Построение с помощью циркуля и линейки. Как с помощью циркуля и линейки построить квадрат


Как построить правильный квадрат

Содержание

  1. Вам понадобится
  2. Инструкция

Квадрат - один из простейших правильных многоугольников. Если есть лист из тетради в клеточку, то построение этой фигуры не вызовет никаких вопросов. Та же задача с использованием нелинованной бумаги отнимет немного больше времени. А если при этом недоступны некоторые чертежные инструменты (например, угольник и транспортир), то сложность построения еще немного увеличится, но выход в большинстве случаев все же можно найти.

Вам понадобится

  • Бумага, карандаш, линейка, циркуль, транспортир, калькулятор

Инструкция

  • Если есть возможность пользоваться измерительной линейкой и угольником, то задача проста до примитивности. Начните, например, с построения нижней стороны квадрата - поставьте точку А и начертите горизонтальный отрезок до точки В, отстоящей от А на расстояние заданной по условиям длины стороны. Затем по угольнику отмерьте то же расстояние вверх от точек А и В и поставьте точки D и С соответственно. После этого останется лишь соединить отрезками точки А и D, D и С, С и В.
  • Если в вашем распоряжении есть линейка и транспортир, то действовать можно так же, как и в предыдущем шаге. Постройте одну из сторон (АВ) квадрата, а затем приложите транспортир к проведенному отрезку так, чтобы его нулевая точка совпадала с точкой А. Поставьте вспомогательную отметку у деления транспортира, соответствующего 90°. На луче, исходящем из точки А через вспомогательную отметку, отложите длину отрезка АВ, поставьте точку D и соедините точки А и D. Затем проделайте такую-же операцию с транспортиром и точкой В, начертив сторону ВС. После этого соедините точки С и D и построение квадрата будет завершено.
  • Если в вашем распоряжении нет ни транспортира, ни угольника, но есть циркуль, линейка и калькулятор, то и этого достаточно для построения квадрата с заданной длиной стороны. Если точные размеры квадрата не имеют значения, то можно обойтись и без калькулятора. Поставьте на листе точку в том месте, где хотите видеть одну из вершин квадрата (например, вершину А). Затем поставьте точку в противоположной ей вершине квадрата. Если длина стороны квадрата задана в условиях задачи, то расстояние между этими точками рассчитайте, исходя из теоремы Пифагора. Из нее вытекает, что нужная вам длина диагонали квадрата равна корню из удвоенного произведения длины стороны на саму себя. Посчитаете точное значение с помощью калькулятора или в уме и отложите полученное расстояние на циркуле. Проведите вспомогательный полукруг с центром в вершине А в направлении противоположной вершины С.
  • Отметьте на проведенной дуге точку С и проведите такой же вспомогательный полукруг с центром в этой вершине, направленный в сторону точки А. Проведите две вспомогательные линии - одна должна проходить через точки А и С, а другая - через точки пересечения двух полукружий. Эти линии будут пересекаться под прямым углом в центре будущего квадрата. На линии, перпендикулярной диагонали АС, отложите в обе стороны от точки пересечения по половине рассчитанной длины диагонали и поставьте точки В и D. И, наконец, по четырем полученным точкам вершин начертите квадрат.

completerepair.ru

Построение с помощью циркуля и линейки

Построения с помощью циркуля и линейки — раздел евклидовой геометрии, известный с античных времён. В задачах на построение циркуль и линейка считаются идеальными инструментами, в частности:

Пример

Разбиение отрезка пополам

Задача на бисекцию. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

Формальное определение

В задачах на построение рассматриваются множество всех точек плоскости, множество всех прямых плоскости и множество всех окружностей плоскости, над которыми допускаются следующие операции:

  1. Выделить точку из множества всех точек:
    1. произвольную точку
    2. произвольную точку на заданной прямой
    3. произвольную точку на заданной окружности
    4. точку пересечения двух заданных прямых
    5. точки пересечения/касания заданной прямой и заданной окружности
    6. точки пересечения/касания двух заданных окружностей
  2. «С помощью линейки» выделить прямую из множества всех прямых:
    1. произвольную прямую
    2. произвольную прямую, проходящую через заданную точку
    3. прямую, проходящую через две заданных точки
  3. «С помощью циркуля» выделить окружность из множества всех окружностей:
    1. произвольную окружность
    2. произвольную окружность с центром в заданной точке
    3. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками
    4. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками

В условиях задачи задается некоторое множество точек. Требуется с помощью конечного количества операций из числа перечисленных выше допустимых операций построить другое множество точек, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

  1. Описание способа построения заданного множества.
  2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
  3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

Известные задачи

Построение правильных многоугольников

Построение правильного пятиугольника

Античным геометрам были известны способы построения правильных n-угольников для , , и .

В 1796 году Гаусс показал возможность построения правильных n-угольников при , где  — различные простые числа Ферма. В 1836 году Ванцель доказал, что других правильных многоугольников, которые можно построить циркулем и линейкой, не существует.

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё в античности:

Только в XIX веке было доказано, что все три задачи неразрешимы при использовании только циркуля и линейки. Вопрос возможности построения полностью решён алгебраическими методами, основанными на теории Галуа.

Возможные и невозможные построения

Все построения являются не чем иным, как решениями какого-либо уравнения, причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому удобно говорить о построении числа — графического решения уравнения определенного типа. В рамках вышеописанных требований возможны следующие построения:

Иначе говоря, возможно построить лишь числа равные арифметическим выражениям с использованием квадратного корня из исходных чисел (длин отрезков). Например,

Вариации и обобщения

Интересные факты

См. также

Примечания

Литература

dic.academic.ru

Построение с помощью циркуля и линейки Википедия

Построе́ния с по́мощью ци́ркуля и лине́йки — раздел евклидовой геометрии, известный с античных времён.

В задачах на построение циркуль и линейка предполагаются идеальными инструментами, в частности:

Примеры

Разбиение отрезка пополам

Задача на бисекцию. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

Формальное определение

В задачах на построение рассматриваются множество следующих объектов: все точки плоскости, все прямые плоскости и все окружности плоскости. В условиях задачи изначально задается (считается построенными) некоторое множество объектов. К множеству построенных объектов разрешается добавлять (строить):

  1. произвольную точку;
  2. произвольную точку на заданной прямой;
  3. произвольную точку на заданной окружности;
  4. точку пересечения двух заданных прямых;
  5. точки пересечения/касания заданной прямой и заданной окружности;
  6. точки пересечения/касания двух заданных окружностей;
  7. произвольную прямую, проходящую через заданную точку;
  8. прямую, проходящую через две заданные точки;
  9. произвольную окружность с центром в заданной точке;
  10. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками;
  11. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками.

Требуется с помощью конечного количества этих операций построить другое множество объектов, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

  1. Описание способа построения заданного множества.
  2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
  3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

Известные задачи

Построение правильных многоугольников

Построение правильного пятиугольника

Античным геометрам были известны способы построения правильных n-угольников для n=2k{\displaystyle n=2^{k}}, n=3⋅2k{\displaystyle n=3\cdot 2^{k}}, n=5⋅2k{\displaystyle n=5\cdot 2^{k}} и n=3⋅5⋅2k{\displaystyle n=3\cdot 5\cdot 2^{k}}.

В 1796 году Гаусс показал возможность построения правильных n-угольников при n=2k⋅p1⋯pm{\displaystyle n=2^{k}\cdot p_{1}\cdots p_{m}}, где pi{\displaystyle p_{i}} — различные простые числа Ферма. В 1836 году Ванцель доказал, что других правильных многоугольников, которые можно построить циркулем и линейкой, не существует.

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё древними греками:

Лишь в XIX веке было строго доказано, что все эти три задачи неразрешимы при использовании только циркуля и линейки. Доказательство неразрешимости этих задач построения было достигнуто с помощью алгебраических методов, основанными на теории Галуа[1]. В частности, невозможность построения квадратуры круга следует из трансцендентности числа π.

Другая известная и неразрешимая с помощью циркуля и линейки задача — построение треугольника по трём заданным длинам биссектрис[2]. Эта задача остаётся неразрешимой даже при наличии инструмента, выполняющего трисекцию угла, например томагавка.[3]

Допустимые отрезки для построения с помощью циркуля и линейки

Построение квадратного корня из 2. Построение квадратного корня из 3. Построение среднего геометрического двух отрезков. Из подобия треугольников следует:BH=AH⋅HC={\displaystyle BH={\sqrt {AH\cdot HC}}=}=ab.{\displaystyle ={\sqrt {ab}}.}

С помощью этих инструментов возможно построение отрезка, который по длине:

  1. равен сумме длин нескольких отрезков;
  2. равен разности длин двух отрезков;
  3. численно равен произведению длин двух отрезков;
  4. численно равен частному от деления длин двух отрезков;
  5. численно равен квадратному корню из длины заданного отрезка (следует из возможности построения среднего геометрического двух отрезков, см. иллюстрацию).[4]

Для построения отрезка с длиной численно равной произведению, частному и квадратному корню из длин заданных отрезков необходимо задание на плоскости построения единичного отрезка (то есть отрезка длины 1). Извлечение корней из отрезков с иными натуральными степенями, не являющимися степенью числа 2, невозможны с помощью циркуля и линейки. Так, например, невозможно при помощи циркуля и линейки из единичного отрезка построить отрезок длиной 23{\displaystyle {\sqrt[{3}]{2}}}. Из этого факта, в частности, следует неразрешимость задачи об удвоении куба.[5]

Возможные и невозможные построения

С формальной точки зрения, решение любой задачи на построение сводится к графическому решению некоторого алгебраического уравнения, причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому можно сказать, что задача на построение сводится к отысканию действительных корней некоторого алгебраического уравнения.

Поэтому удобно говорить о построении числа — графического решения уравнения определенного типа.

Исходя из возможных построений отрезков возможны следующие построения:

Иначе говоря, возможно строить лишь отрезки, равные арифметическим выражениям с использованием квадратного корня из исходных чисел (заданных длин отрезков).

Важно отметить, что существенно, что решение должно выражаться при помощи квадратных корней, а не радикалов произвольной степени. Если даже алгебраическое уравнение имеет решение в радикалах, то из этого не следует возможность построения циркулем и линейкой отрезка, равного его решению. Простейшее такое уравнение: x3−2=0,{\displaystyle x^{3}-2=0,} связанное со знаменитой задачей на удвоение куба, сводящаяся к этому кубическому уравнению. Как было сказано выше, решение этого уравнения (23{\displaystyle {\sqrt[{3}]{2}}}) невозможно построить циркулем и линейкой.

Возможность построить правильный 17-угольник следует из выражения для косинуса центрального угла его стороны:

cos⁡(2π17)=−116+11617+11634−217+{\displaystyle \cos {\left({\frac {2\pi }{17}}\right)}=-{\frac {1}{16}}\;+\;{\frac {1}{16}}{\sqrt {17}}\;+\;{\frac {1}{16}}{\sqrt {34-2{\sqrt {17}}}}\;+\;} +1817+317−34−217−234+217,{\displaystyle +{\frac {1}{8}}{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}},}что, в свою очередь, следует из возможности сведения уравнения вида xFn−1=0,{\displaystyle x^{F_{n}}-1=0,} где Fn{\displaystyle F_{n}} — любое простое число Ферма, с помощью замены переменной к квадратному уравнению.

Вариации и обобщения

Однако,

Интересные факты

См. также

Примечания

  1. ↑ Кириченко, 2005, с. 1.
  2. ↑ Кто и когда доказал невозможность построения треугольника по трем биссектрисам?. Дистанционный консультационный пункт по математике МЦНМО.
  3. ↑ Можно ли построить треугольник по трем биссектрисам, если кроме циркуля и линейки разрешается использовать трисектор. Дистанционный консультационный пункт по математике МЦНМО.
  4. ↑ Кириченко, 2005, с. 4.
  5. ↑ Кириченко, 2005, с. 9.
  6. ↑ Maehara, Hiroshi (1991), "Distances in a rigid unit-distance graph in the plane", Discrete Applied Mathematics Т. 31 (2): 193–200, DOI 10.1016/0166-218X(91)90070-D .
  7. ↑ Стандарт флага Ирана (недоступная ссылка) (перс.)

Литература

wikiredia.ru

Построение с помощью циркуля и линейки — Википедия

Построе́ния с по́мощью ци́ркуля и лине́йки — раздел евклидовой геометрии, известный с античных времён.

В задачах на построение циркуль и линейка предполагаются идеальными инструментами, в частности:

Примеры

Разбиение отрезка пополам

Задача на бисекцию. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

Видео по теме

Формальное определение

В задачах на построение рассматриваются множество следующих объектов: все точки плоскости, все прямые плоскости и все окружности плоскости. В условиях задачи изначально задается (считается построенными) некоторое множество объектов. К множеству построенных объектов разрешается добавлять (строить):

  1. произвольную точку;
  2. произвольную точку на заданной прямой;
  3. произвольную точку на заданной окружности;
  4. точку пересечения двух заданных прямых;
  5. точки пересечения/касания заданной прямой и заданной окружности;
  6. точки пересечения/касания двух заданных окружностей;
  7. произвольную прямую, проходящую через заданную точку;
  8. прямую, проходящую через две заданные точки;
  9. произвольную окружность с центром в заданной точке;
  10. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками;
  11. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками.

Требуется с помощью конечного количества этих операций построить другое множество объектов, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

  1. Описание способа построения заданного множества.
  2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
  3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

Известные задачи

Построение правильных многоугольников

Построение правильного пятиугольника

Античным геометрам были известны способы построения правильных n-угольников для n=2k{\displaystyle n=2^{k}}, n=3⋅2k{\displaystyle n=3\cdot 2^{k}}, n=5⋅2k{\displaystyle n=5\cdot 2^{k}} и n=3⋅5⋅2k{\displaystyle n=3\cdot 5\cdot 2^{k}}.

В 1796 году Гаусс показал возможность построения правильных n-угольников при n=2k⋅p1⋯pm{\displaystyle n=2^{k}\cdot p_{1}\cdots p_{m}}, где pi{\displaystyle p_{i}} — различные простые числа Ферма. В 1836 году Ванцель доказал, что других правильных многоугольников, которые можно построить циркулем и линейкой, не существует.

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё древними греками:

Лишь в XIX веке было строго доказано, что все эти три задачи неразрешимы при использовании только циркуля и линейки. Доказательство неразрешимости этих задач построения было достигнуто с помощью алгебраических методов, основанными на теории Галуа[1]. В частности, невозможность построения квадратуры круга следует из трансцендентности числа π.

Другая известная и неразрешимая с помощью циркуля и линейки задача — построение треугольника по трём заданным длинам биссектрис[2]. Эта задача остаётся неразрешимой даже при наличии инструмента, выполняющего трисекцию угла, например томагавка.[3]

Допустимые отрезки для построения с помощью циркуля и линейки

Построение квадратного корня из 2. Построение квадратного корня из 3. Построение среднего геометрического двух отрезков. Из подобия треугольников следует:BH=AH⋅HC={\displaystyle BH={\sqrt {AH\cdot HC}}=}=ab.{\displaystyle ={\sqrt {ab}}.}

С помощью этих инструментов возможно построение отрезка, который по длине:

  1. равен сумме длин нескольких отрезков;
  2. равен разности длин двух отрезков;
  3. численно равен произведению длин двух отрезков;
  4. численно равен частному от деления длин двух отрезков;
  5. численно равен квадратному корню из длины заданного отрезка (следует из возможности построения среднего геометрического двух отрезков, см. иллюстрацию).[4]

Для построения отрезка с длиной численно равной произведению, частному и квадратному корню из длин заданных отрезков необходимо задание на плоскости построения единичного отрезка (то есть отрезка длины 1). Извлечение корней из отрезков с иными натуральными степенями, не являющимися степенью числа 2, невозможны с помощью циркуля и линейки. Так, например, невозможно при помощи циркуля и линейки из единичного отрезка построить отрезок длиной 23{\displaystyle {\sqrt[{3}]{2}}}. Из этого факта, в частности, следует неразрешимость задачи об удвоении куба.[5]

Возможные и невозможные построения

С формальной точки зрения, решение любой задачи на построение сводится к графическому решению некоторого алгебраического уравнения, причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому можно сказать, что задача на построение сводится к отысканию действительных корней некоторого алгебраического уравнения.

Поэтому удобно говорить о построении числа — графического решения уравнения определенного типа.

Исходя из возможных построений отрезков возможны следующие построения:

Иначе говоря, возможно строить лишь отрезки, равные арифметическим выражениям с использованием квадратного корня из исходных чисел (заданных длин отрезков).

Важно отметить, что существенно, что решение должно выражаться при помощи квадратных корней, а не радикалов произвольной степени. Если даже алгебраическое уравнение имеет решение в радикалах, то из этого не следует возможность построения циркулем и линейкой отрезка, равного его решению. Простейшее такое уравнение: x3−2=0,{\displaystyle x^{3}-2=0,} связанное со знаменитой задачей на удвоение куба, сводящаяся к этому кубическому уравнению. Как было сказано выше, решение этого уравнения (23{\displaystyle {\sqrt[{3}]{2}}}) невозможно построить циркулем и линейкой.

Возможность построить правильный 17-угольник следует из выражения для косинуса центрального угла его стороны:

cos⁡(2π17)=−116+11617+11634−217+{\displaystyle \cos {\left({\frac {2\pi }{17}}\right)}=-{\frac {1}{16}}\;+\;{\frac {1}{16}}{\sqrt {17}}\;+\;{\frac {1}{16}}{\sqrt {34-2{\sqrt {17}}}}\;+\;} +1817+317−34−217−234+217,{\displaystyle +{\frac {1}{8}}{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}},}что, в свою очередь, следует из возможности сведения уравнения вида xFn−1=0,{\displaystyle x^{F_{n}}-1=0,} где Fn{\displaystyle F_{n}} — любое простое число Ферма, с помощью замены переменной к квадратному уравнению.

Вариации и обобщения

Однако,

Интересные факты

См. также

Примечания

  1. ↑ Кириченко, 2005, с. 1.
  2. ↑ Кто и когда доказал невозможность построения треугольника по трем биссектрисам?. Дистанционный консультационный пункт по математике МЦНМО.
  3. ↑ Можно ли построить треугольник по трем биссектрисам, если кроме циркуля и линейки разрешается использовать трисектор. Дистанционный консультационный пункт по математике МЦНМО.
  4. ↑ Кириченко, 2005, с. 4.
  5. ↑ Кириченко, 2005, с. 9.
  6. ↑ Maehara, Hiroshi (1991), "Distances in a rigid unit-distance graph in the plane", Discrete Applied Mathematics Т. 31 (2): 193–200, DOI 10.1016/0166-218X(91)90070-D .
  7. ↑ Стандарт флага Ирана (недоступная ссылка) (перс.)

Литература

wikipedia.green

Построение с помощью циркуля и линейки Вики

Построе́ния с по́мощью ци́ркуля и лине́йки — раздел евклидовой геометрии, известный с античных времён.

В задачах на построение циркуль и линейка предполагаются идеальными инструментами, в частности:

Примеры[ | код]

Разбиение отрезка пополам

Задача на бисекцию. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

Формальное определение[ | код]

В задачах на построение рассматриваются множество следующих объектов: все точки плоскости, все прямые плоскости и все окружности плоскости. В условиях задачи изначально задается (считается построенными) некоторое множество объектов. К множеству построенных объектов разрешается добавлять (строить):

  1. произвольную точку;
  2. произвольную точку на заданной прямой;
  3. произвольную точку на заданной окружности;
  4. точку пересечения двух заданных прямых;
  5. точки пересечения/касания заданной прямой и заданной окружности;
  6. точки пересечения/касания двух заданных окружностей;
  7. произвольную прямую, проходящую через заданную точку;
  8. прямую, проходящую через две заданные точки;
  9. произвольную окружность с центром в заданной точке;
  10. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками;
  11. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками.

Требуется с помощью конечного количества этих операций построить другое множество объектов, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

  1. Описание способа построения заданного множества.
  2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
  3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

Известные задачи[ | код]

Построение правильных многоугольников[ | код]

Построение правильного пятиугольника

Античным геометрам были известны способы построения правильных n-угольников для n=2k{\displaystyle n=2^{k}}, n=3⋅2k{\displaystyle n=3\cdot 2^{k}}, n=5⋅2k{\displaystyle n=5\cdot 2^{k}} и n=3⋅5⋅2k{\displaystyle n=3\cdot 5\cdot 2^{k}}.

В 1796 году Гаусс показал возможность построения правильных n-угольников при n=2k⋅p1⋯pm{\displaystyle n=2^{k}\cdot p_{1}\cdots p_{m}}, где pi{\displaystyle p_{i}} — различные простые числа Ферма. В 1836 году Ванцель доказал, что других правильных многоугольников, которые можно построить циркулем и линейкой, не существует.

Неразрешимые задачи[ | код]

Следующие три задачи на построение были поставлены ещё древними греками:

Лишь в XIX веке было строго доказано, что все эти три задачи неразрешимы при использовании только циркуля и линейки. Доказательство неразрешимости этих задач построения было достигнуто с помощью алгебраических методов, основанными на теории Галуа[1]. В частности, невозможность построения квадратуры круга следует из трансцендентности числа π.

Другая известная и неразрешимая с помощью циркуля и линейки задача — построение треугольника по трём заданным длинам биссектрис[2]. Эта задача остаётся неразрешимой даже при наличии инструмента, выполняющего трисекцию угла, например томагавка.[3]

Допустимые отрезки для построения с помощью циркуля и линейки[ | код]

Построение квадратного корня из 2. Построение квадратного корня из 3. Построение среднего геометрического двух отрезков. Из подобия треугольников следует:BH=AH⋅HC={\displaystyle BH={\sqrt {AH\cdot HC}}=}=ab.{\displaystyle ={\sqrt {ab}}.}

С помощью этих инструментов возможно построение отрезка, который по длине:

  1. равен сумме длин нескольких отрезков;
  2. равен разности длин двух отрезков;
  3. численно равен произведению длин двух отрезков;
  4. численно равен частному от деления длин двух отрезков;
  5. численно равен квадратному корню из длины заданного отрезка (следует из возможности построения среднего геометрического двух отрезков, см. иллюстрацию).[4]

Для построения отрезка с длиной численно равной произведению, частному и квадратному корню из длин заданных отрезков необходимо задание на плоскости построения единичного отрезка (то есть отрезка длины 1). Извлечение корней из отрезков с иными натуральными степенями, не являющимися степенью числа 2, невозможны с помощью циркуля и линейки. Так, например, невозможно при помощи циркуля и линейки из единичного отрезка построить отрезок длиной 23{\displaystyle {\sqrt[{3}]{2}}}. Из этого факта, в частности, следует неразрешимость задачи об удвоении куба.[5]

Возможные и невозможные построения[ | код]

С формальной точки зрения, решение любой задачи на построение сводится к графическому решению некоторого алгебраического уравнения, причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому можно сказать, что задача на построение сводится к отысканию действительных корней некоторого алгебраического уравнения.

Поэтому удобно говорить о построении числа — графического решения уравнения определенного типа.

Исходя из возможных построений отрезков возможны следующие построения:

Иначе говоря, возможно строить лишь отрезки, равные арифметическим выражениям с использованием квадратного корня из исходных чисел (заданных длин отрезков).

Важно отметить, что существенно, что решение должно выражаться при помощи квадратных корней, а не радикалов произвольной степени. Если даже алгебраическое уравнение имеет решение в радикалах, то из этого не следует возможность построения циркулем и линейкой отрезка, равного его решению. Простейшее такое уравнение: x3−2=0,{\displaystyle x^{3}-2=0,} связанное со знаменитой задачей на удвоение куба, сводящаяся к этому кубическому уравнению. Как было сказано выше, решение этого уравнения (23{\displaystyle {\sqrt[{3}]{2}}}) невозможно построить циркулем и линейкой.

Возможность построить правильный 17-угольник следует из выражения для косинуса центрального угла его стороны:

cos⁡(2π17)=−116+11617+11634−217+{\displaystyle \cos {\left({\frac {2\pi }{17}}\right)}=-{\frac {1}{16}}\;+\;{\frac {1}{16}}{\sqrt {17}}\;+\;{\frac {1}{16}}{\sqrt {34-2{\sqrt {17}}}}\;+\;} +1817+317−34−217−234+217,{\displaystyle +{\frac {1}{8}}{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}},}что, в свою очередь, следует из возможности сведения уравнения вида xFn−1=0,{\displaystyle x^{F_{n}}-1=0,} где Fn{\displaystyle F_{n}} — любое простое число Ферма, с помощью замены переменной к квадратному уравнению.

Вариации и обобщения[ | код]

Однако,

Интересные факты[ | код]

См. также[ | код]

Примечания[ | код]

  1. ↑ Кириченко, 2005, с. 1.
  2. ↑ Кто и когда доказал невозможность построения треугольника по трем биссектрисам?. Дистанционный консультационный пункт по математике МЦНМО.
  3. ↑ Можно ли построить треугольник по трем биссектрисам, если кроме циркуля и линейки разрешается использовать трисектор. Дистанционный консультационный пункт по математике МЦНМО.
  4. ↑ Кириченко, 2005, с. 4.
  5. ↑ Кириченко, 2005, с. 9.
  6. ↑ Maehara, Hiroshi (1991), "Distances in a rigid unit-distance graph in the plane", Discrete Applied Mathematics Т. 31 (2): 193–200, DOI 10.1016/0166-218X(91)90070-D .
  7. ↑ Стандарт флага Ирана (недоступная ссылка) (перс.)

Литература[ | код]

ru.wikibedia.ru

Построение с помощью циркуля и линейки

Построе́ния с по́мощью ци́ркуля и лине́йки — раздел евклидовой геометрии, известный с античных времён.

В задачах на построение циркуль и линейка предполагаются идеальными инструментами, в частности:

Примеры

Разбиение отрезка пополам

Задача на бисекцию. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

Формальное определение

В задачах на построение рассматриваются множество следующих объектов: все точки плоскости, все прямые плоскости и все окружности плоскости. В условиях задачи изначально задается (считается построенными) некоторое множество объектов. К множеству построенных объектов разрешается добавлять (строить):

  1. произвольную точку;
  2. произвольную точку на заданной прямой;
  3. произвольную точку на заданной окружности;
  4. точку пересечения двух заданных прямых;
  5. точки пересечения/касания заданной прямой и заданной окружности;
  6. точки пересечения/касания двух заданных окружностей;
  7. произвольную прямую, проходящую через заданную точку;
  8. прямую, проходящую через две заданные точки;
  9. произвольную окружность с центром в заданной точке;
  10. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками;
  11. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками.

Требуется с помощью конечного количества этих операций построить другое множество объектов, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

  1. Описание способа построения заданного множества.
  2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
  3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

Известные задачи

Построение правильных многоугольников

Построение правильного пятиугольника

Античным геометрам были известны способы построения правильных n-угольников для n=2k{\displaystyle n=2^{k}}, n=3⋅2k{\displaystyle n=3\cdot 2^{k}}, n=5⋅2k{\displaystyle n=5\cdot 2^{k}} и n=3⋅5⋅2k{\displaystyle n=3\cdot 5\cdot 2^{k}}.

В 1796 году Гаусс показал возможность построения правильных n-угольников при n=2k⋅p1⋯pm{\displaystyle n=2^{k}\cdot p_{1}\cdots p_{m}}, где pi{\displaystyle p_{i}} — различные простые числа Ферма. В 1836 году Ванцель доказал, что других правильных многоугольников, которые можно построить циркулем и линейкой, не существует.

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё древними греками:

Лишь в XIX веке было строго доказано, что все эти три задачи неразрешимы при использовании только циркуля и линейки. Доказательство неразрешимости этих задач построения было достигнуто с помощью алгебраических методов, основанными на теории Галуа[1]. В частности, невозможность построения квадратуры круга следует из трансцендентности числа π.

Другая известная и неразрешимая с помощью циркуля и линейки задача — построение треугольника по трём заданным длинам биссектрис[2]. Эта задача остаётся неразрешимой даже при наличии инструмента, выполняющего трисекцию угла, например томагавка.[3]

Допустимые отрезки для построения с помощью циркуля и линейки

Построение квадратного корня из 2. Построение квадратного корня из 3. Построение среднего геометрического двух отрезков. Из подобия треугольников следует:BH=AH⋅HC={\displaystyle BH={\sqrt {AH\cdot HC}}=}=ab.{\displaystyle ={\sqrt {ab}}.}

С помощью этих инструментов возможно построение отрезка, который по длине:

  1. равен сумме длин нескольких отрезков;
  2. равен разности длин двух отрезков;
  3. численно равен произведению длин двух отрезков;
  4. численно равен частному от деления длин двух отрезков;
  5. численно равен квадратному корню из длины заданного отрезка (следует из возможности построения среднего геометрического двух отрезков, см. иллюстрацию).[4]

Для построения отрезка с длиной численно равной произведению, частному и квадратному корню из длин заданных отрезков необходимо задание на плоскости построения единичного отрезка (то есть отрезка длины 1). Извлечение корней из отрезков с иными натуральными степенями, не являющимися степенью числа 2, невозможны с помощью циркуля и линейки. Так, например, невозможно при помощи циркуля и линейки из единичного отрезка построить отрезок длиной 23{\displaystyle {\sqrt[{3}]{2}}}. Из этого факта, в частности, следует неразрешимость задачи об удвоении куба.[5]

Возможные и невозможные построения

С формальной точки зрения, решение любой задачи на построение сводится к графическому решению некоторого алгебраического уравнения, причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому можно сказать, что задача на построение сводится к отысканию действительных корней некоторого алгебраического уравнения.

Поэтому удобно говорить о построении числа — графического решения уравнения определенного типа.

Исходя из возможных построений отрезков возможны следующие построения:

Иначе говоря, возможно строить лишь отрезки, равные арифметическим выражениям с использованием квадратного корня из исходных чисел (заданных длин отрезков).

Важно отметить, что существенно, что решение должно выражаться при помощи квадратных корней, а не радикалов произвольной степени. Если даже алгебраическое уравнение имеет решение в радикалах, то из этого не следует возможность построения циркулем и линейкой отрезка, равного его решению. Простейшее такое уравнение: x3−2=0,{\displaystyle x^{3}-2=0,} связанное со знаменитой задачей на удвоение куба, сводящаяся к этому кубическому уравнению. Как было сказано выше, решение этого уравнения (23{\displaystyle {\sqrt[{3}]{2}}}) невозможно построить циркулем и линейкой.

Возможность построить правильный 17-угольник следует из выражения для косинуса центрального угла его стороны:

cos⁡(2π17)=−116+11617+11634−217+{\displaystyle \cos {\left({\frac {2\pi }{17}}\right)}=-{\frac {1}{16}}\;+\;{\frac {1}{16}}{\sqrt {17}}\;+\;{\frac {1}{16}}{\sqrt {34-2{\sqrt {17}}}}\;+\;} +1817+317−34−217−234+217,{\displaystyle +{\frac {1}{8}}{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}},}что, в свою очередь, следует из возможности сведения уравнения вида xFn−1=0,{\displaystyle x^{F_{n}}-1=0,} где Fn{\displaystyle F_{n}} — любое простое число Ферма, с помощью замены переменной к квадратному уравнению.

Вариации и обобщения

Однако,

Интересные факты

См. также

Примечания

  1. ↑ Кириченко, 2005, с. 1.
  2. ↑ Кто и когда доказал невозможность построения треугольника по трем биссектрисам?. Дистанционный консультационный пункт по математике МЦНМО.
  3. ↑ Можно ли построить треугольник по трем биссектрисам, если кроме циркуля и линейки разрешается использовать трисектор. Дистанционный консультационный пункт по математике МЦНМО.
  4. ↑ Кириченко, 2005, с. 4.
  5. ↑ Кириченко, 2005, с. 9.
  6. ↑ Maehara, Hiroshi (1991), "Distances in a rigid unit-distance graph in the plane", Discrete Applied Mathematics Т. 31 (2): 193–200, DOI 10.1016/0166-218X(91)90070-D .
  7. ↑ Стандарт флага Ирана (недоступная ссылка) (перс.)

Литература

www.gpedia.com

Построение с помощью циркуля и линейки — википедия орг

Построе́ния с по́мощью ци́ркуля и лине́йки — раздел евклидовой геометрии, известный с античных времён.

В задачах на построение циркуль и линейка предполагаются идеальными инструментами, в частности:

Примеры

  Разбиение отрезка пополам

Задача на бисекцию. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

Формальное определение

В задачах на построение рассматриваются множество следующих объектов: все точки плоскости, все прямые плоскости и все окружности плоскости. В условиях задачи изначально задается (считается построенными) некоторое множество объектов. К множеству построенных объектов разрешается добавлять (строить):

  1. произвольную точку;
  2. произвольную точку на заданной прямой;
  3. произвольную точку на заданной окружности;
  4. точку пересечения двух заданных прямых;
  5. точки пересечения/касания заданной прямой и заданной окружности;
  6. точки пересечения/касания двух заданных окружностей;
  7. произвольную прямую, проходящую через заданную точку;
  8. прямую, проходящую через две заданные точки;
  9. произвольную окружность с центром в заданной точке;
  10. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками;
  11. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками.

Требуется с помощью конечного количества этих операций построить другое множество объектов, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

  1. Описание способа построения заданного множества.
  2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
  3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

Известные задачи

Построение правильных многоугольников

  Построение правильного пятиугольника

Античным геометрам были известны способы построения правильных n-угольников для n=2k{\displaystyle n=2^{k}} , n=3⋅2k{\displaystyle n=3\cdot 2^{k}} , n=5⋅2k{\displaystyle n=5\cdot 2^{k}}  и n=3⋅5⋅2k{\displaystyle n=3\cdot 5\cdot 2^{k}} .

В 1796 году Гаусс показал возможность построения правильных n-угольников при n=2k⋅p1⋯pm{\displaystyle n=2^{k}\cdot p_{1}\cdots p_{m}} , где pi{\displaystyle p_{i}}  — различные простые числа Ферма. В 1836 году Ванцель доказал, что других правильных многоугольников, которые можно построить циркулем и линейкой, не существует.

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё древними греками:

Лишь в XIX веке было строго доказано, что все эти три задачи неразрешимы при использовании только циркуля и линейки. Доказательство неразрешимости этих задач построения было достигнуто с помощью алгебраических методов, основанными на теории Галуа[1]. В частности, невозможность построения квадратуры круга следует из трансцендентности числа π.

Другая известная и неразрешимая с помощью циркуля и линейки задача — построение треугольника по трём заданным длинам биссектрис[2]. Эта задача остаётся неразрешимой даже при наличии инструмента, выполняющего трисекцию угла, например томагавка.[3]

Допустимые отрезки для построения с помощью циркуля и линейки

Возможные и невозможные построения

С формальной точки зрения, решение любой задачи на построение сводится к графическому решению некоторого алгебраического уравнения, причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому можно сказать, что задача на построение сводится к отысканию действительных корней некоторого алгебраического уравнения.

Поэтому удобно говорить о построении числа — графического решения уравнения определенного типа.

Исходя из возможных построений отрезков возможны следующие построения:

Иначе говоря, возможно строить лишь отрезки, равные арифметическим выражениям с использованием квадратного корня из исходных чисел (заданных длин отрезков).

Важно отметить, что существенно, что решение должно выражаться при помощи квадратных корней, а не радикалов произвольной степени. Если даже алгебраическое уравнение имеет решение в радикалах, то из этого не следует возможность построения циркулем и линейкой отрезка, равного его решению. Простейшее такое уравнение: x3−2=0,{\displaystyle x^{3}-2=0,}  связанное со знаменитой задачей на удвоение куба, сводящаяся к этому кубическому уравнению. Как было сказано выше, решение этого уравнения (23{\displaystyle {\sqrt[{3}]{2}}} ) невозможно построить циркулем и линейкой.

Возможность построить правильный 17-угольник следует из выражения для косинуса центрального угла его стороны:

cos⁡(2π17)=−116+11617+11634−217+{\displaystyle \cos {\left({\frac {2\pi }{17}}\right)}=-{\frac {1}{16}}\;+\;{\frac {1}{16}}{\sqrt {17}}\;+\;{\frac {1}{16}}{\sqrt {34-2{\sqrt {17}}}}\;+\;}  +1817+317−34−217−234+217,{\displaystyle +{\frac {1}{8}}{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}},} что, в свою очередь, следует из возможности сведения уравнения вида xFn−1=0,{\displaystyle x^{F_{n}}-1=0,}  где Fn{\displaystyle F_{n}}  — любое простое число Ферма, с помощью замены переменной к квадратному уравнению.

Вариации и обобщения

Однако,

Интересные факты

См. также

Примечания

  1. ↑ Кириченко, 2005, с. 1.
  2. ↑ Кто и когда доказал невозможность построения треугольника по трем биссектрисам?. Дистанционный консультационный пункт по математике МЦНМО.
  3. ↑ Можно ли построить треугольник по трем биссектрисам, если кроме циркуля и линейки разрешается использовать трисектор. Дистанционный консультационный пункт по математике МЦНМО.
  4. ↑ Кириченко, 2005, с. 4.
  5. ↑ Кириченко, 2005, с. 9.
  6. ↑ Maehara, Hiroshi (1991), "Distances in a rigid unit-distance graph in the plane", Discrete Applied Mathematics Т. 31 (2): 193–200, DOI 10.1016/0166-218X(91)90070-D .
  7. ↑ Стандарт флага Ирана (недоступная ссылка) (перс.)

Литература

www-wikipediya.ru