Формула площади и радиуса: свойства треугольника, вписанного в окружность. Круг вписанный в треугольник прямоугольный


Окружность, вписанная в прямоугольный треугольник

Если в задаче дана окружность, вписанная в прямоугольный треугольник, то ее решение может быть связано со свойством отрезков касательных, проведенных из одной точки, и теоремой Пифагора.

Кроме того, следует учесть, что радиус вписанной в прямоугольный треугольник окружности вычисляется по формуле

   

где a и b — длины катетов, c — гипотенузы.

Рассмотрим две задачи на вписанную в прямоугольный треугольник окружность.

Задача 1.

Точка касания окружности, вписанной в прямоугольный треугольник, делит гипотенузу на отрезки 4 см и 6 см. Найти периметр и площадь треугольника и радиус окружности.

Дано: ∆ ABC, ∠C=90º,

окружность (O, r) — вписанная,

K, M, F — точки касания со сторонами AC, AB, BC,

BM=4 см, AM=6 см.

Найти:

   

Решение:

1) По свойству отрезков касательных, проведенных из одной точки,

AK=AM=6 см,

BF=BM=4 см,

CK=CF=x см.

2) AB=AM+BM=6+4=10 см,

AC=AK+CK=(6+x) см,

BC=BF+CF=(4+x) см.

3) По теореме Пифагора:

   

   

   

   

   

По теореме Виета,

   

Второй корень не подходит по смыслу задачи. Значит, CK+CF=2 см, AC=8 см, BC=6 см.

4)

   

   

   

   

   

   

Ответ: 24 см, 24 см², 2 см.

Задача 2.

Найти площадь прямоугольного треугольника, гипотенуза которого равна 26 см, а радиус вписанной окружности — 4 см.

Дано:∆ ABC, ∠C=90º,

окружность (O, r) — вписанная,

K, M, F — точки касания со сторонами AC, AB, BC,

AB=26 см, r=4 см.

Найти:

   

Решение:

1) Проведем отрезки OK и OF.

   

(как радиусы, проведенные в точки касания).

Четырехугольник OKCF — прямоугольник (так как у него все углы — прямые).

А так как OK=OF (как радиусы), то OKCF — квадрат.

2) По свойству касательных, проведенных из одной точки,

AM=AK=x см,

BF=BM=(26-x) см,

CF=CK=r=4 см.

3) AC=AK+KC=(x+4) см, BC=BF+CF=26-x+4=(30-x) см.

По теореме Пифагора,

   

   

   

   

   

   

Если AM=20 см, то AC=24 см, BC=10 см.

Если AM=6 см, то AC=10 см, BC=24 см.

   

   

Ответ: 120 см².

www.uznateshe.ru

как найти круг, вычисление площади и радиуса

В современном машиностроении используется масса элементов и запчастей, которые имеют в своей структуре как внешние окружности, так и внутренние. Самым ярким примером могут служить корпус подшипника, детали моторов, узлы ступицы и многое другое. При их изготовлении применяются не только высокотехнологичные приспособления, но и знания из геометрии, в частности информация об окружностях треугольника. Более детально с подобным знаниями познакомимся ниже.

...

Вконтакте

Facebook

Twitter

Google+

Мой мир

Какая окружность вписана, а какая описана

Прежде всего вспомним, что окружностью называется бесконечное множество точек, удаленных на одинаковом расстоянии от центра. Если внутри многоугольника допускается построить окружность, которая с каждой стороной будет иметь только одну общую точку пересечения, то она будет называться вписанной. Описанной окружностью (не круг, это разные понятия) называется такое геометрическое место точек, при котором у построенной фигуры с заданным многоугольником общими точками будут только вершины многоугольника. Ознакомимся с этими двумя понятиями на более наглядном примере (см. рис 1.).

Рисунок 1. Вписанная и описанная окружности треугольника

На изображении построены две фигуры большого и малого диаметров, центры которых находятся G и I. Окружность большего значения называется описанной окр-тью Δ ABC, а малого – наоборот, вписанной в Δ ABC.

Для того чтобы описать вокруг треугольника окр-ть, требуется провести через середину каждой стороны перпендикулярную прямую (т.е. под углом 90°) – это точка пересечения, она играет ключевую роль. Именно она будет представлять собой центр описанной окружности. Перед тем как найти окружность, ее центр в треугольнике, требуется построить для каждого угла биссектрису, после чего выделить точку пересечения прямых. Она в свою очередь будет центром вписанной окр-ти, а ее радиус при любых условиях будет перпендикулярен любой из сторон.

На вопрос:«Какое количество окружностей вписанных может быть для многоугольника с тремя углами?» ответим сразу, что в любой треугольник можно вписать окружность и притом только одну. Потому что существует только одна точка пересечения всех биссектрис и одна точка пересечения перпендикуляров, исходящих из середин сторон.

Свойство окружности, которой принадлежат вершины треугольника

Описанная окружность, которая зависит от длин сторон при основании, имеет свои свойства. Укажем свойства описанной окружности:

  1. Центр описанной окружности для прямоугольного треугольника находится на середине гипотенузы, у острого – внутри самого треугольника, а для тупоугольного – за ее пределами.
  2. Диаметр любой описанной окр-сти равен половине отношения стороны и синуса угла, который принадлежит ей, в виде формулы можно представить следующим образом:
  3. Зная радиус описанной окружности и значения углов, можно найти значение площади, не прибегая к использованию длин сторон, по следующей формуле:

Для того чтобы более наглядно понять принцип описанной окружности, решим простую задачу. Допустим, что дан треугольник Δ ABC, стороны которого равны 10, 15 и 8,5 см. Радиус описанной окружности около треугольника (FB) составляет 7,9 см. Найти значение градусной меры каждого угла и через них площадь треугольника.

Рисунок 2. Поиск радиуса окружности через отношение сторон и синусов углов

Решение: опираясь на ранее указанную теорему синусов, найдем значение синуса каждого угла в отдельности. По условию известно, что сторона АВ равна 10 см. Вычислим значение С:

Используя значения таблицы Брадиса, узнаем, что градусная мера угла С равна 39°. Таким же методом найдем и остальные меры углов:

Откуда узнаем, что CAB = 33°, а ABC = 108°. Теперь, зная значения синусов каждого из углов и радиус, найдем площадь, подставляя найденные значения:

Ответ: площадь треугольника равна 40,31 см², а углы равны соответственно 33°, 108° и 39°.

Важно! Решая задачи подобного плана, будет нелишним всегда иметь таблицы Брадиса либо соответствующее приложение на смартфоне, так как вручную процесс может затянуться на длительное время. Также для большей экономии времени не требуется обязательно строить все три середины перпендикуляра либо три биссектрисы. Любая третья из них всегда будет пересекаться в точке пересечения первых двух. А для ортодоксального построения обычно третью дорисовывают. Может, это неправильно в вопросе алгоритма, но на ЕГЭ или других экзаменах это здорово экономит время.

Исчисление радиуса вписанной окружности

Все точки окружности одинаково удалены от ее центра на одинаковом расстоянии. Длину этого отрезка (от и до) называют радиусом. В зависимости от того, какую окр-ть мы имеем, различают два вида – внутренний и внешний. Каждый из них вычисляется по собственной формуле и имеет прямое отношение к вычислению таких параметров, как:

Рисунок 3. Расположение вписанной окружности внутри треугольника

Вычислить длину расстояния от центра до точки соприкосновения с любой из сторон можно такими способами: через стороны, высоты, боковые стороны и углы (для равнобокого треугольника).

Использование полупериметра

Полупериметром называется половина суммы длин всех сторон. Такой способ считается самым популярным и универсальным, потому как независимо от того, какой тип треугольника дан по условию, он подходит для всех. Порядок вычисления имеет следующий вид:

Если дан «правильный»

Одним из малых преимуществ «идеального» треугольника является то, что вписанная и описанная окружности имеют центр в одной точке. Это удобно при построении фигур. Однако в 80% случаев ответ получается «некрасивым». Тут имеется ввиду, что очень редко радиус вписанной окр-ти будет целым натуральным числом, скорее наоборот. Для упрощенного исчисления используется формула радиуса вписанной окружности в треугольник:

Если боковины одинаковой длины

Одним из подтипов задач на гос. экзаменах будет нахождение радиуса вписанной окружности треугольника, две стороны которого равны между собой, а третья нет. В таком случае рекомендуем использовать этот алгоритм, который даст ощутимую экономию времени на поиск диаметра вписанной окр-ти. Радиус вписанной окружности в треугольник с равными «боковыми» вычисляется по формуле:

Более наглядное применение указанных формул продемонстрируем на следующей задаче. Пускай имеем треугольник (Δ HJI), в который вписана окр-ть в точке K. Длина стороны HJ = 16 см, JI = 9,5 см и сторона HI равна 19 см (рисунок 4). Найти радиус вписанной окр-ти, зная стороны.

Рисунок 4. Поиск значения радиуса вписанной окружности

Решение: для нахождения радиуса вписанной окр-ти найдем полупериметр:

Отсюда, зная механизм вычисления, узнаем следующее значение. Для этого понадобятся длины каждой из сторон (дано по условию), а также половину периметра, получается:

Отсюда следует, что искомый радиус равен 3,63 см. Согласно условию, все стороны равны, тогда искомый радиус будет равен:

При условии, если многоугольник равнобокий (например, i = h = 10 см, j = 8 см), диаметр внутренней окр-ти с центром в точке K будет равен:

В условии задачи может даваться треугольник с углом 90°, в таком случае запоминать формулу нет необходимости. Гипотенуза треугольника будет равна диаметру. Более наглядно это выглядит так:

Важно! Если задана задача на поиск внутреннего радиуса, не рекомендуем проводить вычисления через значения синусов и косинусов углов, табличное значение которых точно не известно. В случае, если иначе узнать длину невозможно, не пытайтесь «вытащить» значение из-под корня. В 40% задач полученное значение будет трансцендентным (т.е. бесконечным), а комиссия может не засчитать ответ (даже если он будет правильным) из-за его неточности или неправильной формы подачи. Особое внимание уделите тому, как может видоизменяться формула радиуса описанной окружности треугольника в зависимости от предложенных данных. Такие «заготовки» позволяют заранее «видеть» сценарий решения задачи и выбрать наиболее экономное решение.

Радиус внутренней окружности и площадь

Для того чтобы вычислить площадь треугольника, вписанного в окружность, используют лишь радиус и длины сторон многоугольника:

Если в условии задачи напрямую не дано значение радиуса, а только площадь, то указанная формула площади трансформируется в следующую:

Рассмотрим действие последней формулы на более конкретном примере. Предположим, что дан треугольник, в который вписана окр-ть. Площадь окр-ти составляет 4π, а стороны равны соответственно 4, 5 и 6 см. Вычислим площадь заданного многоугольника при помощи вычисления полупериметра.

Используя вышеуказанный алгоритм, вычислим площадь треугольника через радиус вписанной окружности:

В силу того, что в любой треугольник можно вписать окружность, число вариаций нахождения площади значительно увеличивается. Т.е. поиск площади треугольника, включает в себя обязательное знание длины каждой стороны, а также значение радиуса.

Треугольник, вписанный в окружность геометрия 7 класс

Прямоугольные треугольники, вписанные в окружность

Вывод

Из указанных формул можно убедиться, что сложность любой задачи с использованием вписанной и описанной окружностей заключается только в дополнительных действия по поиску требуемых значений. Задачи подобного типа требуют только досконально понимания сути формул, а также рациональности их применения. Из практики решения отметим, что в будущем центр описанной окружности будет фигурировать и в дальнейших темах геометрии, поэтому запускать ее не следует. В противном случае решение может затянуться с использованием лишних ходов и логических выводов.

uchim.guru

Вписанный и описанный треугольник - материалы для подготовки к ЕГЭ по Математике

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

,

где — полупериметр,

— радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части :

где — стороны треугольника, — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Ты нашел то, что искал? Поделись с друзьями!

. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

Ответ: .

. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

По теореме синусов,

Получаем, что . Угол — тупой. Значит, он равен .

Ответ: .

. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Вписанная и описанная окружности [wiki.eduVdom.com]

Окружность называется вписанной в треугольник, если она касается всех его сторон.

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

Доказательство. Пусть ABC — данный треугольник, О — центр вписанной в него окружности, D, Е и F — точки касания окружности со сторонами (рис.1).

Рис.1

Прямоугольные треугольники AOD и АОЕ равны по гипотенузе и катету. У них гипотенуза АО общая, а катеты OD и ОЕ равны как радиусы. Из равенства треугольников следует равенство углов OAD и ОАЕ. А это значит, что точка О лежит на биссектрисе треугольника, проведенной из вершины А. Точно так же доказывается, что точка О лежит на двух других биссектрисах треугольника. Теорема доказана.

В случае описанной окружности имеет место следующая теорема.

Теорема 2. Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам треугольника (рис.2).

Рис.2

Пример 1. Найти радиус окружности r, вписанной в равносторонний треугольник ABC со стороной а.

Решение. В силу [свойства_равнобедренного_треугольника|теоремы 2] в равностороннем треугольнике каждая биссектриса является одновременно медианой и высотой. Поэтому центр О вписанной окружности лежит в точке пересечения медиан, которая делит каждую медиану в отношении 2:1, считая от вершины (пример 5).

Рис.3

Из прямоугольного треугольника ACD (рис.3) согласно теореме Пифагора имеем: $$ AC^2 = AD^2 + CD^2\text{ , или }CD^2 = AC^2 - AD^2 \\ \text{, откуда } \\ CD^2 = a^2 - \frac{a^2}{4} = \frac{3a^2}{4} \\ \text{ и, значит, } \\ CD^2 = \frac{ a\sqrt{3} }{2} \\ \text{ . Поэтому }r = \frac{a \sqrt{3} }{6} $$

Пример 2. В прямоугольном треугольнике катеты равны 12 и 16 см. Вычислить радиус описанной окружности.

Решение. Центр описанной около прямоугольного треугольника окружности совпадает с серединой гипотенузы, откуда радиус описанной окружности $R = \frac{1}{2} АВ$ (рис.4).

Рис.4

По теореме Пифагора $$ АВ^2 = АС^2 + СВ^2 \text{ или Рис.4 } \\ АВ^2 =16^2 + 12^2 = 400 \\ \text{ откуда }АВ = \sqrt{400} = 20\text{ и, значит, }R = 10\text{ (см).} $$

Пример 3. Основание AC равнобедренного треугольника ABC равна 12. Окружность с центром вне этого треугольника имеет радиус 8 и касается продолжения боковых сторон треугольника ABC: BC и BA, а также касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Видео-решение.

wiki.eduvdom.com

Окружность, вписанная в треугольник | Треугольники

Что такое окружность, вписанная в треугольник? Какие у вписанной окружности свойства?

Определение.

Окружность называется вписанной в треугольник, если она касается всех его сторон.

Общие точки окружности и треугольника называются точками касания.

Запись окр. (O; r) читают: «Окружность с центром в точке O и радиусом r».

На рисунке окр. (O; r) — вписанная в треугольник ABC.

M, K, F- точки касания.

Свойства вписанной в треугольник окружности.

1) Центр вписанной в треугольник окружности является точкой пересечения биссектрис этого треугольника.

AO, BO, CO — биссектрисы треугольника ABC.

2) Отрезки соединяющие центр вписанной окружности с точками касания, перпендикулярны сторонам треугольника (как радиусы, проведенные в точку касания):

   

   

   

3) Вписанная в треугольник окружность делит стороны треугольника на 3 пары равных отрезков.

 

   

   

   

(как отрезки касательных, проведенные из одной точки).

www.treugolniki.ru

Радиус вписанной в прямоугольный | Треугольники

Утверждение.

Радиус вписанной в прямоугольный треугольник окружности равен

   

где a и b — катеты, c — гипотенуза.

Доказательство:

Пусть в прямоугольном треугольнике ABC катеты BC=a, AC=b, гипотенуза AB=c.

Проведём радиусы OK, OM, ON к сторонам треугольника.

   

(как радиусы, проведённые в точку касания).

   

(как отрезки касательных, проведённых из одной точки).

Отсюда следует, что четырёхугольник CKOM — квадрат, стороны которого равны радиусу вписанной в треугольник ABC окружности: CK=CM=OM=OK=r.

Следовательно,

   

   

   

то есть

   

Таким образом, формула радиуса вписанной в прямоугольный треугольник окружности

   

Что и требовалось доказать.

www.treugolniki.ru

Свойства вписанной в треугольник окружности

В этой статье Вы сможете найти свойства вписанной в треугольник окружности, а также их доказательства.

Вписанная в треугольник окружность - это такая окружность, которая находится внутри треугольника и при этом касается всех его сторон (то есть все стороны треугольника являются касательными к окружности). Стоит отметить, что в этом случае сам треугольник является описанным вокруг данной окружности.

Рисунок 1

Свойства вписанной в треугольник окружности

  1. Центр вписанной в треугольник окружности (на рис. 1 – точка О) лежит на пересечении биссектрис треугольника (на рис.1 – АО, ВО и СО).
  2. В любой треугольник вписывается окружность и притом только одна.
  3. Радиус вписанной в треугольник окружности равен:

    Где S – это площадь треугольника, p - полупериметр треугольника, a, b, c - стороны треугольника.

Доказательства свойств

Первое свойство

Доказать, что центр вписанной в треугольник окружности находится на пересечении биссектрис.

Доказательство.

  1. Опустим из центра окружности перпендикуляры (OL, OK и OM) к каждой из сторон треугольника ABC (рис. 2). Также из каждого угла проведем прямую к центру окружности (OA, OC и OB).

    Рисунок 2

  2. Рассмотрим 2 треугольника AOM и AOK. Они являются прямоугольными, т.к. OM и OK – перпендикуляры к сторонам AC и AB. Гипотенуза OA является общей для обоих треугольников.
  3. Поскольку касательная к окружности перпендикулярна радиусу, проведенному в точку касания (свойство касательной к окружности), то катеты OМ и OК являются радиусами окружности и, следовательно, равны.
  4. Из вышесказанного следует, что прямоугольные треугольники AOМ и AOК равны по гипотенузе и катету. Т.к. треугольники равны, то углы OAМ и OAК тоже равны, отсюда следует, что OA – биссектриса угла BAC.
  5. Аналогичным образом доказывается, что OC – биссектриса угла ACB, а OB – биссектриса угла ABC.
  6. То есть биссектрисы треугольника пересекаются в одной точке и этой точкой является центр вписанной окружности.

Что и требовалось доказать.

Второе свойство

Доказать, что в любой треугольник можно вписать окружность и притом только одну.

Доказательство

  1. В треугольник можно вписать окружность только в том случае, если найдется точка равноудаленная от его сторон.
  2. Проведем 2 биссектрисы OA и OC. Опустим из точки их пресечения перпендикуляры (OK, OL и OM) ко всем трем сторонам треугольника ABC (рис. 3).

    Рисунок 3

  3. Рассмотрим треугольники AOK и AOM.
  4. У них общая гипотенуза AO. Углы OAK и OAM равны (т.к. OA – биссектриса угла KAM). Углы OKA и OMA прямые (т.е. тоже равны), т.к. OK и OM – перпендикуляры к сторонам AB и AC соответственно.
  5. Поскольку 2 пары углов равны, то и 3-я пара (AOM и AOK) также является равной.
  6. Из вышенаписанного следует, что треугольники AOK и AOM равны по стороне (AO) и 2-м прилежащим к ней углам (рис. 4).

    Рисунок 4

  7. Отсюда следует, что стороны OM и OK равны, т.е. равноудалены от сторон треугольника AC и AB соответственно.
  8. Аналогичным образом доказывается, что OM и OL равны, т.е. они равноудалены от сторон треугольника AC и BC соответственно.
  9. Из вышенаписанного следует, что точка O равноудалена от сторон треугольника, т.е. является центром вписанной окружности.
  10. Аналогичным образом можно найти точку внутри любого треугольника, которая будет равноудалена от его сторон, то есть будет центром вписанной в этот треугольник окружности.
  11. Из вышенаписанного следует, что в любой треугольник можно вписать окружность.
  12. Следует отметить, что центр данной окружности лежит на пересечении биссектрис треугольника.
  13. Допустим, что в треугольник можно вписать две (или более) окружности.
  14. Проведя 3 отрезка из вершин треугольника к центру этой окружности и, опустив перпендикуляры из этого центра к каждой из сторон треугольника, мы сможем доказать, что эта окружность лежит на пересечении биссектрис треугольника (см. доказательство первого свойства).
  15. То есть центр этой окружности совпадает с центром первой окружности, уже вписанной в треугольник, а ее радиус равен перпендикуляру, опущенному на сторону треугольника (как и в первом случае). Это говорит о том, что данные окружности совпадают.
  16. Аналогичным образом можно доказать, что любая новая вписанная окружность совпадает с первой, которую мы впишем.
  17. То есть вписать в треугольник можно только одну окружность.

Что и требовалось доказать.

Третье свойство

Доказать, что радиус вписанной окружности r равен отношению площади треугольника S к полупериметру p.

А также равенство:

Доказательство.

Рисунок 5

  1. Рассмотрим произвольный треугольник ABC со сторонами a, b и c (рис 5). Полупериметр данного треугольника p рассчитывается по формуле:

  2. Центр нашей окружности (точка O на рис. 5) находиться на пересечении биссектрис треугольника. Отрезки OA, OB и OC, соединяющие O с вершинами треугольника АВС, делят треугольник на три: AOC, COB, BOA. Площадь треугольника ABC можно найти как сумму площадей этих трех треугольников.

  3. Поскольку площадь любого треугольника равна половине произведения его основания на высоту, а высота треугольников AOC, COB, BOA равна радиусу окружности r, то площади треугольников AOC, COB и BOA можно найти как:

  4. Выразим площадь S треугольника ABC через сумму площадей этих трех треугольников:

  5. Заметив, что второй множитель – это полупериметр треугольника ABC, можно представить наше равенство в виде:

    Или

  6. Итак, мы доказали, что радиус вписанной окружности равен отношению площади треугольника к полупериметру.
  7. Вспомним формулу Герона, которая в нашем случае будет иметь вид:

  8. Теперь радиус можно выразить как:

Что и требовалось доказать.

Понравилась статья, расскажите о ней друзьям:

Скорее всего, Вам будет интересно:

people-ask.ru