Координаты звезд. Небесные координаты. Астрономия. Как определить координаты звезды


Координаты звезд. Небесные координаты. Астрономия

Звёздный купол для земного наблюдателя находится в непрерывном вращении. Если, будучи в Северном полушарии планеты, в безлунную и безоблачную ночь достаточно долго смотреть в северную часть неба, станет заметно, что вся бриллиантовая россыпь звёзд вращается вокруг одной неприметной тусклой звёздочки (это только неучи рассказывают, что Полярная звезда – самая яркая). Часть светил скрывается за горизонтом в западной части небосклона, их место занимают другие.

координаты самых ярких звезд

Карусель длится до самого утра. Но на следующий день, в это же время, каждая звёздочка вновь оказывается на своём месте. Координаты звёзд относительно друг друга изменяются столь медленно, что для людей они кажутся вечными и неподвижными. Не случайно наши предки представляли себе небо твёрдым куполом, а звёзды – отверстиями в нём.

Странная звезда – точка отсчёта

Давным-давно наши предки обратили внимание на одну странную звёздочку. Особенностью её является неподвижность на небесном склоне. Она как бы зависла в одной точке над северной кромкой горизонта. Все же остальные небесные светила описывают вокруг неё правильные концентрические окружности.

координаты полярной звезды

В каких только образах не представала эта звезда в воображении древних астрономов. Например, у арабов она считалась золотым колом, вбитым в небесную твердь. Вокруг же этого кола скачет золотой жеребец (мы называем это созвездие Большой Медведицей), привязанный к нему золотым арканом (созвездие Малой Медведицы).

Именно с этих наблюдений и берут своё начало небесные координаты. Вполне естественно и логично неподвижная звезда, которую мы называем Полярной, стала для астрономов отправной точкой определения местоположения объектов на небесной сфере.

Кстати, нам, жителям Северного полушария, крупно повезло со звёздным компасом. Волею случая, из тех, что бывают один на миллион, точно на линии оси вращения планеты находится наша Полярная звезда, благодаря которой в любом месте полушария легко можно определить точное положение относительно сторон света.

Первые звёздные координаты

Не сразу появились технические средства для точного измерения углов и расстояний, однако хоть как-то систематизировать и рассортировать звёзды люди стремились давно. И пусть приборы, которыми владела древняя астрономия, координаты звёзд в привычном для нас оцифрованном виде определять не позволяли, это с лихвой компенсировалось воображением.

Издревле жители всех частей света делили звёзды на группы, именуемые созвездиями. Чаще всего созвездиям давались имена исходя из внешнего сходства с теми или иными предметами. Так созвездие Большой Медведицы славяне называли просто ковшом.

названия созвездий и звезд на небе

Но наибольшее распространение получили названия созвездий, данные в честь персонажей древнегреческого эпоса. Можно, пусть и с некоторой натяжкой, сказать, что названия созвездий и звёзд на небе и есть их первые примитивные координаты.

Жемчужины неба

Не обошли своим вниманием астрономы и самые красивые яркие звёзды. Они также получили названия в честь эллинских богов и героев. Так альфа и бета созвездия Близнецов названы соответственно Кастор и Поллукс по именам сыновей Зевса, громовержца, рождённых после его очередного любовного приключения.

Особого внимания заслуживает звезда Алголь, альфа созвездия Персей. По преданию, этот герой, одолев в смертельной битве исчадие мрачного Тартара - горгону Медузу, взглядом обращающую всё живое в камень, захватил с собой её голову в качестве своеобразного оружия (глаза даже отрубленной головы продолжали «работать»). Так вот, звезда Алголь является в созвездии глазом этой самой головы Медузы, и это не совсем случайно. Древнегреческие наблюдатели обратили внимание на периодические изменения яркости Алголь (двойная звёздная система, компоненты которой периодически перекрывают друг друга для земного наблюдателя).

координаты звезды алголь

Естественно, «подмигивающая» звезда и стала глазом сказочного монстра. Координаты звезды Алголь на небосклоне: прямое восхождение - 3 ч 8 мин, склонение +40°.

Небесный календарь

Но не следует забывать, что Земля вращается не только вокруг своей оси. Каждые 6 месяцев планета оказывается с другой стороны Солнца. Картина ночного неба при этом, естественно, меняется. Это издавна стало использоваться звездочётами для точного определения времён года. Например, в Древнем Риме учащиеся с нетерпением ждали, когда на утреннем небе станет появляться Сириус (его название у римлян звучало Каникула), ибо в эти дни их отпускали домой на отдых. Как видно, звёздное название этих ученических отпусков сохранилось по сей день.

Кроме школьных каникул, положение объектов на небосклоне определяло начало и окончание морских и речных навигаций, давало старт военным походам, сельскохозяйственным мероприятиям. Авторами первых подробных календарей в разных частях света являлись именно астрологи, звездочёты, жрецы храмов, научившиеся точно определять координаты звёзд. На всех континентах, где находятся остатки древних цивилизаций, обнаруживаются целые каменные комплексы, построенные для астрономических наблюдений и измерений.

Горизонтальная система координат

Показывает координаты звёзд и других объектов на небесной сфере в режиме «здесь и сейчас» относительно горизонта. Первая координата – это высота объекта над горизонтом. Величина угловая, измеряется в градусах. Максимальное значение +90° (зенит). Нулевое значение координаты имеют светила, расположенные на линии горизонта. И наконец, минимальное значение высоты -90° имеют объекты, находящиеся в точке надира или у наблюдателя «под ногами» - зенит наоборот.

астрономия координаты звезд

Второй координатой служит азимут − угол между горизонтальными линиями, направленными на объект и на север. Ещё эту систему называют топоцентрической из-за привязки координат к определённой точке на земном шаре.

Система не лишена недостатков. Обе координаты каждой звезды в ней меняются ежесекундно. Поэтому она мало подходит для описания, скажем, расположения звёзд в созвездиях.

Звёздные ГЛОНАСС и GPS

А как же используется такая система? Если перемещаться по планете на достаточно большие расстояния, звёздная картинка, безусловно, будет меняться. Это было замечено ещё древними мореплавателями. У наблюдателя, стоящего на самом Северном полюсе, Полярная звезда окажется в зените, прямо над головой. А вот житель экватора сможет видеть Полярную только лежащей на линии горизонта. Перемещаясь же вдоль параллелей (с востока на запад), путешественник заметит, что точки и время восхода-заката тех или иных небесных объектов также изменятся.

Этим и научились пользоваться мореплаватели для определения своего местоположения в океанах. Измерив угол возвышения над горизонтом Полярной звезды, штурман судна получал значение широты. Используя точный хронометр, моряки сравнивали время местного полдня с эталонным (гринвичским) и получали долготу. Обе земные координаты, как видно, невозможно было получить, не вычислив координаты звёзд и других небесных тел.

как на небесной сфере определяют координаты звезд

При всей своей сложности и приблизительности описанная система определения местоположения в пространстве верой и правдой служила путешественникам на протяжении более чем двух веков.

Экваториальная первая система звёздных координат

В ней небесные координаты привязаны как к поверхности земли, так и к ориентирам на небосклоне. Первой координатой является склонение. Измеряется угол между линией, направленной на светило, и плоскостью экватора (плоскость, перпендикулярная оси мира – линии направления на Полярную звезду). Таким образом, для неподвижных объектов неба, таких как звёзды, эта координата всегда остаётся неизменной.

Второй координатой в системе будет угол между направлением на звезду и небесным меридианом (плоскость, в которой скрещиваются ось мира и отвес). Таким образом, вторая координата зависит от положения наблюдателя на планете, а также момента времени.

Использование этой системы весьма специфично. Ею пользуются при установке и отладке механизмов телескопов, смонтированных на поворотных платформах. Такой прибор может «следить» за объектами, вращающимися вместе с небесным куполом. Это делается для повышения времени экспозиции при фотографировании участков неба.

Экваториальная №2 звёздная

А как на небесной сфере определяют координаты звёзд? Для этого существует вторая экваториальная система. Оси её неподвижны относительно удалённых космических объектов.

Первой координатой, как и у первой экваториальной системы, является угол между светилом и плоскостью небесного экватора.

Вторая координата называется прямым восхождением. Это угол между двумя линиями, лежащими на плоскости небесного экватора и пересекающимися в точке его пересечения с осью мира. Первая линия прокладывается до точки весеннего равноденствия, вторая – до точки проекции светила на небесный экватор.

Угол прямого восхождения откладывается по дуге небесного экватора по часовой стрелке. Он может измеряться как в градусах от 0° до 360°, так и в системе «часы: минуты». Каждый час равен 15 градусам.

Как измерить прямое восхождение светила, показывает схема.

координаты звезд

Какими ещё бывают координаты звёзд?

Для определения нашего места среди других звёзд ни одна из перечисленных выше систем не подходит. Положение ближайших светил учёные фиксируют в эклиптической системе координат. Она отличается от второй экваториальной тем, что базовой плоскостью является плоскость эклиптики (плоскость, в которой лежит земная орбита вокруг Солнца).

И наконец, для определения расположения ещё более далёких объектов, таких как галактики, туманности, используется галактическая система координат. Нетрудно догадаться, что в ней за основу взята плоскость галактики Млечный Путь (так называется наша родная спиральная галактика).

Так ли всё идеально?

Не совсем. Координаты полярной звезды, а именно склонение, составляет 89 градусов 15 минут. Это значит, что почти на градус она находится в стороне от полюса. Для ориентирования на местности, если заблудившийся человек ищет дорогу, такое расположение идеально, а вот для планирования курса судна, которому предстоит пройти тысячи миль, приходилось делать поправку.

Да и неподвижность звёзд – явление кажущееся. Тысячу лет назад (совсем немного по космическим меркам) созвездия имели совсем иные очертания.

Так учёные долго не могли определить, для чего в пирамиде Хеопса от погребальной камеры уходит наклонный туннель на поверхность одной из граней. Выручила астрономия. Координаты самых ярких звёзд в разные периоды времени были вычислены досконально, и астрономы подсказали, что в период строительства пирамиды точно на линии, куда «смотрит» этот туннель, находилась звезда Сириус – символ бога Осириса, знак вечной жизни.

fb.ru

Ориентирование по солнцу, звездам, определение долготы и широты

Где бы ни оказался человек в результате аварийной ситуации, на суше или в океане, в джунглях или в пустыне, решил ли остаться на месте или отправиться в путь, он в первую очередь должен провести ориентирование, сориентироваться и определить свое местонахождение. 

По компасу ориентирование и определение сторон света несложно, но при его отсутствии можно прибегнуть к помощи солнца, звезд, растений и т. д. Направление на север в северном полушарии определяют, став в полдень спиной к солнцу. Тень, отброшенная телом, словно стрелка, укажет на север.

Ориентирование по часам, солнцу и звездам, определение географической долготы и широты полевых условиях

При этом запад будет по левую руку, а восток по правую. В южном полушарии все наоборот. Тень ляжет на юг, а запад и восток окажутся соответственно справа и слева. Если положить часы на горизонтальную поверхность и поворачивать их до тех пор, пока часовая стрелка не будет направлена в сторону солнца, а затем через центр циферблата на цифру 1 (13 часов) мысленно провести прямую линию, то биссектрисаугла, образованного ею и часовой стрелкой, пройдет с севера на юг (см рисунок). При этом до 12 часов дня юг будет находиться справа от солнца, а после двенадцати — слева.

Ориентирование в ночное время в северном полушарии легче всего по Полярной звезде, которая расположена над Северным полюсом. Отыскать ее на ночном небе помогает созвездие Большая Медведица, имеющее характерное очертание гигантского ковша с ручкой. Если через две крайние звезды ковша провести воображаемую прямую, а расстояние между ними отложить на этой линии пять раз, то на конце последнего отрезка будет видна яркая звезда — это и есть Полярная (см. рисунок). В южном полушарии обычно проводят ориентирование по созвездию Южный Крест — четырем ярким звездам, расположенным в форме креста.

Направление и ориентирование на юг определяют по линии А, мысленно проведенной через длинную ось Креста. Для более точного определения небесного Южного полюса пользуются двумя звездами-указателями, расположенными слева от Южного Креста. Соединив их воображаемой линией Б-В через ее середину, проводят перпендикуляр Г, который продолжают до пересечения с линией А. Точка пересечения находится практически над самым Южным полюсом (см. рисунок). Истинный Южный Крест иногда путают с ложным. Звезды ложного креста менее ярки и отстоят друг от друга на значительно большем расстоянии.

Ориентирование по часам, солнцу и звездам, определение географической долготы и широты полевых условияхОриентирование по часам, солнцу и звездам, определение географической долготы и широты полевых условиях

Существует немало простых, доступных методов, с помощью которых можно провести ориентирование и определить не только страны света, но и даже географические координаты без каких-либо специальных навигационных приборов (например, секстантов и др.). В основе одного из таких способов вычисления географической долготы лежит определение разницы во времени между наступлением местного полудня и показаниями часов в этот момент. Если они поставлены по астрономическому времени аэродрома вылета или порта отправления судна.

Местный полдень определяют с помощью шеста длиной 1 — 1,5 метра и нескольких колышков. Шест втыкают в землю строго вертикально (это легко проверить самым простейшим отвесом), а затем, по мере приближения солнца к зениту, отмечают колышками край тени, отбрасываемой шестом. Тень, перемещаясь, постепенно укорачивается, и тот момент, когда она стала самой короткой, и есть местный полдень, т. е. прохождение солнца через данный меридиан. Теперь остается только записать показания часов и произвести несложный расчет.

При переводе часов в градусы исходят из того, что 1 час соответствует 15°4′, минута — 1°4′, секунда — 1′ долготы. Следует учесть, что угловая скорость движения солнца меняется в зависимости от времени года, и поэтому в расчет необходимо ввести поправку, взятую из таблицы уравнения времени.

Ориентирование по часам, солнцу и звездам, определение географической долготы и широты полевых условиях

В зависимости от знака, стоящего перед поправкой, ее либо вычитают, либо прибавляют. Если часы поставлены по восточному стандартному .времени, то его следует перевести сначала в гринвичское, добавив пять часов. Затем, добавив (или отняв) поправку, полученный результат переводят в градусы.

Пример определения географической долготы в полевых условиях.

12 марта местный полдень наступил, когда часы показывали 14 часов 02 минуты, что по Гринвичу с учетом поясной поправки (5 час.) и поправки уравнения времени (-10 мин.) будет соответствовать 18 часам 52 минутам (14 час. 02 мин. + 5 час-10 мин.). Искомая разность (18 час. 52 мин.-12 час.) равна 6 часам 52 минутам, что при переводе в градусы соответствует 103 градуса долготы, причем долготы западной, так как местный полдень наступил позже гринвичского. Указанный метод позволяет определять долготу места с точностью до 2 — 3 градусов.

Географическую широту места (между 60° северной широты и 60° южной широты) рассчитывают с точностью в полградуса (50 км) по продолжительности дня, т.е. времени от появления солнечного диска над линией горизонта до момента полного его исчезновения. Этот способ особенно удобен для определения широты в океане в тихую, штилевую погоду. Лишь дважды в году, с 11 по 31 марта и с 13 сентября по 2 октября, когда продолжительность дня на всех широтах примерно равна, этот метод оказывается непригодным.

Ориентирование по часам, солнцу и звездам, определение географической долготы и широты полевых условиях

Определив продолжительность дня (точность хода часов при этом не играет роли) по номограмме (см. рисунок), нетрудно установить широту своего местонахождения. Для определения северных широт необходимо.

— Замерить долготу дня с момента появления вершины солнечного диска над горизонтом океана при восходе до момента его полного исчезновения за горизонтом при заходе.— Найти на левой шкале цифру полученной долготы дня и соединить ее с соответствующей датой на правой шкале с помощью линейки или натянутой нити. В точке пересечения линейки или нити с горизонтальной шкалой широт находится искомая широта.

Пример определения географической широты в полевых условиях.

20 августа замеренная долгота дня 13 часов 54 минуты. Широта по номограмме 45°30′. Для определения южных широт следует: прибавить 6 месяцев к соответствующей дате и по новой дате определить широту, как указано выше.

Пример.

11 мая замеренная долгота дня 10 час. 04 мин. Прибавив 6 месяцев, получим 11 ноября, широта по номограмме 41°30′ ю. ш. При использовании номограмма должна представлять совершенно ровную поверхность.

При поломке или утере часов местное время с относительной точностью узнают по компасу, измерив азимут на солнце. Разделив его затем на 15 (величина поворота солнца за один час) и добавив к частному единицу, мы получим число, которое будет указывать местное время в момент отсчета.

Например.

Азимут солнца 180 градусов будет соответствовать 13 часам по местному времени (180 : 15 + 1 = 13).

Ночью для определения можно воспользоваться «звездными часами». Циферблатом для них служит небосвод с Полярной звездой в центре, а стрелкой — воображаемая линия, проведенная к ней через две звезды ковша Большой Медведицы (см. рисунок). Если небосвод мысленно разделить на 12 равных частей, то каждая из них будет соответствовать условному часу.

Определение местного времени по компасу и звездам

Для определения времени к условному часу приплюсовывается порядковый номер месяца с десятыми (каждые трое суток равны 0,1). Полученную сумму удваивают, а затем отнимают от постоянного числа 55,3. В случае когда разность превышает число 24, его также надо отнять. Результат расчета — это и есть местное время.

Например.

12 августа «стрелка» показывала 6 час. Поскольку август — восьмой месяц, а 12 дней равны 0,4, то 6 + 8,4 = 14,4; 14,4 х 2 = 28,8; 55,3 -28,8 = 26,5; 26,5 — 24 = 2,5. Таким образом, местное время — 2 часа 30 минут ночи.

По материалам книги «Человек в экстремальных условиях природной среды». В.Г. Волович.

Другие статьи схожей тематики :

survival.com.ua

Определение географических координат по звездам.

Я полагаю, вы знаете, что такое географические координаты и что высота полярной звезды над горизонтом приблизительно равна широте места наблюдения. Точнее - высота полюса мира, так как полярная находится не точно в точке полюса, а отстоит от него почти на градус. Значит, для измерения широты достаточно измерить высоту полюса мира. Давайте опять прочитаем отрывок из все того же "Таинственного Острова".

Сайрес смит возвратился в Трубы. При свете очага он обстругал две маленькие гладкие дощечки и соединил их концами, так что получилось нечто вроде циркуля с раздвижными ножками. Для скрепления послужил толстый шип акации, найденный среди хвороста.

На юге линия горизонта, освещенная снизу первыми лучами луны, резко выделялась на небе и могла быть определена с достаточной точностью. В эту минуту созвездие южного креста казалось наблюдателю опрокинутым, а альфа находилась в основании созвездия, более приближенном к южному полюсу.

Это созвездие расположено не так близко к антарктическому полюсу, как полярная звезда к полюсу арктическому. Звезда альфа от него примерно на двадцать семь градусов отстоит. Сайресу Смиту это было известно, и он должен был учитывать данное расстояние при своих вычислениях к тому же инженер наблюдал эту звезду в момент ее прохождения через нижний меридиан это значительно облегчало вычисления.

Сайрес Смит направил одну ножку своего циркуля на морской горизонт, другую - на звезду альфа и по расстоянию между ними определил угловое расстояние альфы от горизонта. Чтобы твердо зафиксировать полученный угол, он приколол шипами акации обе ножки прибора к третьей поперечной дощечке, так что расстояние между ними было твердо закреплено.

После сделанного оставалось лишь вычислить этот угол, с поправкой на высоту над уровнем моря и учитывая понижение горизонта. Для этого надо было определить высоту плато. Величина угла даст высоту звезды альфа, а следовательно, и полюса над горизонтом - то есть широту острова, ибо широта какой-либо точки на земном шаре всегда равна высоте полюса над горизонтом в этой точке.

Здесь тоже автор допустил ошибку - в это время года (описанные события происходят в апреле) южный крест около полуночи находится в верхней кульминации, а не в нижней, т. е. пересекает меридиан не ниже, а выше полюса и высота альфы превышает 60\xB0. Но дело даже не в этом - чтобы пользоваться таким "Угломерным Инструментом" нужно быть, наверное, хамелеоном - во всяком случае, такой большой угол визировать с рук точно не получится. Прибор придется, как минимум, установить на какое-то подобие штатива. Кстати, намного проще и точнее было бы измерять не высоту звезды над горизонтом, а её зенитное расстояние (направление вертикали не нужно визировать - его легко получить с помощью отвеса).

К тому же я, житель северного полушария (как и герои Жюля верна), ни за что бы не вспомнил склонение альфы южного креста. А вы? Пожалуй, стоит подумать над другим способом - и этот способ известен еще с древних времен. Это определение широты по солнцу с помощью гномона.

Как и в предыдущей работе, определим высоту солнца - только на этот раз в момент полдня, когда тень гномона совпадает с полуденной линией (кстати, отметьте и точное время полдня - нам оно пригодится в дальнейшем.

Теперь главная проблема в определении широты - нахождение склонения солнца на момент наблюдений, причем желательно без компьютера (ведь мы на необитаемом острове. Думаю, даже феноменальная память сайреса Смита тут не поможет, значение этой величины придется посчитать, но - без расчетов!

Слонение солнца.

Мы знаем, что склонение солнца изменяется от - 23, 5\xB0 до 23, 5\xB0 (это наклон земной оси к эклиптике и широты линий тропиков, я надеюсь, что уж эти значения мы вспомним даже на необитаемом острове. Нам придется несколько упростить задачу и считать, что солнце движется по эклиптике равномерно. В этом случае склонение солнца приблизительно можно определить по формуле.

О = 23, 5\xB0sin (D*360/365), где.

D - количество дней, прошедших после весеннего равноденствия.

Графически это можно сделать так:

Построим окружность радиусом 23, 5 единицы (что именно будет этой единицей измерения нам не важно - спичка, например, если придется рисовать на песке), разделим ее на 12 частей, как в предыдущей работе, только на этот раз деления будут изображать месяцы, точнее, интервалы в 30, 5 суток. Теперь нужно лишь отложить на окружности дату наших наблюдений, считая горизонтальную ось - линией равноденствий (21 марта и 22 сентября), а вертикальную - солнцестояний (22 июня и 22 декабря. Дату лучше откладывать от ближайшей из этих точек для уменьшения ошибок. Проекция найденной точки на вертикальную ось и даст значение склонения солнца? О - осталось только точно измерить его нашим "Эталоном Длины" - спичкой. Такое простое построение гарантирует определение склонения с точностью не хуже 1/2 градуса.

Определение широты по солнцу.

Теперь можно найти широту точки наблюдения - из рисунка видно, что.

=90\xB0-h? О, где.

О - склонение солнца, h - высота солнца над горизонтом.

Теперь займемся долготой. Здесь без знания времени не обойтись, но, в отличие от жюльверновского XIX века, теперь точные часы не редкость, так что будем полагать, что нам известно время с ошибкой не более полминуты. На этот раз наша задача, кажется, очень проста - ведь долгота (в часовой мере) есть разность между местным и гринвичским временем. Осталось только определить гринвичское время. Но так как мы определяем момент полдня по солнцу, (т. е. по истинному солнечному времени) то и гринвичское время нам нужно тоже истинное солнечное. Наши же часы среднее поясное время показывают. Дело в том, что солнце движется по эклиптике неравномерно и продолжительность суток немного меняется на протяжении года, что, конечно, очень неудобно для счета времени. Поэтому и было принято "Равномерное" среднее солнечное время, которое определяется по воображаемой точке, совершенно равномерно движущейся по небесному экватору. Разница между средним и истинным солнечным временем может достигать 16 минут и называется уравнением времени. О нем мы поговорим в следующей главе, пока же будем считать, что эта поправка нам известна или мы наблюдаем в один из дней, когда среднее солнечное время совпадает с истинным - это происходит 4 раза в году - 16 апреля, 14 июня, 1 сентября и 25 декабря.

= tm -tгр = tm - (Tn - n ), где.

- Географическая долгота.

tгр - Истинное гринвичское солнечное время.

tm - истинное местное время.

Tn - среднее поясное время n - го часового пояса.

- Уравнение времени.

А в момент местного полдня.

= 12 ч -tгр = 12 ч - Tn n -?

(Долгота считается положительной к Востоку от Гринвича).

Номер часового пояса в этой формуле - целое число, показывающее, на сколько часов поясное время отличается от гринвичского. Так, Москва находится во втором часовом поясе, но в 30-е годы XX века было введено "Декретное" время, на час опережающее поясное, кроме того, летом стрелки часов переводятся еще на час вперед, следовательно, разница между московским и гринвичским временем составляет 3 часа зимой и 4 - летом.

Теперь мы можем определить гринвичское истинное солнечное время, а, следовательно, и географическую долготу места наблюдения.

А теперь снова посмотрим, как действовали герои Жюля верна:

- Сегодня пятнадцатое апреля, не правда ли?

- Да, мистер сайрес, - ответил юноша.

- В таком случае, завтра, если не ошибаюсь, наступит один из четырех дней в году, когда истинное время совпадает со средним. Иначе говоря, дитя мое, завтра солнце пересечет меридиан за несколько секунд до полудня. В случае если будет хорошая погода, мне, вероятно, удастся определить долготу нашего острова с приближением до нескольких градусов.

Сайрес Смит отыскал на берегу совершенно чистое место, хорошо выровненное отливом. Тонкий слой песка был гладок, как зеркало, песчинки лежали одна к одной, словно на подбор. Впрочем, этот слой мог быть не вполне горизонтальным, а воткнутая в него шестифутовая жердочка могла стоять и не совсем отвесно. Наоборот, инженер даже наклонил ее слегка к югу, то есть в противоположную от солнца сторону, ибо не следует забывать, что обитатели острова линкольна находились в южном полушарии и потому видели дневное светило не над южным, а над северным горизонтом.

Тут харберт понял, каким образом инженер собирается установить момент кульминации солнца или его прохождения через меридиан, то есть, другими словами, время полудня для данной местности. Этому должна была служить тень палочки на песке. Таким способом сайрес Смит без всяких инструментов мог получить достаточно точные результаты.

Действительно, в ту минуту, когда тень станет короче всего, будет ровно двенадцать часов дня. Наблюдателю оставалось только следить за концом тени, чтобы заметить, когда она снова начнет удлиняться. Наклонив жердь к югу, Смит увеличил размеры тени, чтобы легче было наблюдать за ее изменениями. Ведь чем крупнее стрелка часов, тем заметнее ее движение. А тень жердочки на песке была, в сущности, той же стрелкой на циферблате.

Когда нужный момент наступил, сайрес Смит опустился на колени и начал отмечать постепенное уменьшение тени, втыкая в землю маленькие прутики. Товарищи инженера, низко склонившись, с величайшим интересом следили за этой операцией.

Журналист держал в руках свой хронометр, готовясь отметить его показания в ту минуту, когда тень будет всего короче. Вычисление производилось 16 апреля, в день, когда среднее время совпадает с истинным временем. Следовательно, показания часов Гедеона спилета должны были соответствовать истинному вашингтонскому времени, что значительно упрощало вычисления.

Между тем солнце медленно подвигалось по небу. Тень от палочки все короче становилась. Но вот инженеру показалось, что она снова начала удлиняться, и он спросил:

- Который час?

- Пять часов и одна минута, - немедленно ответил спилет.

Теперь оставалось только сделать расчет. Это было весьма просто. Разница во времени между Вашингтоном и островом линкольна составляла, в круглых цифрах, пять часов - иначе говоря, когда на острове линкольна наступил полдень, в Вашингтоне было уже пять часов вечера. Солнце в своем кажущемся движении вокруг земли проходит один градус в четыре минуты, или пятнадцать градусов в час. Пятнадцать градусов, умноженные на пять, составляют семьдесят пять градусов.

Итак, если Вашингтон лежит на 77\xB03'11", или, в круглых цифрах, на семьдесят седьмом градусе от гринвичского меридиана, который американцы, подобно англичанам, считают за нулевой, то, значит, остров линкольна расположен на 77\xB0 75\xB0 к Западу от Гринвича, то есть на 152\xB0 западной долготы.

Сайрес смит сообщил эту цифру своим товарищам. Учитывая, как и при измерении широты, погрешности наблюдения, он счел возможным утверждать, что остров линкольна лежит между тридцать пятой и сороковой параллелями и между сто пятидесятым и сто пятьдесят пятым меридианами к Западу от Гринвича.

М - да. Все рассуждения и вычисления безукоризненны, но с практическими наблюдениями на этот раз все совсем плохо. Длина тени около полудня изменяется довольно медленно и определить момент, когда она станет самой короткой вряд ли получится с точностью лучше, чем 10-15 минут, да и наклон гномона "на Глазок", как и возможная негоризонтальность площадки только внесут дополнительные ошибки в измерения. И ведь что самое обидное - инженер ранее определил направление меридиана, но почему-то не воспользовался им для определения момента полдня.

А какова точность полученного нами результата? Попробуем оценить ее хотя бы приблизительно. Примем, что ошибка наблюдения тени гномона в угловой мере не превышает 1/2\xB0 и вызвана нечеткостью тени, примерно такую же по величине ошибку могут дать погрешности при установке гномона (отклонение его от вертикали и площадки от горизонтальной поверхности), наши геометрические построения при определении склонения солнца и его высоты - еще 1/2\xB0. То есть суммарная ошибка (а ошибки имеют противное свойство складываться; ) может достигнуть полутора градусов. При определении долготы ошибки вызваны только наблюдениями с помощью гномона, и погрешностью хода наших часов. Лишь в том случае, если мы знаем время с точностью до полуминуты, что составляет 1/8\xB0 в переводе в угловые величины, то суммарная ошибка может составить около 1\xB0 8' дуги. Чтобы оценить эти величины в единицах расстояния нужно вспомнить, что 1 морская миля (1852 м) равна средней длине дуги меридиана в 1 угловую минуту. Значит, отклонение определенных нами координат от истинных не превысит 90 миль по широте и 68 миль по долготе, причем с учетом того, что мы находимся не на экваторе (длина дуги в 1' параллели уменьшается с увеличением широты), долготная ошибка может быть заметно меньше.

science.ru-land.com

Определение географических координат по звездам.

 

Я полагаю, вы знаете, что такое географические координаты и что высота Полярной звезды над горизонтом приблизительно равна широте места наблюдения. Точнее - высота Полюса мира, так как Полярная находится не точно в точке полюса, а отстоит от него почти на градус. Значит, для измерения широты достаточно измерить высоту полюса мира. Давайте опять прочитаем отрывок из все того же "Таинственного острова"

Сайрес Смит возвратился в Трубы. При свете очага он обстругал две маленькие гладкие дощечки и соединил их концами, так что получилось нечто вроде циркуля с раздвижными ножками. Для скрепления послужил толстый шип акации, найденный среди хвороста.

На юге линия горизонта, освещенная снизу первыми лучами Луны, резко выделялась на небе и могла быть определена с достаточной точностью. В эту минуту созвездие Южного Креста казалось наблюдателю опрокинутым, а Альфа находилась в основании созвездия, более приближенном к Южному полюсу.

Это созвездие расположено не так близко к Антарктическому полюсу, как Полярная звезда к полюсу арктическому. Звезда Альфа отстоит от него примерно на двадцать семь градусов. Сайресу Смиту это было известно, и он должен был учитывать данное расстояние при своих вычислениях К тому же инженер наблюдал эту звезду в момент ее прохождения через нижний меридиан Это значительно облегчало вычисления.

Сайрес Смит направил одну ножку своего циркуля на морской горизонт, другую - на звезду Альфа и по расстоянию между ними определил угловое расстояние Альфы от горизонта. Чтобы твердо зафиксировать полученный угол, он приколол шипами акации обе ножки прибора к третьей поперечной дощечке, так что расстояние между ними было твердо закреплено.

После сделанного оставалось лишь вычислить этот угол, с поправкой на высоту над уровнем моря и учитывая понижение горизонта. Для этого надо было определить высоту плато. Величина угла даст высоту звезды Альфа, а следовательно, и полюса над горизонтом - то есть широту острова, ибо широта какой-либо точки на земном шаре всегда равна высоте полюса над горизонтом в этой точке.

 

Здесь тоже автор допустил ошибку - в это время года (описанные события происходят в апреле) Южный Крест около полуночи находится в верхней кульминации, а не в нижней, т.е. пересекает меридиан не ниже, а выше полюса и высота Альфы превышает 60°. Но дело даже не в этом - чтобы пользоваться таким "угломерным инструментом" нужно быть, наверное, хамелеоном - во всяком случае, такой большой угол визировать с рук точно не получится. Прибор придется, как минимум, установить на какое-то подобие штатива. Кстати, намного проще и точнее было бы измерять не высоту звезды над горизонтом, а её зенитное расстояние (направление вертикали не нужно визировать - его легко получить с помощью отвеса!)

К тому же я, житель северного полушария (как и герои Жюля Верна), ни за что бы не вспомнил склонение Альфы Южного Креста. А вы?;)

Пожалуй, стоит подумать над другим способом - и этот способ известен еще с древних времен. Это определение широты по Солнцу с помощью гномона.

Как и в предыдущей работе, определим высоту Солнца - только на этот раз в момент полдня, когда тень гномона совпадает с полуденной линией (кстати, отметьте и точное время полдня - нам оно пригодится в дальнейшем!).

Теперь главная проблема в определении широты - нахождение склонения Солнца на момент наблюдений, причем желательно без компьютера (ведь мы на необитаемом острове). Думаю, даже феноменальная память Сайреса Смита тут не поможет, значение этой величины придется посчитать, но - без расчетов!

слонение Солнца

Мы знаем, что склонение Солнца изменяется от -23,5° до +23,5° (это наклон земной оси к эклиптике и широты линий тропиков, я надеюсь, что уж эти значения мы вспомним даже на необитаемом острове). Нам придется несколько упростить задачу и считать, что Солнце движется по эклиптике равномерно. В этом случае склонение Солнца приблизительно можно определить по формуле

δо=23,5°sin(D*360/365) , где

D - количество дней, прошедших после весеннего равноденствия

 

Графически это можно сделать так:

Построим окружность радиусом 23,5 единицы (что именно будет этой единицей измерения нам не важно - спичка, например, если придется рисовать на песке), Разделим ее на 12 частей, как в предыдущей работе, только на этот раз деления будут изображать месяцы, точнее, интервалы в 30,5 суток. Теперь нужно лишь отложить на окружности дату наших наблюдений, считая горизонтальную ось - линией равноденствий (21 марта и 22 сентября), а вертикальную - солнцестояний (22 июня и 22 декабря). Дату лучше откладывать от ближайшей из этих точек для уменьшения ошибок. Проекция найденной точки на вертикальную ось и даст значение склонения Солнца δо - осталось только точно измерить его нашим "эталоном длины" - спичкой. Такое простое построение гарантирует определение склонения с точностью не хуже 1/2 градуса.

определение широты по Солнцу

Теперь можно найти широту точки наблюдения - из рисунка видно, что

φ=90°-h+δо , где

δо- склонение Солнца,

h - высота Солнца над горизонтом

Теперь займемся долготой. Здесь без знания времени не обойтись, но, в отличие от жюльверновского XIX века, теперь точные часы не редкость, так что будем полагать, что нам известно время с ошибкой не более полминуты. На этот раз наша задача, кажется, очень проста - ведь долгота (в часовой мере) есть разность между местным и гринвичским временем. Осталось только определить гринвичское время. Но так как мы определяем момент полдня по Солнцу, (т.е. по истинному солнечному времени) то и гринвичское время нам нужно тоже истинное солнечное. Наши же часы показывают среднее поясное время. Дело в том, что Солнце движется по эклиптике неравномерно и продолжительность суток немного меняется на протяжении года, что, конечно, очень неудобно для счета времени. Поэтому и было принято "равномерное" среднее солнечное время, которое определяется по воображаемой точке, совершенно равномерно движущейся по небесному экватору. Разница между средним и истинным солнечным временем может достигать 16 минут и называется уравнением времени. О нем мы поговорим в следующей главе, пока же будем считать, что эта поправка нам известна или мы наблюдаем в один из дней, когда среднее солнечное время совпадает с истинным - это происходит 4 раза в году - 16 апреля, 14 июня, 1 сентября и 25 декабря.

λ=tm-tгр = tm-(Tn-n+η), где

λ - географическая долгота

tгр - истинное гринвичское солнечное время

tm-истинное местное время

Tn-среднее поясное время n-го часового пояса

η-уравнение времени

 

А в момент местного полдня

λ=12ч-tгр=12ч-Tn+n-η

(долгота считается положительной к востоку от Гринвича)

 

Номер часового пояса в этой формуле - целое число, показывающее, на сколько часов поясное время отличается от гринвичского. Так, Москва находится во втором часовом поясе, но в 30-е годы XX века было введено "декретное" время, на час опережающее поясное, кроме того, летом стрелки часов переводятся еще на час вперед, следовательно, разница между московским и гринвичским временем составляет 3 часа зимой и 4 - летом.

Теперь мы можем определить гринвичское истинное солнечное время, а, следовательно, и географическую долготу места наблюдения.

А теперь снова посмотрим, как действовали герои Жюля Верна:

- Сегодня пятнадцатое апреля, не правда ли?

- Да, мистер Сайрес, - ответил юноша.

- В таком случае, завтра, если не ошибаюсь, наступит один из четырех дней в году, когда истинное время совпадает со средним. Иначе говоря, дитя мое, завтра солнце пересечет меридиан за несколько секунд до полудня. Если будет хорошая погода, мне, вероятно, удастся определить долготу нашего острова с приближением до нескольких градусов.

...

Сайрес Смит отыскал на берегу совершенно чистое место, хорошо выровненное отливом. Тонкий слой песка был гладок, как зеркало, песчинки лежали одна к одной, словно на подбор. Впрочем, этот слой мог быть не вполне горизонтальным, а воткнутая в него шестифутовая жердочка могла стоять и не совсем отвесно. Наоборот, инженер даже наклонил ее слегка к югу, то есть в противоположную от солнца сторону, ибо не следует забывать, что обитатели острова Линкольна находились в Южном полушарии и потому видели дневное светило не над южным, а над северным горизонтом.

Тут Харберт понял, каким образом инженер собирается установить момент кульминации солнца или его прохождения через меридиан, то есть, другими словами, время полудня для данной местности. Этому должна была служить тень палочки на песке. Таким способом Сайрес Смит без всяких инструментов мог получить достаточно точные результаты.

Действительно, в ту минуту, когда тень станет короче всего, будет ровно двенадцать часов дня. Наблюдателю оставалось только следить за концом тени, чтобы заметить, когда она снова начнет удлиняться. Наклонив жердь к югу, Смит увеличил размеры тени, чтобы легче было наблюдать за ее изменениями. Ведь чем крупнее стрелка часов, тем заметнее ее движение. А тень жердочки на песке была, в сущности, той же стрелкой на циферблате.

Когда нужный момент наступил, Сайрес Смит опустился на колени и начал отмечать постепенное уменьшение тени, втыкая в землю маленькие прутики. Товарищи инженера, низко склонившись, с величайшим интересом следили за этой операцией.

Журналист держал в руках свой хронометр, готовясь отметить его показания в ту минуту, когда тень будет всего короче. Вычисление производилось 16 апреля, в день, когда среднее время совпадает с истинным временем. Следовательно, показания часов Гедеона Спилета должны были соответствовать истинному вашингтонскому времени, что значительно упрощало вычисления.

Между тем солнце медленно подвигалось по небу. Тень от палочки становилась все короче. Но вот инженеру показалось, что она снова начала удлиняться, и он спросил:

- Который час?

- Пять часов и одна минута, - немедленно ответил Спилет.

Теперь оставалось только сделать расчет. Это было весьма просто. Разница во времени между Вашингтоном и островом Линкольна составляла, в круглых цифрах, пять часов - иначе говоря, когда на острове Линкольна наступил полдень, в Вашингтоне было уже пять часов вечера. Солнце в своем кажущемся движении вокруг Земли проходит один градус в четыре минуты, или пятнадцать градусов в час. Пятнадцать градусов, умноженные на пять, составляют семьдесят пять градусов.

Итак, если Вашингтон лежит на 77°3'11", или, в круглых цифрах, на семьдесят седьмом градусе от Гринвичского меридиана, который американцы, подобно англичанам, считают за нулевой, то, значит, остров Линкольна расположен на 77°+75° к западу от Гринвича, то есть на 152° западной долготы.

Сайрес Смит сообщил эту цифру своим товарищам. Учитывая, как и при измерении широты, погрешности наблюдения, он счел возможным утверждать, что остров Линкольна лежит между тридцать пятой и сороковой параллелями и между сто пятидесятым и сто пятьдесят пятым меридианами к западу от Гринвича.

 

М-да... Все рассуждения и вычисления безукоризненны, но с практическими наблюдениями на этот раз все совсем плохо... Длина тени около полудня изменяется довольно медленно и определить момент, когда она станет самой короткой вряд ли получится с точностью лучше, чем 10-15 минут, да и наклон гномона "на глазок", как и возможная негоризонтальность площадки только внесут дополнительные ошибки в измерения. И ведь что самое обидное - инженер ранее определил направление меридиана, но почему-то не воспользовался им для определения момента полдня.

А какова точность полученного нами результата? Попробуем оценить ее хотя бы приблизительно. Примем, что ошибка наблюдения тени гномона в угловой мере не превышает 1/2° и вызвана нечеткостью тени, примерно такую же по величине ошибку могут дать погрешности при установке гномона (отклонение его от вертикали и площадки от горизонтальной поверхности), наши геометрические построения при определении склонения Солнца и его высоты - еще 1/2°. То есть суммарная ошибка (а ошибки имеют противное свойство складываться ;)) может достигнуть полутора градусов. При определении долготы ошибки вызваны только наблюдениями с помощью гномона, и погрешностью хода наших часов. Если мы знаем время с точностью до полуминуты, что составляет 1/8° в переводе в угловые величины, то суммарная ошибка может составить около 1° 8' дуги. Чтобы оценить эти величины в единицах расстояния нужно вспомнить, что 1 морская миля (1852 м) равна средней длине дуги меридиана в 1 угловую минуту. Значит, отклонение определенных нами координат от истинных не превысит 90 миль по широте и 68 миль по долготе, причем с учетом того, что мы находимся не на экваторе (длина дуги в 1' параллели уменьшается с увеличением широты), долготная ошибка может быть заметно меньше.                         ( по материаламhttp://astroexperiment.ru  )

www.galaxy-science.ru

Как найти Полярную звезду?

Как найти Полярную звезду?Жителям Северного полушария Земли повезло — зная как найти Полярную звезду, они даже без компаса и ориентиров определят север. Она всегда висит в одной части неба и указывает на север точнее любого прибора — этим часто пользуются астрономы для точной ориентации на местности. Кроме того, ее высота над горизонтом соответствует географической широте. Однако как найти эту столь полезную Полярную звезду? Сегодня мы вместе рассмотрим базовые приемы.

Особенности Полярной звезды и главные мифы

Прежде чем искать Полярную звезду, стоит разобраться с ее главными свойствами. Это поможет не только быстрее найти ее на звездном небе, где нет надписей с названиями звезд и линий созвездий, но избежать типичных ошибок. А еще среди людей бытуют заблуждение относительно Полярной звезды. Итак, преимущественно ошибаются в следующих вещах:

  1. Полярная звезда находится в зените — то есть прямо над головой. Это очевидно не так: как бы она тогда она указывала на север, раз лежит ровно по центру? «Полярной» звезда называется потому, что размещена на небесной сфере ровно над Северным полюсом Земли. К слову, только там ее можно увидеть посередине неба. Чем дальше от полюса — тем ниже к горизонту опускается звезда, пока полностью не скрывается от глаз на экваторе. По этой же причине Полярная звезда не может служить ориентиром в южной половине планеты — там направление определяют по созвездию Южный Крест.Звезды Малой медведицы

    Звезды Малой Медведицы — созвездия, к которому принадлежит Полярная звезда

    Интересный факт: Полярная звезда действительно помогает определить север точнее компаса. Мы уже знаем, что она находится ровно над Северным полюсом планеты. А вот компас указывает на северный магнитный полюс Земли, который несколько отдален от географического и ежегодно смещается на пару километров. Поэтому ближе к северу Полярная звезда становится наиболее точным инструментом для определения координат.

  2. Полярная звезда — самая яркая на небе. Если вы заблудитесь и воспользуетесь этим убеждением, то оно будет стоить вам жизни. Увы, сила сияния — звездная величина Полярной звезды — не очень большая; звезда не входит даже в первые десятки самых ярких звезд, довольствуясь скромным 48-м местом. Впрочем, это не усложняет ее поиск. Но если руководствоваться одной лишь яркостью, больше шансов найти Сириус или Вегу, но никак не Полярную звезду.Вокруг Полярной звезды находится множество звезд, которые намного ярче

    Вокруг Полярной звезды находится множество звезд, которые намного ярче

    Но такое положение вещей продлится ненадолго. Земная ось постоянно смещается по кругу, причем очень быстро в космических масштабах — полный оборот происходит приблизительно за 25800 лет. Поэтому Полярная звезда не всегда была полярной, и останется ею ненадолго. Через 13 тысяч лет место на полюсе займет уже упомянутая яркая Вега, тем самым облегчая поиски севера землянам будущего.

  3. Полярная звезда всегда находится на одном и том же месте. Отчасти это правда. Как вы уже наверняка знаете, небесная сфера постоянно вращается — точнее, сама Земля вращается относительно неподвижных звезд. Полярная звезда находится ближе всего к полюсу, и поэтому почти не перемещается. «Почти» тут ключевое слово — отклонение от полюса составляет всего 1°, делая ее наименее подвижной среди других звезд.Однако мы уже знаем, что местоположение Полярной звезды меняется в зависимости от широты. Поэтому в Москве звезду не найти на том месте, где она была вчера Санкт-Петербурге — звезда опустится ниже, ближе к горизонту.Так что единожды найдя Полярную звезду, не стоит расслабляться. В зависимости от сезона, времени суток и географических координат созвездия вокруг занимают разные позиции. Поэтому стоит отработать методику самостоятельного поиска Полярной звезды — тем более что это совсем несложно.

Как найти Полярную звезду?

Теперь, когда мы разобрались с тем, что же такое Полярная звезда, пора приступать к ее поискам. Среди методов стоит выделить два основных: поиск по созвездиям и с помощью технических средств.

Поиск по созвездиям

Если небо не заслонено облаками, а ваше зрение позволяет вам видеть хотя бы самые яркие звезды, проще — и быстрее всего — искать Полярную звезду по созвездиям. Преимущество этого метода кроется в точности — звезды всегда неподвижны относительно друг друга. Кроме того, Полярная звезда тоже участвует в созвездиях — она находится на конце «хвоста» созвездия Малой Медведицы и является самой яркой его звездой.

Большая, Малая Медведицы и Полярная звезда

Большая, Малая Медведицы и Полярная звезда

Первый и наиболее простой способ — найти на небе созвездие Большой Медведицы, а именно его основную часть, Большой Ковш. Его широкую часть у «головы», противоположную «хвосту», образуют две звезды — Мерак «внизу» и более яркая Дубхе «сверху».

Вращение Большой Медведицы вокруг Полярной звезды

Вращение Большой Медведицы вокруг Полярной звезды

Итак, представим себе Большую Медведицу и ее Ковш. Слева у нас будет «хвост» и узкая сторона ковша, справа — широкая. На широкой части находим две звезды и проводим прямую от менее яркой Мерак в сторону яркой — Дубхе. На расстоянии, равном 5 расстояниям от Мерака к Дубхе, вы найдете кончик «хвоста» Малой Медведицы и Полярную звезду. Она ярчайшая в том районе, так что ошибиться трудно.

Стоит помнить, что этот метод ориентируется в первую очередь на составляющие созвездий. Большая и Малая Медведицы, как и другие созвездия, постоянно кружат по небу — Ковш может быть и перевернут, и стоять «на ребре». Чтобы облегчить проведение прямой по небу, используйте линейку, прут или палец — так точно не промажешь мимо Полярной звезды.

Малая Медведица, Цефей и Кассиопея

Малая Медведица, Цефей и Кассиопея

Большая Медведица — достаточно большое созвездие, и потому может быть частично или полностью скрыто облаками или препятствиями, вроде высоких зданий и деревьев. Поэтому найти Полярную звезду тоже поможет меньшее, но не менее выразительное созвездие Кассиопеи. В зависимости от положения, оно выглядит как буква «М» или «W», только с немного более растянутыми краями. Его центральная стрелка всегда «указывает» на созвездие Малой Медведицы, где и находится Полярная звезда. Проверить результат можно найдя рядом Большую Медведицу или Цефея — созвездие между Малой Медведицей и Кассиопеей, напоминающее домик с крышей.

Давайте сразу проверим все эти методы. На рисунках до этого были изображены звезды весеннего неба над Москвой. На картинке ниже находится небо Сочи того же дня, без пометок и названий. Сможете ли найти на нем Полярную звезду?

Поиск Полярной звезды

Среди других звезд тут есть Полярная звезда. Где она? Правильный ответ вот тут.

С помощью технических средств

Но бывает и так, что самому искать созвездия не представляется возможным: деревья закрывают часть небосклона, облачность неравномерно распределилась по небу, или же звезды попросту не складываются в созвездия из-за неопытности. Тогда на помощь в поисках Полярной звезды приходят технические приспособления.

Если у вас под рукой оказался фотоаппарат — в идеале популярная сегодня «зеркалка» — значит Полярная звезда почти у вас в «руках». Наверняка многие из вас видели фото звездного неба, сделанные с большой выдержкой — движущиеся звезды оставляют светящиеся треки на небе. И чем длиннее трек, тем большую дистанцию прошла звезда. А так как Полярная звезда расположена у оси небесной сферы и почти не двигается, то на снимке получится следующая картина — треки всех звезд образуют концентрические круги возле самого маленького и короткого. Это и есть след Полярной звезды.

Треки звезд

Треки звезд

Есть, конечно, свои нюансы. Так, на фотоаппарате придется вручную открыть диафрагму на максимум, выставить фокус на бесконечность и правильную светочувствительность в пределах ISO 400–600 — иначе снимок будет сильно засвечен. Время выдержки при такой чувствительности стоит выставлять до получаса: обычно этого достаточно, чтобы отчетливо увидеть треки. Так как дело будет происходить ночью, важно учесть возможность образования конденсата на объективе. Самый легкий способ избежать этого — вынуть фотоаппарат из сумки, положить на холодную сухую поверхность и дать ему «подышать» пару минут. Так он остынет, и конденсат можно будет убрать до того, как делать снимок. И само собой надо зафиксировать фотоаппарат, так как любое его движение сведет потраченное время на нет. Однако для точного результата стоит поэкспериментировать с вашим фотоаппаратом, дабы определить точные настройки. Например, для установки длительной выдержки, не предусмотренной производителем, может потребоваться специальный пульт.

Если же подходящего фотоаппарата нет, воспользуйтесь специальными приложениями для мобильных телефонов. На базе Android есть приложение Stellarium, а для iOS — Sky Guide; также существуют многочисленные аналоги. Они помогут определить созвездия на небе с помощью камеры смартфона, или же рассчитать их положение для заданного места, сезона и времени суток. Эта функция самая полезная— хотя эти программы и усиливают камеру, часто она чисто технически неспособна «увидеть» звезды.

comments powered by HyperComments

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 6583

Система Orphus

spacegid.com

Небесные координаты и звёздные карты

Все мы не раз с вами видели, как каждое утро в восточной стороне неба восходит Солнце. Оно появляется из-за далёких предметов или неровностей земной поверхности. Затем постепенно поднимается над горизонтом и, наконец, в полдень достигает наивысшего положения на небе. В это момент человек, находящийся в северном полушарии Земли, будет видеть Солнце на юге, а находящийся в южном полушарии — на севере. После полудня Солнце постепенно опускается, приближаясь к горизонту, и заходит в западной части неба.

Такое же движение по небу в течение суток можно заметить и у других светил: Луны, звёзд и планет. В целом нам кажется, что небосвод вращается как единое целое вокруг некоторой оси, называемой нами осью мира.

При наблюдении звёзд ясной ночью в северной части неба, можно увидеть, как они, двигаясь с востока на запад, описывают концентрические круги, центр которых располагается около Полярной звезды (альфа Малой Медведицы). Эта точка называется северным полюсом мира. В южном полушарии можно найти диаметрально противоположную ей точку — южный полюс мира. Давайте также вспомним, что большой круг небесной сферы, проходящий через полюсы мира и светило, называется кругом склонения.

А большой круг, проходящий через центр небесной сферы и перпендикулярный оси мира, называется небесным экватором. Он делит небесную сферу на две части: Северное полушарие с вершиной в Северном полюсе мира и Южное — с вершиной в Южном полюсе мира.

Помимо этого, на небесной сфере принято указывать и видимый годовой путь Солнца среди звёзд. Он называется эклиптикой. Она наклонена к небесному экватору под углом 23о27' и пересекает его в двух точках — точке весеннего (около 21 марта) и осеннего (около 23 сентября) равноденствия.

Сейчас же мы знаем, что вращения небосвода — это кажущееся явление, вызванное вращением Земли вокруг своей оси с запада на восток.

Видимое движение светил, происходящее из-за вращения Земли вокруг оси, называется суточным движением, а период вращения Земли вокруг оси — сутками.

На одном из первых уроков мы с вами говорили о том, что наблюдателю, находящемуся на поверхности Земли, кажется, что все звёзды расположены на некоторой сферической поверхности неба и одинаково удалены от него. Напомним, что такая воображаемая сфера произвольного радиуса была названа небесной сферой.

Для указания положения светил на небе используют систему координат, аналогичную той, которая используется в географии.

Вы уже знаете, что в географии определить положение точки на поверхности Земли нам помогают географические координаты — широта и долгота. Географическая долгота отсчитывается вдоль экватора от начального (Гринвичского) меридиана. А географическая широта — по меридианам от экватора к полюсам Земли.

Такая система координат называется экваториальной.

Аналогичную, экваториальную, систему координат удобно использовать и в астрономии, для указания положения светил на небе. В этой системе координат основным кругом небесной сферы является небесный экватор. А координатами служат склонение и прямое восхождение.

Склонение светила — это угловое расстояние светила от небесного экватора, измеренное вдоль круга склонения. Обозначается склонение малой греческой буквой δ и оно аналогично географической широте. Единственное отличие состоит в том, что у светил, расположенных к северу от экватора, склонение считается положительным, а расположенных к югу от экватора — отрицательным. При этом за начальную точку отсчёта склонения на небесном экваторе принимается точка весеннего равноденствия.

Вторая координата — прямое восхождение — указывает положение светила на небе. То есть это угловое расстояние, измеренное вдоль небесного экватора, от точки весеннего равноденствия до точки пересечения небесного экватора с кругом склонения светила.

 Обозначается склонение малой греческой буквой α. А отсчитывается оно в сторону, противоположную суточному вращению небесной сферы, в пределах от 0 до 360 градусов или от 0 до 24 часов. Хотя в астрономии склонение принято выражать не в градусной мере, а в часовой. Если учесть, что 360 градусам соответствуют 24 часа или 1440 минут, то одному градусу соответствует 4 минуты.

У вас может возникнуть вопрос: «В чём принципиальное отличие горизонтальной системы координат (о которой мы говорили в одном из первых уроков) от экваториальной?»

Ответ достаточно прост. Вспомните, что в горизонтальной системе координаты светила на небесной сфере со временем изменяются. Следовательно, они имеют определённое значение только для известного момента времени.

В экваториальной же системе координаты звёзд не связаны с суточным движением небесной сферы и изменяются очень медленно, так как достаточно далеки от нас. Поэтому именно эта система координат применяется для составления звёздных глобусов, карт и каталогов.

Звёздные карты представляют собой проекции небесной сферы на плоскость с нанесёнными на неё объектами в определённой системе координат.

Набор звёздных карт смежных участков неба, покрывающих всё небо или некоторую его часть, называется звёздным атласом.

А в специальных списках звёзд, называемых звёздными каталогами, указываются координаты их места на небесной сфере, звёздная величина и другие параметры. Например, в каталоге опорных звёзд-два, который также известен как Ориентировочный Каталог Космического Телескопа Хаббла, содержится более 945,5 миллионов звёзд.

Давайте остановимся и рассмотрим карту звёздного неба поподробнее. Итак, в центре нашей звёздной карты располагается северный полюс мира. Рядом с ним Полярная звезда.

Сетка экваториальных координат представлена на карте радиально расходящимися от центра лучами и концентрическими окружностями. На краю карты, возле каждого луча, написаны числа, обозначающие прямое восхождение (от 0 до 23 часов).

Луч, от которого начинается отсчёт прямого восхождения, проходит через точку весеннего равноденствия, обозначенную на карте символом овна. Склонение отсчитывается по этим лучам от окружности, которая изображает небесный экватор и имеет обозначение ноль градусов. Остальные окружности также имеют оцифровку, которая показывает, какое склонение имеет объект, расположенный на этой окружности.

В зависимости от звёздной величины звёзды изображают на карте кружками различного диаметра. Те из них, которые образуют характерные фигуры созвездий, соединены сплошными линиями. А границы созвездий обозначены пунктиром.

Теперь давайте посмотрим, как пользоваться звёздной картой. Для этого определим экваториальные координаты Альтаира (это альфа Орла), Сириуса (это альфа Большого Пса) и Веги (это альфа Лиры).

А теперь давайте с вами решим обратную задачу, то есть найдём звезду по её координатам. Итак, пусть склонение звезды равно +35о, а прямое восхождение — 1ч 6м.

Для того, чтобы найти ответ на поставленный вопрос, мы с вами должны выполнить все те же действия, что и в прошлый раз, но только в обратном порядке. То есть сначала на карте мы находим заданное нам прямое восхождение светила. Далее строим мысленный отрезок (или прикладываем линейку) так, чтобы он соединил нашу точку с центром карты звёздного неба. Теперь находим окружность, обозначающую склонение в 30о и откладываем от неё примерно 5о вверх. Как видим, мы попали на звезду бета Андромеды.

Стоит отметить, что картой звёздного неба можно пользоваться не только для нахождения координат звёзд, но и для определения вида звёздного неба в интересующий момент времени определённой даты. А также определять моменты восхода и захода звёзд, Солнца или планет.

videouroki.net

Как найти Полярную звезду на звездном небе. В каком созвездии находится Полярная звезда

Наверное, не существует такого человека, который бы ни любил смотреть на звездное небо. Издавна оно привлекает внимание поэтов, философов и художников. Большинству людей нравится смотреть на звезды и мечтать. Но они кажутся слишком загадочными, и редко кто может увидеть порядок в их расположении. А вот для путешественников древности звезды были единственным средством ориентирования в темное время суток.

как найти полярную звезду на звездном небе

В Северном полушарии есть один ориентир, который много раз выручал заблудившихся. Это Полярная звезда. Ее видно из любой точки, и она всегда на одном месте. Чтобы не заблудиться, нужно просто знать, как найти Полярную звезду на звездном небе.

Она не входит в двадцатку самых ярких, но ее свет всегда был маяком для людей. И кажется, что все светила вращаются вокруг нее. Она действительно является осью. Во время вращения Земли ее положение всегда неизменно и показывает направление на север. Ведь она ближе всех находится к северному полюсу мира. Расположение звезд на небе не меняется уже многие тысячелетия, но из-за смещения земной оси еще тысячу лет назад была другая Полярная звезда.

В каком созвездии она находится

Это название - не имя какой-то конкретной звезды, а всего лишь роль, которую светило выполняет, указывая на север. В современную эпоху роль Полярной звезды играет Альфа из Малой Медведицы, которая находится всего лишь в одном градусе от северного полюса мира. В этом созвездии она самая яркая. Малая Медведица состоит из 29 звезд, только семь из которых достаточно яркие, чтобы быть хорошо заметными. Они составляют фигуру, которую называют малым ковшом. На конце его ручки и располагается Полярная звезда.

Это созвездие - не самое крупное и стоит на 56-м месте по величине. Но известно оно не только потому, что является зеркальным отражением Большой Медведицы, но и из-за того, что именно в нем расположена сейчас Полярная звезда. Только благодаря ей, находят созвездие Малой Медведицы. Но для этого, конечно, нужно знать, как найти Полярную звезду на звездном небе.

Характеристика звезды

Она относится к переменным звездам, и ее еще называют цефеидой. Период ее пульсации составляет более четырех дней, и в нынешнем периоде она находится в состоянии относительного спокойствия. Астрономы определили, что ее яркость нарастает, и современным людям она светит намного сильнее, чем тысячи лет назад. Поэтому сейчас намного легче узнать, как найти Полярную звезду в небе. Но считается, что она относится к затухающим и по возрасту очень старая.

Это светило принадлежит к классу сверхгигантов. Оно в 23 раза больше Солнца по размеру и в 4 раза больше его по массе. А ярче нашего светила в 2500 раз. Это двойная звезда, но определить это можно только при помощи сверхмощного телескопа. Поэтому вторую смогли увидеть только в 30-е годы 20-го века. А в 2006 году телескоп Хаббл определил, что это тройная система.

Цвет звезды немного желтоватый, и она немного горячее Солнца. На каком расстоянии она расположена от Земли, до сих пор не могут точно определить. Считается, что оно равняется 434 световым годам.

Роль Полярной звезды

Ее можно использовать для определения сторон света. Если вы стоите к ней лицом, то сзади будет юг. Ориентируясь на Полярную звезду, можно также определить географическую широту с точностью до одного градуса. Для этого вам понадобится транспортир, который надо навести на звезду, и отвес, который следует закрепить в центре его основания. Из полученного угла вычтите 90 градусов и получите значение географической широты. Чем севернее вы находитесь, тем выше над горизонтом будет искомая точка, и тем больше других светил вы будете видеть вокруг нее. Если вы будете знать, как найти Полярную звезду на звездном небе, вы всегда сможете определить свое местоположение.

История Полярной звезды

Неподвижность этого светила во все времена приковывала внимание представителей всех народов. Древние арабы считали ее отверстием в небе, и с ней была связана легенда, описывающая ее как гигантский гроб, в котором лежит воин неба. Греки называли ее Киносоура, что значит "хвост собаки". А в Индии существует красивая легенда о том, что Бог сделал звездой маленького мальчика, которого никто не мог отвлечь от молитвы. Названия звезд и созвездий сложились в давние времена, и множество мифов объясняют их происхождение.

Как найти Полярную звезду на звездном небе

Если вы это знаете, то никогда не заблудитесь. Ведь она в Северном полушарии видна всю ночь и в любое время года и всегда указывает на север. Чтобы найти Полярную звезду, сначала отыщите созвездие Большой Медведицы. Семь ярких звезд составляют фигуру, похожую на ковш. Если мысленно провести через стенку этого ковша линию, то на расстоянии, в пять раз большем длины этой стенки, вы увидите Полярную звезду.

Если же вдруг Большой Медведицы не видно, что бывает редко, можно воспользоваться созвездием Кассиопеи, которое похоже на букву "М". Если соединить три яркие его звезды и провести из середины этой линии перпендикуляр, то на расстоянии в четыре раза большем, чем ширина созвездия, вы увидите Полярную звезду.

fb.ru