Асимптоты графика функции. График дробно-линейной функции. Как найти горизонтальную асимптоту


5.5. Асимптоты графика функции

Построение графика функции значительно облегчается, если знать его асимптоты.

Определение.

Асимптотой кривой называется прямая, расстояние до которой от точки, лежащей на кривой, стремится к нулю при неограниченном удалении от начала координат этой точки по кривой (рис.5.10).

Асимптоты бывают вертикальные (параллельные оси Оу), горизонтальные (параллельные оси Ох) и наклонные.

Рис. 5.10

Вертикальные асимптоты

Определение.

Прямая называетсявертикальной асимптотой графика функции , если выполнено одно из условий:

или (рис.5.11)

Рис. 5.11

Вертикальные асимптоты, уравнение которых х=x0 , следует искать в точках, где функция терпит разрыв второго рода, или на концах ее области определения, если концы не равны . Если таких точек нет, то нет и вертикальных асимптот.

Например, для кривой , вертикальной асимптотой будет прямая, так как,. Вертикальной асимптотой графика функцииявляется прямая(осьОу), поскольку

.

Горизонтальные асимптоты

Определение.

Если при () функцияимеет конечный предел, равный числуb:

,

то прямая есть горизонтальная асимптота графика функции.

Например, для функции имеем

, .

Соответственно, прямая − горизонтальная асимптота для правой ветви графика функции, а прямая− для левой ветви.

В том случае, если

,

график функции не имеет горизонтальных асимптот, но может иметь наклонные.

Наклонные асимптоты

Определение.

Прямая называетсянаклонной асимптотой графика функции при(), если выполняется равенство

.

Наличие наклонной асимптоты устанавливают с помощью следующей теоремы.

Теорема.

Для того, чтобы график функции имел при() наклонную асимптоту, необходимо и достаточно, чтобы существовали конечные пределы

и .

Если хотя бы один из этих пределов не существует или равен бесконечности, то кривая наклонной асимптоты не имеет.

Замечания.

1. При отыскании асимптот следует отдельно рассматривать случаи и.

2. Если

и ,

то график функции имеет горизонтальную асимптоту.

3. Если

и ,

то прямая (осьОх) является горизонтальной асимптотой графика функции .

Из замечаний следует, что горизонтальную асимптоту можно рассматривать как частный случай наклонной асимптоты при . Поэтому при отыскании асимптот графика функции рассматривают лишь два случая:

1) вертикальные асимптоты,

2) наклонные асимптоты.

Пример

Найти асимптоты графика функции .

.

1) − точка разрыва второго рода:

, .

Прямая − вертикальная асимптота.

2) ,

,

.

Прямая − горизонтальная асимптота. Наклонной асимптоты нет.

5.6. Общая схема исследования функции и построение графика

В предыдущих параграфах было показано, как с помощью производных двух первых порядков изучаются общие свойства функции. Пользуясь результатами этого изучения, можно составить представление о характере функции и, в частности, построить ее график.

Исследование функции целесообразно проводить по следующей схеме.

  1. Найти область определения функции.

  2. Исследовать функцию на четность и нечетность.

  3. Исследовать функцию на периодичность.

  4. Найти точки пересечения графика функции с осями координат.

  5. Найти интервалы знакопостоянства функции (интервалы, на которых или).

  6. Найти асимптоты графика функции.

  7. Найти интервалы монотонности и точки экстремума функции.

  8. Найти интервалы выпуклости и вогнутости и точки перегиба графика функции.

  9. Построить график функции.

Пример

Исследовать функцию и построить ее график.

  1. Область определения функции .

  2. Функция нечетная: . График функции симметричен относительно начала координат

  3. Функция непериодическая.

  4. Точки пересечения с осями координат:

С осью Оу: , точка.

С осью Ох: ,,,.

  1. Точки ,иразбивают осьОх на четыре интервала.

при ;

при ;

при ;

при .

  1. Так как функция является непрерывной, то ее график не имеет вертикальных асимптот.

.

Наклонной и горизонтальной асимптот нет.

  1. ,

, ,− критические точки.

для «↑»,

для «↓»,

для «↑».

Сведем данные в таблицу.

х

-1

1

+

0

0

+

(возрастает)

mах

2

(убывает)

min

-2

(возрастает)

, ;

точка − максимум;

точка − минимум.

  1. , ,,.

при «»;

при «».

х

0

0

+

(выпуклый)

0

(точка перегиба)

(вогнутый)

Точка − точка перегиба.

  1. График функции (рис.5.12)

Рис. 5.12

studfiles.net

Асимптоты графика функции. График дробно-линейной функции

Асимптоты графика функции. График дробно-линейной функции.

В этой статье мы рассмотрим, что такое асимптота графика функции,  и как ее находить.

Асимптота – это прямая, к которой бесконечно близко приближается график функции.

Асимптоты бывают горизонтальные, вертикальные и наклонные.

Если мы посмотрим на хорошо известный нам график функции y=1/x, то увидим, что график этой функции бесконечно близко приближается к прямой x=0 (ось ОY) - это вертикальная асимптота, и к прямой y=0 (ось ОХ) - это горизонтальная асимптота:

В общем случае горизонтальная асимптота  - это прямая, параллельная оси OX. Уравнение горизонтальной асимптоты имеет вид y=b

, где b - число, к которому стремятся значения функции y=f(x), когда x стремится к infty.

То есть b=lim{x{right}{infty}}{f(x)}.

Вертикальная асимптота - это прямая, параллельная оси OY. Уравнение вертикальной асимптоты имеет вид x=a

. Здесь a - значение переменной x,  при котором функция y=f(x) не определена. Как правило, это ноль знаменателя. Если значение x стремится к точке, в которой знаменатель равен нулю, то абсолютное значение дроби при этом неограниченно возрастает.

В некоторых случаях для построения графика функции бывает достаточно найти асимптоты графика.

Рассмотрим дробно-линейную функцию. В общем виде уравнение дробно-линейной функции имеет вид: y={ax+b}/{cx+d}.

График дробно-линейной функции - это гипербола. Как мы знаем, гипербола имеет две асимптоты: горизонтальную и вертикальную.

Заметим, что при x=-d/c знаменатель равен нулю, в этой точке функция  y={ax+b}/{cx+d} не определена. Поэтому прямая x=-d/c  - вертикальная асимптота.

Степень x

в числителе дроби  {ax+b}/{cx+d}  равна степени x в знаменателе. Поэтому при x{right}{infty} числитель и знаменатель растут с одинаковой скоростью, и

lim{x{right}{infty}}{{ax+b}/{cx+d}}=a/c и  уравнение горизонтальной асимптоты имеет вид y=a/c.

График дробно-линейной функции y={ax+b}/{cx+d}  - это гипербола, симметричная относительно точки пересечения асимптот графика. Поэтому, чтобы построить график, нам остается только выяснить его расположение относительно этой точки.

Для этого достаточно найти точки пересечения графика с осями координат.

Точка пересечения с осью OX (y=o): x=-b/a.

Точка пересечения с осью OY (x=0): y=b/d.

Построим график функции y={x+1}/{3x+2}. Это дробно-линейная функция и ее график  - гипербола.

Найдем горизонтальную и вертикальную асимптоты.

Уравнение горизонтальной асимптоты: y=1/3;

уравнение вертикальной асимптоты (ноль знаменателя): x=-2/3

Найдем точки пересечения с осями координат:

С осью ОХ: x+1=0; x=-1

с осью OY(x=0): y=1/2.

То есть график функции y={x+1}/{3x+2} выглядит как-то так:

И, наконец, наклонная асимптота. Наклонная асимптота - это к прямая, к кторой стремится график функции на бесконечности.

Уравнение наклонной асимптоты имеет вид y=kx+b.

Коэффициенты k и b вычисляются следующим образом:

k=lim{x{right}{infty}}{{f(x)}/x}

b=lim{x{right}{infty}}{({f(x)}-kx)}

Найдем асимптоты графика функции y={3-x^2}/{x+2}

1. Начнем с области определения функции. Функция y={3-x^2}/{x+2} не определена в точке x=-2, следовательно прямая x=-2 является вертикальной асимптотой.

2. Степень числителя дроби {3-x^2}/{x+2} на единицу больше степени знаменателя, поэтому предел этого отношения при x{right}{infty} отношения равен бесконечности. Следовательно, график функции y={3-x^2}/{x+2} не имеет горизонтальной асимптоты.

3. Попробуем найти наклонную асимптоту.

k=lim{x{right}{infty}}{{{3-x^2}/{(x+2)x}}}=-1

(Предел функции равен отношению коэффициентов при максимальных степенях x в числителе и знаменателе дроби).

b=lim{x{right}{infty}}{({{3-x^2}/{x+2}}-(-1)x)}= lim{x{right}{infty}}{{3-x^2+x^2+2x}/{x+2}}= lim{x{right}{infty}}{{3+2x}/{x+2}}=2

Итак, уравнение наклонной асимптоты: y=-x+2

График функции y={3-x^2}/{x+2}, построенный с помощью специальной программы, показывает, что асимптоты были найдены верно:

И.В. Фельдман, репетитор по математике.

ege-ok.ru

19. Асимптоты, их нахождение. Асимптоты оэф. Схема исследования функции и построения ее графика по характерным точкам. Примеры

Определение. Асимптотой графика функции называется прямая, обладающая тем свойством, что расстояние от точкиграфика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.

По способам их отыскания выделяют три вида асимптот: вертикальные , горизонтальные, наклонные.

Очевидно, горизонтальные являются частными случаями наклонных (при ).

Нахождение асимптот графика функции основано на следующих утверждениях.

Теорема 1. Пусть функция определена хотя бы в некоторой полуокрестности точкии хотя бы один из ее односторонних пределов в этой точке бесконечен, т.е. равенили. Тогда прямаяявляется вертикальной асимптотой графика функции.

Таким образом, вертикальные асимптоты графика функции следует искать в точках разрыва функции или на концах ее области определения (если это конечные числа).

Теорема 2. Пусть функция определена при значениях аргумента, достаточно больших по абсолютной величине, и существует конечный предел функции. Тогда прямаяесть горизонтальная асимптота графика функции.

Может случиться, что , а, причеми- конечные числа, тогда график имеет две различные горизонтальные асимптоты: левостороннюю и правостороннюю. Если же существует лишь один из конечных пределов или, то график имеет либо одну левостороннюю, либо одну правостороннюю горизонтальную асимптоту.

Теорема 3. Пусть функция определена при значениях аргумента, достаточно больших по абсолютной величине, и существуют конечные пределыи. Тогда прямаяявляется наклонной асимптотой графика функции.

Заметим, что если хотя бы один из указанных пределов бесконечен, то наклонной асимптоты нет.

Наклонная асимптота так же, как и горизонтальная, может быть односторонней.

Пример. Найдите все асимптоты графика функции .

Решение.

Функция определена при . Найдем ее односторонние пределы в точках.

Так как и(два других односторонних предела можно уже не находить), то прямыеиявляются вертикальными асимптотами графика функции.

Вычислим

(применим правило Лопиталя) =.

Значит, прямая - горизонтальная асимптота.

Так как горизонтальная асимптота существует, то наклонные уже не ищем (их нет).

Ответ: график имеет две вертикальные асимптоты и одну горизонтальную.

Общие исследование функции y = f(x).

studfiles.net

Как найти асимптоты функции | Исследовать функцию,построить график

График функции может иметь вертикальную, горизонтальную или наклонную асимптоты. 

Как найти вертикальную асимптоту:

♦ Если имеются точки разрыва функции, то в этих точках проверяем правый и левый пределы функции, если хотя бы один стремится к  бесконечности, то в данной точке имеем вертикальную асимптоту.

 

Пример 1. Найти вертикальную асимптоту 

В точке x0 = 1 функция имеет разрыв (знаменатель обращается в ноль), следовательно в данной точке функция может иметь вертикальную асимптоту, проверяем:

          левый предел

          правый предел

Левый и правый пределы в точке x = 1 стремятся к бесконечности, следовательно в данной точке  функция имеет вертикальную асимптоту.

Для наглядности построим график функции.

 

 

Как найти горизонтальную асимптоту:

♦ Находим пределы

если хотя бы один предел конечный, то функция имеет горизонтальную асимптоту.

Пример 2. Найти горизонтальную асимптоту функции

Решение.

Находим пределы

- следовательно y = 2  -  горизонтальная асимптота.

Для наглядности построим график - вставляем в калькулятор  8/(x-1)+2.

Как найти наклонную асимптоту:

Если функция  имеет  наклонные асимптоты, то их уравнение имеет вид

где

Пример 3. Найти наклонную асимптоту функции

Решение. Находим пределы

Следовательно наклонная асимптота

 

Для наглядности построим график - вставляем в калькулятор  3x^2/(x+1)+2.

P.S. Как видим задача нахождения асимптот сводится к вычислению пределов.

Вычислить пределы (также левые и правые) можно с помощью калькулятора вычисления пределов

 

www.reshim.su

Асимптоты функции

Определение асимптот функции не такое и трудное занятие если Вы хорошо знаете ряд правил и имеете добрые знания вычисления пределов. Если же не умеете находить пределы то наверстывать придется много, но научиться можно.

Прямая называется асимптотой кривой если точка кривой неограниченно приближается к ней при росте абсциссы или ординаты. Асимптоты разделяют на вертикальные, наклонные (горизонтальные) асимптоты.

ВЕРТИКАЛЬНЫЕ АСИМПТОТЫ

График функции при аргументе котрый стремится к точке имеет вертикальную асимптоту, если предел функции в ней бесконечен

Кроме этого точка является точкой разрыва II рода, а уравнение вертикальной асимптоты имеет вид

НАКЛОННЫЕ АСИМПТОТЫ

Уравнение наклонной асимптоты имеет вид

где - пределы, которые вычисляются по правилу

Если оба пределы существуют и конечны то функция имеет наклонную асимптоту, иначе - нет. Следует отдельно рассматривать случаи, когда аргумент стремится к бесконечности () и минус бесконечности ().

ГОРИЗОНТАЛЬНЫЕ АСИМПТОТЫ

Кривая имеет горизонтальную асимптоту только в том случае, когда существует конечный предел функции при и , и эта граница равна

или

Нахождение пределов в некоторых случаях упрощается, если применять правило Лопиталя.Приведем решения типичных для практики задач на отыскание асимптот.

------------------------------------

Примеры.

Найти асимптоты функций (Дубовик В.П., Юрик И.И. "Высшая математика. Сборник задач")

І. (5.863)

Решение:

Знаменатель дроби не должен превращаться в ноль

По теореме Виета находим корни квадратного уравнения

Они разбивают область определения на следующие интервалы

Другим выводом является то, что функция имеет две вертикальные асимптоты

Найдем наклонную асимптоту

Первая граница примет вид

Другую определяем по правилу

Окончательное уравнение наклонной асимптоты следующее

График функции с асимптотами имеет вид

------------------------------------

ІІ. (5.873)

Решение:

Логарифм функция определена при положительных значениях аргумента и стремится к бесконечности при , это означает

Из этого следует что функция имеет вертикальные асимптоты при

а ее область определения следующая

С виду функции следует что функция имеет вертикальную асимптоту

Наклонных асимптот функция не имеет. График функции с асимптотами приведен ниже

-----------------------------------

(Клепко В.Ю., Голец В.И. "Высшая математика в примерах и задачах")

III. (4.71.1)

Решение:

С виду функции следует что она определена во всех точках где знаменатель не превращается в ноль, из этого следует

Эти точки представляют собой вертикальные асимптоты, а также разделяют область определения на интервалы

Наклонных асимптот функция не имеет. Это следует из одного свойства которым я поделюсь с Вами: функции вида "многочлен разделить на многочлен" имеет наклонную асимптоту только в случаях, когда наибольший степень в числителе на единицу больше, чем в знаменателе, т.е.

Горизонтальная асимптоту находим с границы

Функция с асимптотами изображена на рисунке

--------------------------------

IV. (4.71.2)

Решение:

Область определения функции

При функция имеет вертикальную асимптоту. Наклонных асимптот нет, одна горизонтальная, так как степень числителя и знаменателя равны

Функция будет выглядеть следующим образом

-----------------------------------

V. (4.71.3)

Решение:

Областью определения будут два интервала

Точка будет вертикальной асимптотой. Наклонных асимптот нет, горизонтальную находим с предела

Поведение функции изображено на рисунке

---------------------------------------------------

VI. (4.71.4)

Решение:

Область определения находим из условия

Точка является вертикальной асимптотой. Наклонную асимптоту находим на основе пределов

Окончательно получим такое уравнение асимптоты

Функция с асимптотами изображена на рисунке

---------------------------------------------

VII. (4.71.5)

Решение:

Область определения находим с условия

Точка – вертикальная асимптота. Наклонная асимптота будет известна после вычисления пределов

– уравнение наклонной асимптоты.

График функции следующий

------------------------------------

Подобных примеров можно решить еще много, схема нахождения асимптот при этом не меняется. Бывают

примеры в которых нахождение пределов трудоемкое и занимает более половины объема этой статьи, но

думаю Вам такие в обучении не встретятся.

-----------------------------------

Посмотреть материалы:

yukhym.com

Асимптоты графика функций: их виды, примеры решений

Во многих случаях построение графика функции облегчается, если предварительно построить асимптоты кривой.

Определение 1. Асимптотами называются такие прямые, к которым сколь угодно близко приближается график функции, когда переменная стремится к плюс бесконечности или к минус бесконечности.

Определение 2. Прямая называется асимптотой графика функции, если расстояние от переменной точки М графика функции до этой прямой стремится к нулю при неограниченном удалении точки М от начала координат по какой-либо ветви графика функции.

Различают три вида асимптот: вертикальные, горизонтальные и наклонные.

Определение. Прямая x = a является вертикальной асимптотой графика функции, если точка x = a является точкой разрыва второго рода для этой функции.

Из определения следует, что прямая x = a является вертикальной асимптотой графика функции f(x), если выполняется хотя бы одно из условий:

При этом функция f(x) может быть вообще не определена соответственно при x ≥ a и x ≤ a.

Замечание:

Из сказанного следует, что вертикальные асимптоты графика функции можно искать не только в точках разрыва, но и на границах области определения. График функции, непрерывной на всей числовой прямой, вертикальных асимптот не имеет.

Пример 1. График функции y=lnx имеет вертикальную асимптоту x = 0 (т.е. совпадающую с осью Oy) на границе области определения, так как предел функции при стремлении икса к нулю справа равен минус бесконечности:

(рис. сверху).

Найти асимптоты графика функции самостоятельно, а затем посмотреть решения

Пример 2. Найти асимптоты графика функции .

Пример 3. Найти асимптоты графика функции

Если (предел функции при стремлении аргумента к плюс или минус бесконечности равен некоторому значению b), то y = b – горизонтальная асимптота кривой y = f(x) (правая при иксе, стремящимся к плюс бесконечности, левая при иксе, стремящимся к минус бесконечности, и двусторонняя, если пределы при стремлении икса к плюс или минус бесконечности равны).

Пример 5. График функции

при a > 1 имеет левую горизонтальную асимпототу y = 0 (т.е. совпадающую с осью Ox), так как предел функции при стремлении "икса" к минус бесконечности равен нулю:

Правой горизонтальной асимптоты у кривой нет, поскольку предел функции при стремлении "икса" к плюс бесконечности равен бесконечности:

Вертикальные и горизонтальные асимптоты, которые мы рассмотрели выше, параллельны осям координат, поэтому для их построения нам требовалось лишь определённое число - точка на оси абсцисс или ординат, через которую проходит асимптота. Для наклонной асимптоты необходимо больше - угловой коэффициент k, который показывает угол наклона прямой, и свободный член b, который показывает, насколько прямая находится выше или ниже начала координат. Не успевшие забыть аналитическую геометрию, а из неё - уравнения прямой, заметят, что для наклонной асимптоты находят уравнение прямой с угловым коэффициентом. Существование наклонной асимптоты определяется следующей теоремой, на основании которой и находят названные только что коэффициенты.

Теорема. Для того, чтобы кривая y = f(x) имела асимптоту y = kx + b, необходимо и достаточно, чтобы существовали конечные пределы k и b рассматриваемой функции при стремлении переменной x к плюс бесконечности и минус бесконечности:

          (1)

и

      (2)

Найденные таким образом числа k и b и являются коэффициентами наклонной асимптоты.

В первом случае (при стремлении икса к плюс бесконечности) получается правая наклонная асимптота, во втором (при стремлении икса к минус бесконечности) – левая. Правая наклонная асимптота изображена на рис. снизу.

При нахождении уравнения наклонной асимптоты необходимо учитывать стремление икса и к плюс бесконечности, и к минус бесконечности. У некоторых функций, например, у дробно-рациональных, эти пределы совпадают, однако у многих функций эти пределы различны а также может существовать только один из них.

При совпадении пределов при иксе, стремящемся к плюс бесконечности и к минус бесконечности прямая y = kx + b является двусторонней асимптотой кривой.

Если хотя бы один из пределов, определяющих асимптоту y = kx + b, не существует, то график функции не имеет наклонной асимптоты (но может иметь вертикальную).

Нетрудно видеть, что горизонтальная асимптота y = b является частным случаем наклонной y = kx + b при k = 0.

Поэтому если в каком-либо направлении кривая имеет горизонтальную асимптоту, то в этом направлении нет наклонной, и наоборот.

Пример 6. Найти асимптоты графика функции

Решение. Функция определена на всей числовой прямой, кроме x = 0, т.е.

Поэтому в точке разрыва x = 0 кривая может иметь вертикальную асимптоту. Действительно, предел функции при стремлении икса к нулю слева равен плюс бесконечности:

Следовательно, x = 0 – вертикальная асимптота графика данной функции.

Горизонтальной асимптоты график данной функции не имеет, так как предел функции при стремлении икса к плюс бесконечности равен плюс бесконечности:

Выясним наличие наклонной асимптоты:

Получили конечные пределы k = 2 и b = 0. Прямая y = 2x является двусторонней наклонной асимптотой графика данной функции (рис. внутри примера).

Пример 7. Найти асимптоты графика функции

Решение. Функция имеет одну точку разрыва x = −1. Вычислим односторонние пределы и определим вид разрыва:

,

.

Заключение: x = −1 - точка разрыва второго рода, поэтому прямая x = −1 является вертикальной асимптотой графика данной функции.

Ищем наклонные асимптоты. Так как данная функция - дробно-рациональная, пределы при и при будут совпадать. Таким образом, находим коэффициенты для подстановки в уравнение прямой - наклонной асимптоты:

Подставляя найденные коэффициенты в уравнение прямой с угловым коэффициентом, получаем уравнение наклонной асимптоты:

y = −3x + 5.

На рисунке график функции обозначен бордовым цветом, а асимптоты - чёрным.

Пример 8. Найти асимптоты графика функции

.

Решение. Так как данная функция непрерывна, её график не имеет вертикальных асимптот. Ищем наклонные асимптоты:

.

Таким образом, график данной функции имеет асимптоту y = 0 при и не имеет асиптоты при .

Пример 10. Найти асимптоты графика функции

Решение. Функция имеет область определения . Так как вертикальная асимптота графика этой функции может быть только на границе области определения, найдём односторонние пределы функции при :

,

.

Оба предела нашли, используя первый замечательный предел. Заключение: x = 0 - точка устранимого разрыва, поэтому у графика функции нет вертикальных асимптот.

Ищем наклонные асимптоты:

Таким образом, при наклонной асимптотой графика данной функции является прямая y = x. Но при найденные пределы не изменяются. Поэтому при наклонной асимптотой графика данной функции также является y = x.

Пример 11. Найти асимптоты графика функции

.

Решение. Сначала найдём вертикальные асимптоты. Для этого найдём точки разрыва функции и их виды. Знаменатель не может быть равным нулю, поэтому должно соблюдаться условие . Функция имеет две точки разрыва: , . Чтобы установить вид разрыва, найдём односторонние пределы:

Так как все пределы равны бесконечности, обе точки разрыва - второго рода. Поэтому график данной функции имеет две вертикальные асимптоты: x = 2 и x = −2.

Ищем наклонные асимптоты. Так как данная функция является дробно-рациональной, пределы при и при совпадают. Поэтому, определяя коэффициенты прямой, ищем просто пределы:

Подставляем найденные коэффициенты в уравнение прямой с угловым коэффициентом, получаем уравнение наклонной асимптоты y = 2x. Таким образом, график данной функции имеет три асимптоты: x = 2, x = −2 и y = 2x.

Поделиться с друзьями

Весь блок "Производная"

function-x.ru

1.13. Асимптоты кривой

Литература: [3], гл. V, § 10

[5], Ч.1, гл. 6, § 6.5

Прямая называется асимптотой кривой y = f (x), если расстояние от точки М кривой до этой прямой стремится к нулю при удалении точки М вдоль кривой в бесконечность от начала координат (рис. 1.7).

Рис. 1.7

Различают вертикальные и наклонные асимптоты. Вертикальная асимптота имеет уравнение вида x = x0 и является прямой, параллельной оси Оy. Наклонная асимптота имеет уравнение вида y = k x + b. В частном случае при k = 0 асимптота называется горизонтальной, так как ее уравнение y = b есть прямая, параллельная оси Ох.

Вертикальные асимптоты.

Пусть дана кривая y = f (x). Для нахождения вертикальной асимптоты этой кривой находят точки ее бесконечного разрыва (точки разрыва второго рода).

Если, например,

и ,

то прямая x = x0 ─ вертикальная асимптота кривой y = f (x) (рис. 1.8).

Наклонные и горизонтальные асимптоты.

Пусть задана кривая y = f (x). Для нахождения наклонной асимптоты, уравнение которой y = k x + b, находят коэффициенты k и b, вычисляя пределы: ,. Эти пределы вычисляются отдельно для случаеви. Если хотя бы один из пределов для вычисленияk и b равен ∞ или не существует, то кривая наклонных и горизонтальных асимптот не имеет.

В частном случае, когда k = 0, а b ─ конечное число, кривая имеет горизонтальную асимптоту, уравнение которой y = b.

Пример. Найти асимптоты кривой .

Решение. Функция определена на всем множестве действительных чиселR, кроме точки x = 1. Определим характер разрыва, для чего вычислим пределы функции при x → 1 слева (x < 1) и справа (x > 1):

, .

Так как один из пределов бесконечен, то x = 1 является точкой разрыва второго рода, и, следовательно, кривая имеет вертикальную асимптоту x = 1.

Определим, имеет ли кривая наклонную или горизонтальную асимптоту. Для этого вычисляем соответствующие пределы:

, Уравнение асимптотыy = k x + b принимает вид y = 1 (горизонтальная асимптота).

С

Рис. 1.9

хематический график функции представлен на рис. 1.9.

1.14. Схема полного исследования функции и построение ее графика

Литература: [3], гл. V, § 11

[5], Ч.1, гл. 6, § 6.6

1. Находим область определения функции.

2. Устанавливаем четность, нечетность функции, периодичность. Находим характерные точки, например, точки пересечения с осями координат.

3.Находим точки разрыва функции, определяем их характер. При наличии точек разрыва второго рода (точек бесконечного разрыва) устанавливаем наличие вертикальных асимптот графика функции.

4. Находим производную функции, критические точки, промежутки монотонности, точки экстремума и значения функции в этих точках.

5. Находим вторую производную функции, интервалы выпуклости и вогнутости кривой и точки перегиба графика функции.

6.Устанавливаем наличие у исследуемой кривой наклонных и горизонтальных асимптот.

7. По полученным данным строим график функции.

Замечание. Если функция является четной или нечетной, то исследование проводят не на всей числовой оси, а на промежутке [0, +∞). Затем график продолжают симметрично относительно оси ординат на промежуток (-∞, 0), если функция четная, и относительно центра системы координат, если функция нечетная.

Если функция периодическая, то ее график строят для одного периода, а затем периодически продолжают на всю числовую ось.

Пример. Провести полное исследование функции и построить ее график.

Решение.

1. Функция определена и непрерывна на всей числовой оси, кроме точек x = ± 2.

2. Функция нечетная, так как для нее выполняется условие . Поэтому достаточно провести исследование на промежутке [0, +∞).

3. В промежутке [0, +∞) имеется одна точка разрыва x = 2. Исследуем характер точки разрыва, для чего вычислим следующие пределы:

,

Так как односторонние пределы бесконечные, то прямая x = 2 является вертикальной асимптотой.

4. Находим первую производную:

.

Находим критические точки на промежутке [0, +∞): ,. В точкепроизводная не существует, но эта точка не является критической, так как функция в ней не определена.

5. Находим вторую производную:

.

Вторая производная на промежутке [0, +∞) обращается в ноль в точке x1 = 0 и не существует в точке x3 = 2, которая не входит в область определения функции.

По полученным данным строим таблицу:

x

0

(0, 2)

2

(2, )

0

Не существует

0

+

0

Не существует

+

+

+

y

0

Не существует

min

В первой строке таблицы указаны интервалы, на которые критические точки и точки, где вторая производная равна нулю или не существует, разбивают промежуток [0, +∞). Во второй строке указан знак первой производной в этих интервалах, в третьей − знак второй производной. В четвертой строке условно изображено возрастание или убывание функции на промежутке (по знаку первой производной), и выпуклость или вогнутость кривой (по знаку второй производной).

6. Ищем наклонную асимптоту:

,

.

Кривая на промежутке [0, +∞) имеет наклонную асимптоту .

Строим вертикальную x = 2 и наклонную y = 2x асимптоты, а затем по данным таблицы строим график исследуемой функции на промежутке [0, +∞), который затем продолжаем на промежуток (-∞, 0) симметрично относительно центра системы координат.

studfiles.net