнительного источника тепла. Экспериментально показано, что при плавлении тоналитовых гнейсов при Р=10 кбар образуется обогащенный фтором расплав по петрогенным компонентам сходный с А-гранитами и гранулитовый (пироксенсодержащий) рестит.

Геодинамические обстановки гранитного магматизма

Наибольшие объёмы гранитов образуются в зонах коллизии, где сталкиваются две континентальные плиты и происходит утолщение континентальной коры. По мнению некоторых исследователей, в утолщённой коллизионной коре образуется целый слой гранитного расплава на уровне средней коры (глубина 10—20 км). Кроме того, гранитный магматизм характерен для активных континентальных окраин (Андские батолиты), и, в меньшей степени, для островных дуг.

В очень малых объёмах граниты образуются в срединно-океанических хребтах, о чём свидетельствует наличие обособлений плагиогранитов в офиолитовых комплексах.

Изменения

Древнеегипетский саркофаг из гранита. Станковая скульптура из красного гранита. Автор П.А. Фишман

При выветривании гранитов из полевых шпатов образуется каолин и другие глинистые минералы, кварц обычно остаётся неизменным, а слюды желтеют и часто называются «кошачьим золотом».

Граниты и полезные ископаемые

С гранитами связаны месторождения Sn, W, Mo, Li, Be, B, Rb, Bi, Ta, Au Эти элементы концентрируются в поздних порциях гранитного расплава и в постмагматическом флюиде. Поэтому их месторождения связаны с апогранитами, пегматитами, грейзенами и скарнами. Для скарнов также характерны месторождения Cu, Fe, Au.

Применение

Гранит является одной из самых плотных, твёрдых и прочных пород. Используется в строительстве в качестве облицовочного материала. Кроме того, гранит имеет низкое водопоглощение и высокую устойчивость к морозу и загрязнениям. Вот почему он оптимален для мощения как внутри помещения, так и снаружи. Однако стоит помнить, что такое помещение будет иметь несколько более высокий радиационный фон[2][3], в связи с чем не рекомендуется облицовывать некоторыми видами гранита жилые помещения. Более того, некоторые виды гранита рассматриваются как перспективное сырье для добычи природного урана. В интерьере гранит применяется также для отделки стен, лестниц, создания столешниц и колонн, украшение лестничных маршей балясинами из гранита, создания вазонов, облицовки каминов и фонтанов. Используется для изготовления памятников и на гранитный щебень.

Примечания

Также используется в раклетницах для приготовления пищи.

http://www.raclettecorner.com/swissmar-raclette-kf-77081

Ссылки

dic.academic.ru

Гранит — Википедия

Грани́т (от лат. granum — зерно) — магматическая плутоническая горная порода кислого состава нормального ряда щёлочности из семейства гранитов. Состоит из кварца, плагиоклаза, калиевого полевого шпата и слюд — биотита и/или мусковита. Граниты очень широко распространены в континентальной земной коре. Эффузивные аналоги гранитов — риолиты. Плотность гранита — 2600 кг/м³, прочность на сжатие до 300 МПа Температура плавления 1215—1260 °C[1]; при присутствии воды и давления температура плавления значительно снижается — до 650 °C. Граниты являются наиболее важными породами земной коры. Они широко распространены, слагают основание большей части всех континентов и могут формироваться различными путями[2].

Минеральный состав

Средний химический состав: SiO2 68-73 %; Al2O3 12,0-15,5 %; Na2O 3,0-6,0 %; CaO 1,5-4,0 %; FeO 0,5-3,0 %; Fe2O3 0,5-2,5 %; К2О 0,5-3,0 %; MgO 0,1-1,5 %; ТіO2 0,1-0,6 %.[3]

Видео по теме

Разновидности гранитов

По особенностям минерального состава среди гранитов выделяются следующие разновидности:

По структурно-текстурным особенностям выделяют следующие разновидности:

Геохимические классификации гранитов

Широко известной за рубежом является классификация Чаппела и Уайта, продолженная и дополненная Коллинзом и Валеном. В ней выделяется 4 типа гранитоидов: S-, I-, M-, A-граниты. В 1974 году Чаппел и Уайт ввели понятия о S- и I-гранитах, основываясь на том, что состав гранитов отражает материал их источника. Последующие классификации также в основном придерживаются этого принципа.

Различие в составе источников S- и I-гранитов устанавливаются по их геохимии, минералогии и составу включений. Различие источников предполагает и различие уровней генерации расплавов: S — супракрустальный верхнекоровый уровень, I — инфракрустальный более глубинный и нередко более мафический. В геохимическом отношении S- и I-граниты имеют близкие содержания большинства петрогенных и редких элементов, но есть и существенные различия. S -граниты относительно обеднены CaO, Na2O, Sr, но имеют более высокие концентрации K2O и Rb, чем I-граниты. Эти различия обусловлены тем, что источник S-гранитов прошёл стадию выветривания и осадочной дифференциации. К M типу относятся граниты, являющиеся конечным дифференциатом толеит-базальтовой магмы или продуктом плавления метатолеитового источника. Они широко известны под названием океанических плагиогранитов и характерны для современных зон СОХ и древних офиолитов. Понятие А-гранитов было введено Эби. Им показано, что они варьируют по составу от субщелочных кварцевых сиенитов до щелочных гранитов с щелочными темноцветами, резко обогащены некогерентными элементами, особенно HFSE. По условиям образования могут быть разделены на две группы. Первая, характерная для океанических островов и континентальных рифтов, представляет собой продукт дифференциации щелочно-базальтовой магмы. Вторая, включает внутриплитные плутоны, не связанные непосредственно с рифтогенезом, а приуроченные к горячим точкам. Происхождение этой группы связывают с плавлением нижних частей континентальной коры под влиянием дополнительного источника тепла. Экспериментально показано, что при плавлении тоналитовых гнейсов при давлении 10 кбар образуется обогащенный фтором расплав по петрогенным компонентам сходный с А-гранитами и гранулитовый (пироксенсодержащий) рестит.

Геодинамические обстановки гранитного магматизма

Наибольшие объёмы гранитов образуются в зонах коллизии, где сталкиваются две континентальные плиты и происходит утолщение континентальной коры. По мнению некоторых исследователей, в утолщённой коллизионной коре образуется целый слой гранитного расплава на уровне средней коры (глубина 10—20 км). Кроме того, гранитный магматизм характерен для активных континентальных окраин (Андские батолиты), и, в меньшей степени, для островных дуг.

В очень малых объёмах граниты образуются в срединно-океанических хребтах, о чём свидетельствует наличие обособлений плагиогранитов в офиолитовых комплексах.

Изменения

При химическом выветривании гранита из полевых шпатов образуется каолин и другие глинистые минералы, кварц обычно остаётся неизменным, а слюды желтеют и поэтому их часто называют «кошачьим золотом».

Полезные ископаемые

С гранитом связаны месторождения Sn, W, Mo, Li, Be, B, Rb, Bi, Ta, Au Эти элементы концентрируются в поздних порциях гранитного расплава и в постмагматическом флюиде. Поэтому его месторождения связаны с апогранитами, пегматитами, грейзенами и скарнами. Для скарнов также характерны месторождения Cu, Fe, Au.

Применение

Станковая скульптура из красного гранита. Автор П. А. Фишман

Гранит является одной из самых плотных, твёрдых и прочных пород. Используется в строительстве в качестве облицовочного материала. Кроме того, гранит имеет низкое водопоглощение и высокую устойчивость к морозу и загрязнениям. Вот почему он оптимален для мощения как внутри помещения, так и снаружи. Однако стоит помнить, что такое помещение будет иметь несколько более высокий радиационный фон[4], в связи с чем не рекомендуется облицовывать некоторыми видами гранита жилые помещения. Более того, некоторые виды гранита рассматриваются как перспективное сырье для добычи природного урана. В интерьере гранит применяется также для отделки стен, лестниц, создания столешниц и колонн, украшения лестничных маршей балясинами из гранита, создания вазонов, облицовки каминов и фонтанов. В экстерьере гранит часто используется в качестве облицовочного, строительного (бутовый камень для фундаментов, заборов и опорных стен) или кладочного материала (брусчатка, брекчия). Гранит используется также для изготовления памятников и на гранитный щебень. Первый добывается на блочных карьерах, второй — на щебневых. Из гранита изготавливают поверочные плиты вплоть до класса точности 000.

Проблема происхождения гранитов

Гранитные скалы.

Граниты играют огромную роль в строении коры континентов Земли. Но, в отличие от магматических пород основного состава (габбро, базальт, анортозит, норит, троктолит), аналоги которых распространены на Луне и планетах земной группы, о существовании гранитов на других планетах солнечной системы имеются лишь косвенные свидетельства. Так, имеются косвенные признаки существования гранитов на Венере[5]. Среди геологов существует выражение «Гранит — визитная карточка Земли»[6]. С другой стороны, есть веские основания полагать, что Земля возникла из такого же вещества, что и другие планеты земной группы. Первый состав Земли реконструируется как близкий составу хондритов. Из таких пород могут выплавляться базальты, но никак не граниты. Эти факты привели петрологов к постановке проблемы происхождения гранитов, привлекавшей внимание геологов много лет, но и до сих пор далёкой от полного решения.

В настоящее время о происхождении гранитов известно довольно много, но некоторые принципиальные проблемы остаются пока нерешенными. Одна из них — это процесс образования гранитов. При частичном плавлении твердого корового вещества, ясно определимые твердые остатки — реститовые кристаллические фазы, не перешедшие в расплав — встречаются в них относительно редко. Небольшое количество остаточного материала можно видеть в S-гранитах и I-гранитах. Однако в Р- и А-гранитах реститовые фазы обычно не диагностируются. С чем это связано — с полным разделением твердых фаз и расплава в процессе подъёма магматического материала, с последующим преобразованием твердых остатков, отсутствием критериев для их диагностики или же с дефектом самой петрологической модели — в настоящее время пока не выяснено. Проблема реститовых остатков вызывает и другие вопросы. При частичном плавлении амфиболсодержащих пород повышенной кислотности можно получить лишь около 20 % низкокалиевого гранитного материала. При этом должно оставаться 80 % безводного твердого остатка, состоящего из пироксена, плагиоклаза или граната. Хотя породы в нижней части континентальной коры имеют близкий минеральный состав, их обломки, вынесенные вулканами, не несут геохимических признаков тугоплавкого остаточного материала. Есть предположение, что этот материал был каким-то образом погружен в верхнюю мантию, однако прямые доказательства реальности этого процесса отсутствуют. Не исключено, что и в данном случае петрологическая модель нуждается в корректировке.

Есть и другие неясности при изучении процесса происхождения гранитов. Однако современные методы исследования достигли такого уровня, который позволяет надеяться на то, что правильные решения будут найдены в ближайшее время.

Автором одной из первых гипотез о происхождении гранитов стал Н. Боуэн — отец экспериментальной петрологии. На основании экспериментов и наблюдений за природными объектами он установил, что кристаллизация базальтовой магмы происходит по ряду законов. Минералы в ней кристаллизуются в такой последовательности (в соответствии с рядом Боуэна[7]), что расплав непрерывно обогащается кремнием, натрием, калием и другими легкоплавкими компонентами. Поэтому Боуэн предположил, что граниты могут являться последними дифференциатами базальтовых расплавов.

Примечания

Литература

Ссылки

wikipedia.green

Происхождение гранита. Характеристики и особенности гранита.

Гранит - натуральный камень, во все времена он использовался как строительный и отделочный материал.

Гранит считают самым популярным строительным и отделочным натуральным камнем благодаря своим уникальным свойствам: прочности, долговечности, стойкости к воздействиям окружающей среды, разнообразию цветов.

Гранит получил свое название от итальянского слова - granitio, буквально - зернистый.

Прочность гранита обусловлена тем, что породы гранита образовались в результате извержения магмы и отложения ее на значительной глубине земной коры. После медленного остывания под давлением вышележащей толщи земли граниты хорошо выкристаллизовываются и имеют ярко выраженную полнокристаллическую, чаще всего гранобластовую структуру.

Гранит - магматическая порода, содержащая 60-65% полевого шпата (ортоклаза и плагиоклаза), 20-30% кварца и 5-10% биотита, мусковита, иногда роговой обманки.Текстура гранита массивная с весьма незначительной пористостью, характеризующаяся параллельным расположением минеральных компонентов.

По величине зерен, составляющих породу минералов, различают три структуры гранита: мелкозернистая с размерами зерен до 2 мм, среднезернистая - от 2 до 5 мм и крупнозернистая - свыше 5 мм.

Размеры зерен сильно влияют на строительные свойства пород гранита: чем мельче размеры зерен, тем выше прочностные характеристики и долговечность пород гранита. Плотность гранита - 2600-2700 кг/м.куб., прочность на сжатие до 300 МН/м.куб.

Граниты имеют богатую цветовую палитру – от практически белого до абсолютно чёрного, но основной цветовой фон гранита обусловлен окраской преобладающего полевого шпата - розовой, желтой, красной, зеленой, серой и др. Разнообразие цветовых оттенков, высокая прочность гранита и значительная распространенность месторождений определяют его широкое применение в различных видах строительства, в монументальной архитектуре и даже в скульптуре. Гранит добывают во многих странах, месторождения разбросаны по всему миру, но самые популярные виды гранита добываются в Индии, Китае и Бразилии.

Плюсы и минусы гранита.

На качество гранита сильно влияет способ, которым он добывается. Существует три основных способа добывать камень. Самый кустарный из них и, к сожалению, наиболее распространенный в России - добыча при помощи взрыва. В горной породе методом бурения проделывается глубокое отверстие, куда закладывают заряд и подрывают. Среди отколовшихся кусков породы отбираются самые большие глыбы, которые потом распиливаются на плиты. Плюсы такого способа добычи гранита заключаются в том, что он крайне дешев. Но минусы перевешивают этот плюс. Во-первых, страдает качество добытой породы: во время взрыва в структуре камня возникают микротрещины, которые влияют на прочность материала. Во-вторых, такой способ разработки месторождения крайне нерационален, так как при взрыве порода крошится: большие глыбы, пригодные для распилки, составляют не более 70%, а остальные 30% идут в отходы.

Второй способ добычи гранита - это метод откалывания при помощи воздушной подушки. Он похож на первый метод тем, что в породе также проделывают отверстие, в него закладывается резервуар, который накачивается воздухом под высоким давлением. Этот способ позволяет избежать появления микротрещин в структуре камня и является более экономичным в плане расходования месторождения, а также позволяет более точно прогнозировать места разлома породы, чем при практически неконтролируемом взрыве.

Третий, самый дорогой, способ добывания гранита - метод камнереза - сегодня наиболее популярен. Добыча гранита таким методом позволяет полностью избежать микротрещин в камне и дает возможность наиболее рационально разрабатывать месторождение.

 

Плюсы гранита.

Один из главных плюсов гранита, - долговечность покрытия, это позволяет применять его для облицовки фасадов. Лучшее подтверждение этому - сотни и тысячи зданий во всем мире, облицованных гранитом и не изменивших своего внешнего вида на протяжении столетий.Другое, не менее важное качество гранита - его красота. Трудно назвать другой отделочный материал, где бы столь гармонично сочетались строгость и эффектность, монументальность и изящество.

Город, здания в котором облицованы гранитом, обретает свое неповторимое "лицо". Например, те, кто видел утренний Ереван, навсегда запомнят розовый свет, который буквально излучают стены, облицованные мрамором и туфом. А разве можно забыть гранитный наряд Петербурга или Берлина, придающий этим городам поистине царское величие!Впрочем, гранит используется не только в отделке городских зданий, набережных и мостов.

Не менее важной сферой применения гранита является частное строительство. В данном случае натуральный камень выступает не просто в роли отделочного материала, а в качестве символа благополучия, достатка, основательности, надежности. Число частных домов, во внутренней и внешней отделке которых использован натуральный камень, с каждым годом становится все больше. И это неудивительно. Ведь при соблюдении технологии укладки каменная облицовка будет служить практически вечно.

Минусы гранита.

Главным объективным недостатком гранита считается его вес. Действительно, камень и впрямь является одним из самых тяжелых отделочных материалов, и этот фактор обязательно должен учитываться. Но это отнюдь не означает, что от гранита нужно отказаться только на том основании, что он слишком много весит. Просто в каждом конкретном случае необходимо проводить индивидуальные расчеты, исходя из высоты здания, породы камня, толщины облицовочных плит, общего веса облицовки, учитывать способ крепления, толщину и материал стен и множество других факторов. Такие расчеты очень сложны, но необходимы для создания не только красивого, но прежде всего безопасного и долговечного здания.

Элегантный и солидный, выразительный и разнообразный, массивный и вечный, - все эти качества, позволяют граниту, по праву, считаться лучшим материалом. Ваш интерьер может стать пафосно-холодным или уютно-теплым, вызывающе-роскошным или скромным, светлым или темным. Природа создала гранит настолько разнообразными, что каждое изделие, облицованная поверхность или фрагмент отделки, будут уникальны.

Гранитом отделывают внешние и внутренние стены зданий, камины, бассейны, бани и полы, изготавливают ступени, колонны и скульптуры.Из гранита создают различные элементы интерьера, такие как: подоконники, карнизы, плинтуса, перила, столешницы, столики, лестницы, барные стойки, мозаичные панно. В качестве декоративно-отделочного материала гранит великолепно вписывается в различные, в том числе современные, направления дизайна интерьера. Синтетические материалы не заменят живой, дышащий, узорчатый природный камень. Жизнь гранита измеряется веками, но даже "стареет" натуральный камень красиво и благородно.

retouch-online.ru