Литосфера. Литосфера это что


Литосфера Ваше имя (обязательно) Ваш e-mail (обязательно) Тема Сообщение Пожаловаться ▲▼ ПроблемыИнформация невернаОпечатки, неверная орфография и пунктуацияИнформация потеряла актуальностьНедостаточно информации по темеИнформация на странице повторяетсяЧасть текста на страницы не интереснаИзображения не соответствуют текстуСтраница плохо оформленаСтраница долго загружаетсяДругие проблемы Комментарий Литосфера — это каменная оболочка Земли. От греческого «литос» — камень и «сфера» — шар Литосфера — внешняя твердая оболочка Земли, которая включает всю земную кору с частью верхней мантии Земли и состоит из осадочных, изверженных и метаморфических пород. Нижняя граница литосферы нечеткая и определяется резким уменьшением вязкости пород, изменением скорости распространение сейсмических волн и увеличением электропроводности пород. Толщина литосферы на континентах и под океанами различается и составляет в среднем соответственно 25 — 200 и 5 — 100 км. Рассмотрим в общем виде геологическое строение Земли. Третья за отдаленностью от Солнца планета — Земля имеет радиус 6370 км, среднюю плотность — 5,5 г/см3 и состоит из трех оболочек — коры, мантии и и. Мантия и ядро делятся на внутренние и внешние части. Следы движений литосферы сохраняются на века. Земная кора — тонкая верхняя оболочка Земли, которая имеет толщину на континентах 40-80 км, под океанами — 5-10 км и составляет всего около 1 % массы Земли. Восемь элементов — кислород, кремний, водород, алюминий, железо, магний, кальций, натрий — образовывают 99,5 % земной коры. Согласно научным исследованиям, учёным удалось установить, что литосфера состоит из: Кислорода – 49%; Кремния – 26%; Алюминия – 7%; Железа – 5%; Кальция – 4% В состав литосферы входит немало минералов, самые распространённые – шпат и кварц. На континентах кора трехслойная: осадочные породы укрывают гранитные, а гранитные залегают на базальтовых. Под океанами кора «океанического» , двухслойного типа; осадочные породы залегают просто на базальтах, гранитного пласта нет. Различают также переходный тип земной коры (островно-дуговые зоны на окраинах океанов и некоторые участки на материках, например Черное море) . Наибольшую толщину земная кора имеет в горных районах (под Гималаями — свыше 75 км) , среднюю — в районах платформ (под Западно-Сибирской низиной — 35-40, в границах Русской платформы — 30-35), а наименьшую — в центральных районах океанов (5-7 км) . Преобладающая часть земной поверхности — это равнины континентов и океанического дна. Континенты окружены шельфом- мелководной полосой глубиной до 200 г и средней шириной близко 80 км, которая после резкого обрывчастого изгиба дна переходит в континентальный склон (уклон изменяется от 15-17 до 20-30°). Склоны постепенно выравниваются и переходят в абиссальные равнины (глубины 3,7-6,0 км) . Наибольшие глубины (9-11 км) имеют океанические желоба, подавляющее большинство которых расположенная на северной и западной окраинах Тихого океана. Основная часть литосферы состоит из изверженных магматических пород (95 %), среди которых на континентах преобладают граниты и гранитоиды, а в океанах-базальты. Блоки литосферы — литосферные плиты — двигаются по относительно пластичной астеносфере. Изучению и описанию этих движений посвящен раздел геологии о тектонике плит. Для обозначения внешней оболочки литосферы применялся ныне устаревший термин сиаль, происходящий от названия основных элементов горных пород Si (лат. Silicium — кремний) и Al (лат. Aluminium — алюминий). Литосферные плиты Стоит отметить, что самые крупные тектонические плиты очень хорошо различимы на карте и ими являются: Тихоокеанская – самая большая плита планеты, вдоль границ которой происходят постоянные столкновения тектонических плит и образуются разломы – это является причиной её постоянного уменьшения; Евразийская – покрывает почти всю территорию Евразии (кроме Индостана и Аравийского полуострова) и содержит наибольшую часть материковой коры; Индо-Австралийская – в её состав входит австралийский континент и индийский субконтинент. Из-за постоянных столкновений с Евразийской плитой находится в процессе разлома; Южно-Американская – состоит из южноамериканского материка и части Атлантического океана; Северо-Американская – состоит из североамериканского континента, части северо-восточной Сибири, северо-западной части Атлантического и половины Северного Ледовитого океанов; Африканская – состоит из африканского материка и океанической коры Атлантического и Индийского океанов. Интересно, что соседствующие с ней плиты движутся в противоположную от неё сторону, поэтому здесь находится наибольший разлом нашей планеты; Антарктическая плита – состоит из материка Антарктида и близлежащей океанической коры. Из-за того, что плиту окружают срединно-океанические хребты, остальные материки от неё постоянно отодвигаются. Движение тектонических плит в литосфере Литосферные плиты, соединяясь и разъединяясь, всё время изменяют свои очертания. Это даёт возможность учёным выдвигать теорию о том, что около 200 млн. лет назад литосфера имела лишь Пангею — один-единственный континент, впоследствии расколовшийся на части, которые начали постепенно отодвигаться друг от друга на очень маленькой скорости (в среднем около семи сантиметров в год). Это интересно! Существует предположение, что благодаря движению литосферы, через 250 млн. лет на нашей планете сформируется новый континент за счёт объединения движущихся материков. Когда происходит столкновение океанической и континентальной плит, край океанической коры погружается под материковую, при этом с другой стороны океанической плиты её граница расходится с соседствующей с ней плитой. Граница, вдоль которой происходит движение литосфер, называется зоной субдукции, где выделяют верхние и погружающиеся края плиты. Интересно, что плита, погружаясь в мантию, начинает плавиться при сдавливании верхней части земной коры, в результате чего образуются горы, а если к тому же прорывается магма – то и вулканы. В местах, где тектонические плиты соприкасаются друг с другом, расположены зоны максимальной вулканической и сейсмической активности: во время движения и столкновения литосферы, земная кора разрушается, а когда они расходятся, образуются разломы и впадины (литосфера и рельеф Земли связаны друг с другом). Это является причиной того, что вдоль краёв тектонических плит расположены наиболее крупные формы рельефа Земли – горные хребты с активными вулканами и глубоководные желоба. Проблемы литосферы Интенсивное развитие промышленности привело к тому, что человек и литосфера в последнее время стали чрезвычайно плохо уживаться друг с другом: загрязнение литосферы приобретает катастрофические масштабы. Произошло это вследствие возрастания промышленных отходов в совокупности с бытовым мусором и используемыми в сельском хозяйстве удобрениями и ядохимикатами, что негативно влияет на химический состав грунта и на живые организмы. Учёные подсчитали, что за год на одного человека припадает около одной тонны мусора, среди которых – 50 кг трудноразлагаемых отходов. загрязнение литосферы Сегодня загрязнение литосферы стало актуальной проблемой, поскольку природа не в состоянии справиться с ней самостоятельно: самоочищение земной коры происходит очень медленно, а потому вредные вещества постепенно накапливаются и со временем негативно воздействуют и на основного виновника возникшей проблемы – человека. ВидеоИсточникиhttps://otvet.mail.ru/question/29588926 http://awesomeworld.ru/nezhivaya-priroda/litosfera.html

Литосфера — определение, фото, интересные факты

Литосфера — это каменная оболочка Земли. От греческого «литос» — камень и «сфера» — шар

Литосфера — внешняя твердая оболочка Земли, которая включает всю земную кору с частью верхней мантии Земли и состоит из осадочных, изверженных и метаморфических пород. Нижняя граница литосферы нечеткая и определяется резким уменьшением вязкости пород, изменением скорости распространение сейсмических волн и увеличением электропроводности пород. Толщина литосферы на континентах и под океанами различается и составляет в среднем соответственно 25 — 200 и 5 — 100 км.

Рассмотрим в общем виде геологическое строение Земли. Третья за отдаленностью от Солнца планета — Земля имеет радиус 6370 км, среднюю плотность — 5,5 г/см3 и состоит из трех оболочек — коры, мантии и и. Мантия и ядро делятся на внутренние и внешние части.

Следы движений литосферы сохраняются на века.

Земная кора — тонкая верхняя оболочка Земли, которая имеет толщину на континентах 40-80 км, под океанами — 5-10 км и составляет всего около 1 % массы Земли. Восемь элементов — кислород, кремний, водород, алюминий, железо, магний, кальций, натрий — образовывают 99,5 % земной коры.

Согласно научным исследованиям, учёным удалось установить, что литосфера состоит из:

На континентах кора трехслойная: осадочные породы укрывают гранитные, а гранитные залегают на базальтовых. Под океанами кора «океанического» , двухслойного типа; осадочные породы залегают просто на базальтах, гранитного пласта нет. Различают также переходный тип земной коры (островно-дуговые зоны на окраинах океанов и некоторые участки на материках, например Черное море) .

Наибольшую толщину земная кора имеет в горных районах (под Гималаями — свыше 75 км) , среднюю — в районах платформ (под Западно-Сибирской низиной — 35-40, в границах Русской платформы — 30-35), а наименьшую — в центральных районах океанов (5-7 км) . Преобладающая часть земной поверхности — это равнины континентов и океанического дна.

Континенты окружены шельфом- мелководной полосой глубиной до 200 г и средней шириной близко 80 км, которая после резкого обрывчастого изгиба дна переходит в континентальный склон (уклон изменяется от 15-17 до 20-30°). Склоны постепенно выравниваются и переходят в абиссальные равнины (глубины 3,7-6,0 км) . Наибольшие глубины (9-11 км) имеют океанические желоба, подавляющее большинство которых расположенная на северной и западной окраинах Тихого океана.

Основная часть литосферы состоит из изверженных магматических пород (95 %), среди которых на континентах преобладают граниты и гранитоиды, а в океанах-базальты.

Блоки литосферы — литосферные плиты — двигаются по относительно пластичной астеносфере. Изучению и описанию этих движений посвящен раздел геологии о тектонике плит.

Для обозначения внешней оболочки литосферы применялся ныне устаревший термин сиаль, происходящий от названия основных элементов горных пород Si (лат. Silicium — кремний) и Al (лат. Aluminium — алюминий).

Литосферные плиты

Стоит отметить, что самые крупные тектонические плиты очень хорошо различимы на карте и ими являются:

Движение тектонических плит в литосфере

Литосферные плиты, соединяясь и разъединяясь, всё время изменяют свои очертания. Это даёт возможность учёным выдвигать теорию о том, что около 200 млн. лет назад литосфера имела лишь Пангею — один-единственный континент, впоследствии расколовшийся на части, которые начали постепенно отодвигаться друг от друга на очень маленькой скорости (в среднем около семи сантиметров в год).

Это интересно! Существует предположение, что благодаря движению литосферы, через 250 млн. лет на нашей планете сформируется новый континент за счёт объединения движущихся материков.

Когда происходит столкновение океанической и континентальной плит, край океанической коры погружается под материковую, при этом с другой стороны океанической плиты её граница расходится с соседствующей с ней плитой. Граница, вдоль которой происходит движение литосфер, называется зоной субдукции, где выделяют верхние и погружающиеся края плиты. Интересно, что плита, погружаясь в мантию, начинает плавиться при сдавливании верхней части земной коры, в результате чего образуются горы, а если к тому же прорывается магма – то и вулканы.

В местах, где тектонические плиты соприкасаются друг с другом, расположены зоны максимальной вулканической и сейсмической активности: во время движения и столкновения литосферы, земная кора разрушается, а когда они расходятся, образуются разломы и впадины (литосфера и рельеф Земли связаны друг с другом). Это является причиной того, что вдоль краёв тектонических плит расположены наиболее крупные формы рельефа Земли – горные хребты с активными вулканами и глубоководные желоба.

Проблемы литосферы

Интенсивное развитие промышленности привело к тому, что человек и литосфера в последнее время стали чрезвычайно плохо уживаться друг с другом: загрязнение литосферы приобретает катастрофические масштабы. Произошло это вследствие возрастания промышленных отходов в совокупности с бытовым мусором и используемыми в сельском хозяйстве удобрениями и ядохимикатами, что негативно влияет на химический состав грунта и на живые организмы. Учёные подсчитали, что за год на одного человека припадает около одной тонны мусора, среди которых – 50 кг трудноразлагаемых отходов.

загрязнение литосферы

Сегодня загрязнение литосферы стало актуальной проблемой, поскольку природа не в состоянии справиться с ней самостоятельно: самоочищение земной коры происходит очень медленно, а потому вредные вещества постепенно накапливаются и со временем негативно воздействуют и на основного виновника возникшей проблемы – человека.

Видео

Источники

mfina.ru

Wonderful-planet - Литосфера Земли.

Подробности Вы в разделе: Литосфера

Литосферой называется внешняя твердая относительно прочная оболочка Земли.

Общая характеристика литосферы. - Границы литосферы. - Строение литосферы. - Изостазия. - Химический состав литосферы.

 

Общая характеристика литосферы.

Термин "литосфера" был предложен в 1916 году Дж. Барреллом и вплоть до 60-х гг. двадцатого столетия выступал синонимом земной коры. Затем было доказано, что в состав литосферы входят также и верхние слои мантии мощностью до нескольких десятков километров.

В строении литосферы выделяются подвижные области (складчатые пояса) и относительно стабильные платформы.

Мощность литосферы варьируется от 5 до 200 км. Под континентами толщина литосферы меняется от 25 км под молодыми горами, вулканическими дугами и континентальными рифтовыми зонами до 200 и более километров под щитами древних платформ. Под океанами литосфера более тонкая и достигает минимальной отметки в 5 км под срединно-океаническими хребтами, на периферии океана, постепенно утолщаясь, доходит до 100-километровой толщины. Наибольшей мощности литосфера достигает в наименее прогретых областях, наименьшей – в наиболее жарких.

По реакции на длительно действующие нагрузки в литосфере принято выделять верхний упругий и нижний пластичный слой. Также на разных уровнях в тектонически активных областях литосферы прослеживаются горизонты относительно пониженной вязкости, для которых характерны пониженные скорости сейсмических волн. Геологи не исключают возможности проскальзывания по этим горизонтам одних слоёв относительно других. Это явление получило название расслоенности литосферы.

Наиболее крупными элементами литосферы являются литосферные плиты с размерами в поперечнике 1–10 тыс. км. В настоящее время литосфера разделена на семь главных и несколько малых плит. Границы между плитами проводятся вдоль зон наибольшей сейсмической и вулканической активности.

Границы литосферы.

Верхняя часть литосферы граничит с атмосферой и гидросферой. Атмосфера, гидросфера и верхний слой литосферы находятся в прочной взаимосвязи и частично проникают друг в друга.

Нижняя граница литосферы располагается над астеносферой – слоем пониженной твёрдости, прочности и вязкости в верхней мантии Земли. Граница между литосферой и астеносферой нерезкая – переход литосферы в астеносферу характеризуется уменьшением вязкости, изменением скорости сейсмических волн и увеличением электропроводности. Все эти изменения происходят вследствие повышения температуры и частичного плавления вещества. Отсюда и основные методы определения нижней границы литосферы – сейсмологический и магнитотеллурический.

Строение литосферы.

 

В настоящее время в строении литосферы принято выделять земную кору (смотрите Земная кора в цифрах) и жесткую верхнюю часть мантии. Слои литосферы отделены друг от друга границей Мохоровича. Рассмотрим подробнее части, на которые разделена литосфера.

Земная кора. Строение и состав.

Земная кора – часть литосферы, самая верхняя из твердых оболочек Земли. На долю земной коры приходится 1% от общей массы Земли (см. Физические характеристики Земли в цифрах).

Строение земной коры различается на континентах и под океанами, а также в переходных областях.

Материковая земная кора имеет толщину 35-45 км, в горных областях до 80 км. Например, под Гималаями  - свыше 75 км, под Западно-Сибирской низиной – 35-40 км, под Русской платформой – 30-35.

Материковая земная кора делится на слои:

- Осадочный слой – слой, покрывающий верхнюю часть континентальной земной коры. Состоит из осадочных и вулканических горных пород. Местами (преимущественно на щитах древних платформ) осадочный слой отсутствует.

- Гранитный слой – условное название для слоя, где скорость распространения продольных сейсмических волн не превышает 6,4 км/сек. Состоит из гранитов и гнейсов - метаморфических горных пород, главными минералами которых являются плагиоклаз, кварц и калиевый полевой шпат.

- Базальтовый слой - условное название для слоя, где скорость распространения продольных сейсмических волн находится в диапазоне 6,4 - 7,6 км/сек. Сложен базальтами, габбро (магматическая интрузивная горная порода основного состава) и очень сильно метаморфизованными осадочными породами.

Слои материковой земной коры могут быть смяты, разорваны и смещены по линии разрыва. Гранитный и базальтовый слои часто разделены поверхностью Конрада, которая характеризуется резким скачком скорости сейсмических волн.

Океаническая земная кора имеет толщину 5-10 км. Наименьшая толщина характерна для центральных районов океанов.

Океаническая земная кора делится на 3 слоя:

- Слой морских осадков – толщина менее 1 км. Местами отсутствует вовсе.

- Средний слой или «второй» - слой со скоростью распространения продольных сейсмических волн от 4 до 6 км/сек – толщина от 1 до 2,5 км. Состоит из серпентина и базальта, возможно, с примесью осадочных пород.

- Самый нижний слой или «океанический» – скорость распространения продольных сейсмических волн находится в диапазоне 6,4-7,0 км/сек. Сложен из габбро.

Выделяют также переходный тип земной коры. Он характерен для островно-дуговых зон на окраинах океанов, а также для некоторых участков материков, например, в районе Черного моря.

Земная поверхность в основном представлена равнинами континентов и океанического дна. Континенты окружены шельфом - мелководной полосой глубиной до 200 г и средней шириной около 80 км, которая после резкого обрывчатого изгиба дна переходит в континентальный склон (уклон изменяется от 15-17 до 20-30°). Склоны постепенно выравниваются и переходят в абиссальные равнины (глубины 3,7-6,0 км). Наибольшие глубины (9-11 км) имеют океанические желоба, расположенные в основном в северной и западной частях Тихого океана.

 

 

Граница (поверхность) Мохоровичича

Нижняя граница земной коры проходит по границе (поверхности) Мохоровичича – зоне, в которой происходит резкий скачок скоростей сейсмических волн. Продольных с 6,7-7,6 км/сек до 7,9-8,2 км/сек., а поперечных – с 3,6-4,2 км/сек до 4,4-4,7 км/сек.

Для этой же области характерно резкое увеличение плотности вещества – с 2,9-3 до 3,1-3,5 т/м³. То есть на границе Мохоровичича менее упругий материал земной коры заменяется более упругим веществом верхней мантии.

Наличие поверхности Мохоровичича установлено для всего Земного шара на глубине 5-70 км. По всей видимости, данная граница разделяет слои с разным химическим составом.

Поверхность Мохоровичича повторяет рельеф земной поверхности, являясь его зеркальным отражением. Под океанами она выше, под континентами – ниже.

Поверхность (граница) Мохоровичича (сокращенно Мохо) открыта в 1909 году хорватским геофизиком и сейсмологом Андреем Мохоровичичем и названа в его честь.

Верхняя мантия

Верхняя мантия – нижняя часть литосферы, находящаяся под земной корой. Другое название верхней мантии – субстрат.

Скорость распространения продольных сейсмических волн около 8 км/сек.

Нижняя граница верхней мантии проходит на глубине 900 км (при делении мантии на верхнюю и нижнюю) или на глубине 400 км (при делении ее на верхнюю, среднюю и нижнюю).

Относительно состава верхней мантии однозначного ответа нет. Одни исследователи на основании изучения ксенолитов полагают, что верхняя мантия имеет оливин-пироксеновый состав. Другие считают, что вещество верхней мантии представлено гранатовыми перидотитами с примесью в верхней части эклогита.

Верхняя мантия не однородна по составу и строению. В ней наблюдаются зоны пониженных скоростей сейсмических волн, также наблюдаются различия в строении под разными тектоническими зонами.

Изостазия.

Явление изостазии было обнаружено при изучении силы тяжести у подножия горных массивов. Ранее считалось, что такие массивные сооружения, как, например, Гималаи, должны увеличивать силу притяжения Земли. Однако исследования, проведенные в середине 19 века, опровергли эту теорию – сила тяжести на поверхности всей земной поверхности остается одинаковой.

Было установлено, что крупные неровности рельефа компенсируются, уравновешиваются чем-то на глубине. Чем мощнее участок земной коры, тем глубже он погружен в вещество верхней мантии.

На основании сделанных открытий, ученые пришли к выводу, что земная кора стремится к уравновешенности за счет мантии. Это явления получило название изостазии.

Изостазия иногда может нарушиться из-за действия тектонических сил, но со временем земная кора все равно возвращается к равновесию.

На основе гравиметрических исследований было доказано, что большая часть земной поверхности находится в состоянии равновесия. Изучением явления изостазии на территории бывшего СССР занимался М.Е.Артемьев.

Наглядно проследить явление изостазии можно на примере ледников. Под тяжестью мощных ледниковых покровов четырех- и более километровой толщины земная кора под Антарктидой и Гренландией «просела», опустившись ниже уровня океана. В Скандинавии же и в Канаде, сравнительно недавно освободившихся от ледников, наблюдается поднятие земной коры.

Химический состав литосферы.

Химические соединения, из которых состоят элементы земной коры, называются минералами. Из минералов образованы горные породы.

Основные виды горных пород:

- магматические;

- осадочные;

- метаморфические.

В составе литосферы преобладают в основном магматические горные породы. На их долю приходится около 95% всего вещества литосферы.

Состав литосферы на континентах и под океанами существенно различается.

Литосфера на континентах состоит из трех слоев:

- осадочные породы;

- гранитные породы;

- базальтовые.

Литосфера под океанами двухслойная:

- осадочные породы;

- базальтовые породы.

 

Химический состав литосферы представлен в основном всего восемью элементами. Это кислород, кремний, водород, алюминий, железо, магний, кальций и натрий. На долю этих элементов приходится около 99,5% вещества земной коры.

Таблица 1. Химический состав земной коры на глубинах 10 - 20 км.

Элемент

Массовая доля, %

Кислород

49,13

Магний

2,35

Железо

4,20

Углерод

0,35

Калий

2,35

Алюминий

26,00

Титан

0,61

Натрий

2,40

Кремний

26,00

Водород

1,00

Кальций

3,25

Хлор

0,20

Понравилась статья? Поделитесь с друзьями!

 

Нужно больше информации по теме "Литосфера Земли"? Воспользуйтесь поиском от Гугл!

 

Избранные мировые новости.

   

Уважаемые посетители! Если Вы не нашли необходимой информации или считаете ее неполной, напишите ниже в комментариях, и статья будет дополнена соответственно Вашему желанию.

wonderful-planet.ru

Литосфера — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Литосфе́ра (от греч. λίθος — камень и σφαίρα — шар, сфера) — твёрдая оболочка Земли. Состоит из земной коры и верхней части мантии, до астеносферы, где скорости сейсмических волн понижаются, свидетельствуя об изменении пластичности пород. В строении литосферы выделяют подвижные области (складчатые пояса) и относительно стабильные платформы.

Блоки литосферы — литосферные плиты — двигаются по относительно пластичной астеносфере. Изучению и описанию этих движений посвящён раздел геологии о тектонике плит.

Земная кора под океанами и континентами значительно различается. Земная кора под континентами состоит из осадочного, гранитного и базальтового слоев общей мощностью до 80 км. Земная кора под океанами претерпела множество этапов частичного плавления в результате образования океанической коры, она сильно обеднена легкоплавкими редкими элементами, в основном состоит из дунитов и гарцбургитов, её толщина составляет 5—10 км, а гранитный слой полностью отсутствует.

Для обозначения внешней оболочки литосферы применялся ныне устаревший термин сиаль, происходящий от названия основных элементов горных пород Si (лат. Silicium — кремний) и Al (лат. Aluminium — алюминий).

Напишите отзыв о статье "Литосфера"

Отрывок, характеризующий Литосфера

– Нет, постой, Пьер. Княгиня так добра, что не захочет лишить меня удовольствия провести с тобою вечер. – Нет, он только о себе думает, – проговорила княгиня, не удерживая сердитых слез. – Lise, – сказал сухо князь Андрей, поднимая тон на ту степень, которая показывает, что терпение истощено. Вдруг сердитое беличье выражение красивого личика княгини заменилось привлекательным и возбуждающим сострадание выражением страха; она исподлобья взглянула своими прекрасными глазками на мужа, и на лице ее показалось то робкое и признающееся выражение, какое бывает у собаки, быстро, но слабо помахивающей опущенным хвостом. – Mon Dieu, mon Dieu! [Боже мой, Боже мой!] – проговорила княгиня и, подобрав одною рукой складку платья, подошла к мужу и поцеловала его в лоб. – Bonsoir, Lise, [Доброй ночи, Лиза,] – сказал князь Андрей, вставая и учтиво, как у посторонней, целуя руку.

Друзья молчали. Ни тот, ни другой не начинал говорить. Пьер поглядывал на князя Андрея, князь Андрей потирал себе лоб своею маленькою рукой. – Пойдем ужинать, – сказал он со вздохом, вставая и направляясь к двери. Они вошли в изящно, заново, богато отделанную столовую. Всё, от салфеток до серебра, фаянса и хрусталя, носило на себе тот особенный отпечаток новизны, который бывает в хозяйстве молодых супругов. В середине ужина князь Андрей облокотился и, как человек, давно имеющий что нибудь на сердце и вдруг решающийся высказаться, с выражением нервного раздражения, в каком Пьер никогда еще не видал своего приятеля, начал говорить:

wiki-org.ru

Литосфера как элемент географической оболочки

 

Литосфера – это сложное образование преимущественно твердого вещества, обволакивающего мантию Земли, слоем от 50 до 200 км. Литосфера залегает на астеносфере – пластичном слое, находящемся в верхней мантии Земли. Астеносфера пластична, по ней перемещаются атмосферные плиты.

Верхнюю часть литосферы слоем от 30 до 60 км на континентах, и до 5 –10 км под океанами называют земной корой. Слой верхней мантии отделен от земной коры разделом Мохоровичича – раздел резкой смены плотности вещества.

Земля состоит из ядра, мантии и земной коры. Свойства земной коры изменяются резко на границе земной коры и мантии. Здесь и проведена линия Мохоровичича (Мохо). Плотность Земли от центра уменьшается  - 11.0 центр ядра, в г/ см3, до 5.3 – 3.4 в мантии и 2.6 – поверхность земной коры. Средняя плотность земной коры 5.52 г/см3.

Земля представляет собой магнит  - диполь. Её магнитные полюса расположены в северном и южном полушариях в небольшом удалении от географических полюсов.

Литосфера на материках трехслойная. Верхний ее слой образован осадочными породами, средний условно называется гранитным. Под океанами гранитный слой тонок или отсутствует. Он сложен «кислыми» (гранитными) легкими изверженными породами. Его плотность 2.7 – 2.8 г/ см2. Нижний слой литосферы называют базальтовым. Он образован более тяжелыми  породами, его плотность приближается к 3.0 г/ см2. В отличие от гранитного слоя, базальтовый распространяется и под материками и под океанами.

Различают типы земной коры: два основных  - материковый и океанический – и один промежуточный – переходный.

В строение земной коры принимают участие три основных типа горных пород: магматические, осадочные, метаморфические.

Земная кора формировалась чрезвычайно длительное время. Наиболее древние участки ее имеют возраст около 4 млрд. лет. Наиболее древние элементы материковой земной коры – древние докембрийские платформы. У них различают фундамент. Это нижний слой. Состоит из метаморфических пород, смятых в складки, разбитых на блоки.  Прорваны магматическими интрузиями. На фундаменте лежит горизонтально залегающая толща сложных осадочных пород.  Это верхний слой. Он образовался гораздо позже фундамента. Последние 0.5 млн. лет древние платформы отличает стабильность, отсутствие складчатого движения.

Выделяют платформы в северном полушарии – Северо-Американскую, Русскую, Сибирскую, Китайскую; в южном полушарии – Южно-Американскую, Африканскую, Аравийскую, Индостанскую, Австралийскую, Антарктическую.

В геологической истории осадочные породы горообразовательные процессы неоднократно захватывали значительные участки земной коры. В течение 550 – 600 млн. лет имели место каледонская, герцинская, тихоокеанская (мезозойская) и альпийская складчатости. В их областях находятся древние и молодые горы.

Древними называют горы, которые характеризуются небольшими высотами и амплитудами рельефа, сглаженными формами.

Молодыми называют горы альпийского облика – высокие, сильно расчлененные, с резкими очертаниями.

Образование произошло в ходе высвобождения веществ из верхнего слоя мантии молодой Земли. В настоящее время на океаническом дне в срединных хребтах продолжается процесс образования земной коры, что сопровождается выделением газов и небольших объемов воды. В составе современной земной коры в большой концентрации присутствует кислород, далее по процентному содержанию следуют кремний и алюминий. В основном, литосферу формируют такие соединения, как диоксид кремния, силикаты, алюмосиликаты. В формировании большей части литосферы принимали участие кристаллические вещества магматического происхождения. Они образовались при остывании вышедшей на поверхность Земли магмы, которая в недрах планеты находится в расплавленном состоянии.

В холодных областях мощности литосферы наибольшие, а в теплых – наименьшие. Мощность литосферы может повышаться при общем понижении плотности теплового потока. Верхний слой литосферы упругий, а нижний пластичный по характеру реакции на постоянно воздействующие нагрузки. В тектонически активных участках литосферы выделяют горизонты сниженной вязкости, где сейсмические волны проходят с более низкой скоростью. По мнению ученых, по данным горизонтам одни слои по отношению к другим «проскальзывают». Этот феномен называют расслоением литосферы. В структуре литосферы различают подвижные участки (складчатые пояса) и сравнительно стабильные области (платформы). По относительно пластичной астеносфере передвигаются блоки литосферы (литосферные плиты), достигающие в поперечнике размеров от 1 до 10 тысяч километров. В настоящее время литосфера делится на семь главных и ряд малых плит. Границами, отделяющими плиты друг от друга, являются зоны максимальной вулканической и сейсмической активности.

Наибольшие значения мощности литосферы наблюдаются в наименее прогретых и наименьшие — в наиболее прогретых областях. В ходе геологического времени мощность литосферы в среднем увеличивалась в связи со снижением теплового потока. По реакции на длительно действующие нагрузки в литосфере выделяют верхний упругий (мощностью несколько десятков км) и нижний пластичный слой. Кроме того, на разных уровнях в тектонически активных областях литосферы прослеживаются горизонты относительно пониженной вязкости (пониженной скорости сейсмических волн). По мнению некоторых исследователей, по этим горизонтам происходит "проскальзывание" одних слоёв относительно других. Это явление называется расслоённостью литосферы. Наиболее крупные структурные единицы литосферы — литосферные плиты, размеры которых в поперечнике составляют 1-10 тысяч км. В современную эпоху литосфера разделена на 7 главных и несколько более мелких плит. Границы плит являются зонами максимальной тектонической, сейсмической и вулканической активности. Согласно теории тектоники плит, литосферные плиты движутся по астеносфере (в первом приближении как жёсткое целое) на расстояния до нескольких тысяч километров со скоростью до первых десятков см/год. Наряду с горизонтальными важную роль играют вертикальные движения литосферы (скорость до нескольких десятков см/год) по системе субвертикальных глубинных разломов, разбивающих литосферные плиты на блоки размером от нескольких десятков до нескольких сотен километров. Блоки литосферы находятся в состоянии, близком к изостатическому равновесию (см. Изостазия). Движения литосферных плит и блоков и их возможные причины изучаются геодинамикой и составляют также предмет исследования по международному проекту "Литосфера", разрабатываемому в 1980-90-е года.



biofile.ru

Литосфера - Gpedia, Your Encyclopedia

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 ноября 2016; проверки требуют 8 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 ноября 2016; проверки требуют 8 правок. Внутренняя структура Земли (масштаб не соблюдён)

Литосфе́ра (от греч. λίθος «камень» + σφαίρα «шар») — твёрдая оболочка Земли. Состоит из земной коры и верхней части мантии, до астеносферы, где скорости сейсмических волн понижаются, свидетельствуя об изменении пластичности пород. В строении литосферы выделяют подвижные области (складчатые пояса) и относительно стабильные платформы.

Блоки литосферы — литосферные плиты — двигаются по относительно пластичной астеносфере. Изучению и описанию этих движений посвящён раздел геологии о тектонике плит.

Земная кора под океанами и континентами значительно различается. Земная кора под континентами состоит из осадочного, гранитного и базальтового слоев общей мощностью до 80 км. Земная кора под океанами претерпела множество этапов частичного плавления в результате образования океанической коры, она сильно обеднена легкоплавкими редкими элементами, в основном состоит из дунитов и гарцбургитов, её толщина составляет 5—10 км, а гранитный слой полностью отсутствует.

Для обозначения внешней оболочки литосферы применялся ныне устаревший термин сиаль, происходящий от названия основных элементов горных пород Si (лат. Silicium — кремний) и AL (лат. Aluminium — алюминий).

www.gpedia.com

ЛИТОСФЕРА - это... Что такое ЛИТОСФЕРА?

  • литосфера — литосфера …   Орфографический словарь-справочник

  • Литосфера — [σφαιρα (ρфера) шар] верхняя твердая оболочка Земли, имеющая большую прочность и переходящая без определенной резкой границы в нижележащую астеносферу, прочность вещества которой относительно мала. Л. в… …   Геологическая энциклопедия

  • ЛИТОСФЕРА — ЛИТОСФЕРА, верхний слой твердой поверхности Земли, который включает КОРУ и самый наружный слой МАНТИЮ. Литосфера может быть разной толщины от 60 до 200 км в глубину. Жесткая, твердая и хрупкая, она состоит из большого числа тектонических плит,… …   Научно-технический энциклопедический словарь

  • ЛИТОСФЕРА — (от лито... и сфера), внешняя оболочка твердой Земли, включающая земную кору и часть верхней мантии. Толщина литосферы под континентами 25 200 км, под океанами 5 100 км. Сформировалась в основном в докембрии …   Современная энциклопедия

  • ЛИТОСФЕРА — (от лито... и сфера) внешняя сфера твердой Земли, включающая земную кору и верхнюю часть подстилающей ее верхней мантии …   Большой Энциклопедический словарь

  • Литосфера — то же, что земная кора …   Геологические термины

  • ЛИТОСФЕРА — твердая оболочка земного шара. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 …   Морской словарь

  • литосфера — сущ., кол во синонимов: 1 • кора (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • Литосфера — верхняя твердая оболочка Земли (50 200 км), постепенно становящаяся с глубиной сферы меньшей прочностью и плотностью вещества горных пород. Л. включает земную кору (мощность до 75 км на континентах и 10 км под дном океанов) и верхнюю мантию Земли …   Словарь черезвычайных ситуаций

  • Литосфера — Литосфера: твердая оболочка Земли, включающая в себя геосферу толщиной около 70 км в виде слоев осадочных пород (гранитного и базальтового) и мантию толщиной до 3000 км... Источник: ГОСТ Р 14.01 2005. Экологический менеджмент. Общие положения и… …   Официальная терминология

  • dic.academic.ru

    ЛИТОСФЕРА | Энциклопедия Кругосвет

    ЛИТОСФЕРА – внешняя сфера «твердой» Земли, включающая земную кору и часть верхней мантии (рис. 1).

    Толщина коры под континентами составляет, в среднем, 35–40 км. Там, где на суше расположены молодые высокие горы, она часто превышает 50 км (например, под Гималаями достигает 90 км). Под океанами кора более тонкая – в среднем около 7–10 км, а в некоторых районах Тихого океана – всего 5 км.

    Границы земной коры определяются по скорости распространения сейсмических волн. Сейсмические волны дают информацию и о свойствах мантии. Установлено, что верхняя мантия состоит, главным образом, из силикатов магния и железа. Состав нижней мантии остается загадкой, однако высказывается предположение, что она содержит оксиды магния и кремния. Заключения о составе земного ядра были сделаны на основании не только анализа сейсмических волн, но и расчетов плотности и изучения состава метеоритов. Считается, что внутреннее ядро представляет собой твердый сплав железа и никеля. Внешнее ядро, по-видимому, жидкое и имеет несколько меньшую плотность. Некоторые специалисты считают, что оно содержит до 14% серы.

    Земная кора, гидросфера и атмосфера образовались, в основном, в результате высвобождения веществ из верхней мантии молодой Земли. Сейчас время в срединных хребтах на дне океанов продолжается формирование океанической коры, сопровождающееся выделением газов и небольших количеств воды. По-видимому, и образование коры на молодой Земле было результатом подобных процессов, вследствие чего сформировалась тонкая оболочка, составляющая менее 0,0001% объема всей планеты. Состав этой оболочки, образующей континентальную и океаническую кору, изменялся во времени, прежде всего, за счет перехода элементов из мантии из-за частичного плавления на глубине примерно 100 км. Средний химический состав современной земной коры характеризуется большим содержанием кислорода, за которым следуют кремний и алюминий (рис. 2).

    Средние значения относительного содержания химических элементов в верхнем слое земной коры по предложению советского геохимика А.Е.Ферсмана (1883–1945) называют кларками элементов в честь американского ученого Франка Уилгсуорта Кларка (1847–1931), который разработал методы количественной оценки распространенности химических элементов.

    Анализ значений кларков позволяет понять многие закономерности распределения химических элементов. Кларки химических элементов земной коры различаются более чем на десять порядков. Так, если алюминия в земной коре содержится более восьми процентов по массе, то, например, золота 4,3·10-7 %, меди – 5·10-3 %, урана – 3·10–4%, а такого редкого металла, как рений – всего 7·10–8 %.Элементы, содержащиеся в относительно большом количестве, образуют в природе многочисленные самостоятельные химические соединения, а элементы с малыми кларками рассеяны, преимущественно, среди химических соединений других элементов. Элементы, кларки которых меньше 0,01%, называют редкими.

    Основными соединениями, образующими литосферу, являются диоксид кремния, силикаты и алюмосиликаты. Бóльшую часть литосферы составляют кристаллические вещества, образовавшиеся при охлаждении магмы – расплавленного вещества в глубинах Земли. При остывании магмы образовывались и горячие растворы. Проходя по трещинам в окружающих горных породах, они охлаждались и выделяли содержащиеся в них вещества.

    Поскольку некоторые минералы стабильны только при определенных условиях, при изменении температуры и давления они распадаются. Например, ряд силикатов, образующихся глубоко в коре при высоких температуре и давлении, становятся неустойчивыми, когда попадают на поверхность Земли. С другой стороны, на большой глубине под действием внутреннего тепла Земли и повышенного давления многие горные породы меняют свой вид, образуя новые кристаллические формы.

    Поверхность континентальной коры подвержена действию атмосферы и гидросферы, что выражается в процессах выветривания. Физическое выветривание является механическим процессом, в результате которого порода размельчается до частиц меньшего размера без существенных изменений в химическом составе. Химическое выветривание приводит к образованию новых веществ, оно происходит под действием влаги, особенно подкисленной, и некоторых газов (например, кислорода), разрушающих минералы.

    Простейший процесс выветривания – это растворение минералов. Вода вызывает разрыв ионных связей, соединяющих, например, катионы натрия и хлорид ионы в галите NaCl. В этом процессе не участвуют катионы водорода, поэтому он не зависит от рН.

    При разрушении веществ, содержащих элементы в низких степенях окисления, например, сульфидов, большую роль играет кислород. В эти процессы часто вовлечены микроорганизмы. Так, окисление пирита FeS2 можно моделировать следующим рядом реакций. Сначала окисляется сера(–I):

    2FeS2 + 2h3O + 7O2 = 4H+ + 4SO42– + 2Fe2+

    Затем следует окисление железа(II), катализируемое железоокисляющими бактериями:

    4Fe2+ + O2 + 6h3O = 4FeO(OH) + 8H+

    Образующийся гетит FeO(OH) покрывает дно ручьев в виде характерного желто-оранжевого налета.

    Железоокисляющие бактерии извлекают энергию при окислении неорганических веществ, поэтому они развиваются там, где нет органических соединений, используя в качестве источника углерода СО2. Однако окисление железа – не очень эффективный способ выработки энергии: для получения 1 г клеточного углерода должно быть окислено примерно 220 г железа(II). В результате там, где живут железоокисляющие бактерии, образуются большие отложения соединений железа(III).

    Выветривание карбонатных минералов, например CaCO3, происходит при взаимодействии с кислотами, содержащимися в воде за счет поглощения диоксида углерода, а также антропогенного диоксида серы. При этом поверхностные воды нейтрализуются и обогащаются гидрокарбонат-ионами:

    CaCO3 + h3CO3 = Ca2+ + 2HCO3–

    Разрушение силикатов, например Mg2SiO4 (форстерит) можно описать следующим уравнением:

    Mg2SiO4 + 4h3CO3 = 2Mg2+ + 4HCO3– + h5SiO4

    Реакция идет за счет образования чрезвычайно слабой ортокремниевой кислоты, при этом минерал со временем полностью растворяется. Однако при выветривании более сложных силикатов растворимыми оказываются не все продукты. В общем случае в результате выветривания образуются, в основном, кварц и глинистые минералы – водосодержащие слоистые алюмосиликаты. Например, при выветривании CaAl2Si2O8 (анортит) твердым продуктом реакции является глинистый минерал каолинит:

    CaAl2Si2O8 + 2h3CO3 + h3O = Ca2+ + 2HCO3– + Al2Si2O5(OH)4

    На скорость выветривания влияет биосфера (где создается диоксид углерода), а также рельеф суши и климат, состав воды, тип материнской породы и кинетика реакций с участием отдельных минералов. Так, во влажных тропиках выветривание происходит быстрее. Это связано с тем, что высокие температуры ускоряют реакции, а постоянные ливни делают возможным быстрое вымывание и снос в моря и океаны даже практически нерастворимых соединений, например, оксидов алюминия и железа.

    Продукты выветривания образуют рыхлые континентальные отложения, мощность которых меняется от 10–20 см на крутых склонах до десятков метров на равнинах и сотен метров – во впадинах. Средний минералогический состав рыхлого покрова суши заметно отличается от состава земной коры континентов (рис. 3).

    На рыхлых покровных отложениях сформировались почвы, играющие важнейшую роль во взаимодействии живых организмов с земной корой. В почвах систематически консервируется значительная масса органического вещества, синтезированного высшими растениями. Окисление органического вещества в почвах катализируется ферментами микроорганизмов, при этом образуется диоксид углерода, который при взаимодействии с водой дает слабую угольную кислоту. Это может понизить рН почв до 4–5, что оказывает существенное влияние на процессы выветривания. Почва участвует в круговороте азота, серы и фосфора, а также многих металлов. Поэтому проблема охраны почв имеет большое значение.

    На ранних этапах истории человечества деятельность людей почти не затрагивала глубины Земли. Однако с началом бурного развития промышленности резко возросли потребности человека в полезных ископаемых. Их добыча и переработка начали оказывать вредное воздействие на природу. При разработке открытых горных выработок образуется много пыли, загрязняющей окрестности. Огромные площади занимают отвалы «пустой» породы, образующиеся при добыче твердых полезных ископаемых. Откачка воды из горных выработок приводит к образованию подземных пустот. Многие горнодобывающие предприятия сбрасывают в реки недостаточно очищенные стоки, что ведет к загрязнению природных вод. В окружающую среду попадают вредные вещества из отвалов этих предприятий. Немало опасных веществ рассеивается при транспортировке руд и продуктов их переработки.

    Загрязнение окружающей среды в результате добычи и переработки полезных ископаемых можно уменьшить, если использовать достижения науки и более совершенные технологии.

    Елена Савинкина

    www.krugosvet.ru