Таблица факториалов до 50. N факториал 3 факториал


Таблица факториалов

1!1
2!2
3!6
4!24
5!120
6!720
7!5 040
8!40 320
9!362 880
10!3 628 800
11!39 916 800
12!479 001 600
13!6 227 020 800
14!87 178 291 200
15!1 307 674 368 000
16!20 922 789 888 000
17!355 687 428 096 000
18!6 402 373 705 728 000
19!121 645 100 408 832 000
20!2 432 902 008 176 640 000
21!51 090 942 171 709 440 000
22!1 124 000 727 777 607 680 000
23!
25 852 016 738884 976 640 000
24!620 448 401 733239 439 360 000
25!15 511 210 043 330 985 984 000 000
26!403 291 461 126 605 635 584 000 000
27!10 888 869 450 418 352 160 768 000 000
28!304 888 344 611 713 860 501 504 000 000
29!8 841 761 993 739 701 954 543 616 000 000
30!265 252 859 812 191 058636 308 480 000 000
— версия для печатиОпределение (что такое факториал) Факториал числа - результат последовательного умножения числа на все натуральные числа меньшие данного числа и большие единицы. Обозначается факториал восклицательным знаком после числа — «n!». Факториал натурального числа n можно также определить как рекуррентную функцию F (n). Определяется она следующим образом: F (0) = F (1) = 1; F (n) = n * F (n-1).Пример: 7! = 7×6×5×4×3×2×1 = 5040Не стоит забывать По общепринятой договоренности 0! = 1 (факториал нуля равен единице). Этот факт важен, к примеру, для вычисления биномиальных коэффициентов.Полезный факт Факториал числа, функцию от натурального аргумента можно продолжить на все действительные числа с помощью т.н. Гамма-функции (важно отметить, что для этого требуется определенный математический аппарат). В таком случае, мы сможем посчитать факториал любого действительного числа. Например, факториал (или, Гамма-функция, что математически правильнее) числа Пи Π! приблизительно равен 2.28803779534. Факториал числа Эйлера, другого трансцендентного числа, Γ(e) ~ 1.567468255 (упрощенно, факториал числа e).
Если у вас есть мысли по поводу данной страницы или предложение по созданию математической (см. раздел «Математика») вспомогательной памятки, мы обязательно рассмотрим ваше предложение. Просто воспользуйтесь обратной связью.

© Школяр. Математика (при поддержке «Ветвистого древа») 2009—2016

scolaire.ru

Факториал

ФАКТОРИАЛ.

Факториал – так называют часто встречающуюся в практике функцию, определённую для целых неотрицательных чисел. Название функции происходит от английского математического термина factor – «сомножитель». Обозначается она n!. Знак факториала «!» был введён в1808 году во французском учебнике Хр. Крампа.

Для каждого целого положительного числа n функция n! равна произведению всех целых чисел от 1 до n.

Например:

4! = 1*2*3*4 = 24.

Для удобства полагают по определению 0! = 1. О том, что нуль – факториал должен быть по определению равен единице, писал в 1656 году Дж. Валлис в «Арифметике бесконечных».

Функция n! растёт с увеличением n очень быстро. Так,

1!=1,

2!=2,

3!=6,

4!=24,

5!=120,

…..,

10!=3 628 800.

При преобразовании выражений, содержащих факториал, по лезно использовать равенство

(n + 1)! = (n + 1) • n! = (n + 1) • n • (n – 1)! (1)

Английский математик Дж. Стирлинг в 1970г. предложил очень удобную формулу для приближённого вычисления функции n!:

n! ≈ (

n

)

n

* √ 2¶ n ,

е

где е = 2,7182... — основание натуральных логарифмов.

Относительная ошибка при пользовании этой формулой очень невелика и быстро падает при увеличении числа n.

Способы решения выражений, содержащих факториал, рассмотрим на примерах.

Пример 1. (n! + 1)! = (n! + 1) • n!.

Пример 2. Вычислить 10! 8!

Решение. Воспользуемся формулой (1):

10! =10*9*8! = 10*9=90 8! 8!

Пример 3. Решить уравнение (n + 3)! = 90 (n + 1)!

Решение. Согласно формуле (1) имеем

= (n + 3)(n + 2) = 90.

(n + 3)! =(n + 3)(n + 2)(n+1)! (n + 1)! (n + 1)!

Раскрыв скобки в произведении, получаем квадратное уравнение

n2 + 5n - 84 = 0, корнями которого являются числа n = 7 и n = -12. Од нако факториал определен только для неотрицательных целых чисел, т. е. для всех целых чисел n ≥ 0. Поэтому число n = -12 не удовлетворя ет условию задачи. Итак, n = 7.

Пример 4. Найти хотя бы одну тройку натуральных чисел х, у и z, для которой верно равенство х! = y! • z!.

Решение. Из определения факториала натурального числа n сле дует, что

(n+1)! = (n + 1) • n!

Положим в этом равенстве n + 1 = у! = х, где у — произвольное нату ральное число, получим

x!=y! • (x-1)!

Теперь видим, что искомые тройки чисел можно задать в виде

(y!;y;y!-1) (2)

где y- натуральное число, больше 1.

Например, справедливы равенства

2! = 2! • 1!

6! = 3! • 5!

24! = 4! • 23!

Пример 5. Определить, сколькими нулями оканчивается деся тичная запись числа 32!.

Решение. Если десятичная запись числа Р = 32! оканчивается k нулями, то число Р можно представить в виде

Р = q • 10k,

где число q не делится на 10. Это означает, что разложение числа q на простые множители не содержит одновременно 2 и 5.

Поэтому, чтобы ответить на поставленный вопрос, попробуем опреде лить, с какими показателями в произведение 1 • 2 • 3 • 4 • ... • 30 • 31 • 32 входят числа 2 и 5. Если число k — наименьший из найденных показателей, то число Р будет оканчиваться k нулями.

Итак, определим, сколько чисел среди натуральных чисел от 1 до 32 делятся на 2. Очевидно, что их количество равно 32/2 = 16. Затем определим, какое количество среди найденных 16 чисел делится на 4; затем — какое количество из них делится на 8 и т. д. В результате получим, что среди тридцати двух первых натуральных чисел на 2 делится 16 чисел,

из них на 4 делятся 32/4 = 8 чисел, из них на 8 делятся 32/8 = 4 числа, из них на 16 делятся 32/16 = 2 числа и, наконец, из них на 32 делятся 32/32=1, т.е. одно число. Понятно, что сумма полученных количеств:

16 + 8 + 4 + 2 + 1 = 31

равна показателю степени, с которым число 2 входит в 32!.

Аналогично определим, сколько чисел среди натуральных чисел от 1 до 32 делятся на 5, а из найденного количества на 10. Разделим 32 на 5.

Получим 32/5 = 6,4. Следовательно, среди натуральных чисел от 1 до 32

существует 6 чисел, которые делятся на 5. Из них на 25 делится одно

число, так как 32/25 = 1,28. В результате число 5 входит в число 32! с пока зателем, равным сумме 6+1 = 7.

Из полученных результатов следует, что 32!= 231 • 57 • т, где число т не делится ни на 2, ни на 5. Поэтому число 32! содержит множитель

107 и, значит, оканчивается на 7 нулей.

Итак, в данном реферате определено понятие факториала.

Приведена формула английского математика Дж Стирлинга для приближённого вычисления функции n!

При преобразовании выражений, содержащих факториал, по лезно использовать равенство

(n + 1)! = (n + 1) • n! = (n + 1) • n • (n – 1)!

На примерах подробно рассмотрены способы решения задач с факториалом.

Факториал используется в различных формулах в комбинаторике, в рядах и др.

Например, количество способов выстроить n школьников в одну шеренгу равняется n!.

Число n! равно, например, количеству способов, которыми можно n различных книг расставить на книжной полке, или, например, число 5! равно количеству способов, которыми пять человек можно рассадить на одной скамейке. Или, например, число 27! равно количеству способов, которыми наш класс из 27 учеников можно выстроить в ряд на уроке физкультуры.

Литература.

  1. Рязановский А.Р., Зайцев Е.А.

Математика. 5-11 кл.: Дополнительные материалы к уроку математики. –М.:Дрофа, 2001.- (Библиотека учителя).

  1. Энциклопедический словарь юного математика. /Сост. А.П.Савин.-М.:Педагогика, 1985

  1. Математика. Справочник школьника. /Сост. Г.М. Якушева.- М.: Филолог. об-во «Слово», 1996.

studfiles.net

Факториал Суперфакториалы гиперфакториал примориал - Дискретная математика. Теория множеств . Теория графов . Комбинаторика.

Факториа́л числа n (лат. factorialis — действующий, производящий, умножающий; обозначается n!, произносится эн факториа́л) — произведение всех натуральныхчисел от 1 до n включительно:

Например:

.

По договорённости: . Также это равенство выполняется естественным образом:

Факториал определён только для целых неотрицательных чисел.

Последовательность факториалов неотрицательных целых чисел начинается так:

1, 1, 2, 6, 24, 120, 720, 5040, 40 320, 362 880, 3 628 800, 39 916 800, 479 001 600, 6 227 020 800, 87 178 291 200, 1 307 674 368 000, 20 922 789 888 000, 355 687 428 096 000, 6 402 373 705 728 000, 121 645 100 408 832 000, 2 432 902 008 176 640 000, …[1]

Факториалы часто используются в комбинаторике, теории чисел и функциональном анализе.

Факториал является чрезвычайно быстро растущей функцией. Он растёт быстрее, чем многочлен любой степени, и быстрее, чем экспоненциальная функция (но медленнее, чем двойная экспоненциальная функция ).

 

Содержание

 

Свойства[править ]

Рекуррентная формула[править ]

Комбинаторная интерпретация[править ]

В комбинаторике факториал натурального числа n интерпретируется как количество перестановок (упорядочиваний) множества из n элементов. Например, для множества {A,B,C,D} из 4-х элементов существует 4! = 24 перестановки:

ABCD BACD CABD DABC ABDC BADC CADB DACB ACBD BCAD CBAD DBAC ACDB BCDA CBDA DBCA ADBC BDAC CDAB DCAB ADCB BDCA CDBA DCBA

Комбинаторная интерпретация факториала служит обоснованием тождества 0! = 1, так как пустое множество упорядочено единственным способом.

Связь с гамма-функцией[править ]

 

Амплитуда и фаза факториала комплексного аргумента.

Факториал связан с гамма-функцией от целочисленного аргумента соотношением:

Таким образом, гамма-функцию рассматривают как обобщение факториала для положительных вещественных чисел.

Путём аналитического продолжения её также расширяют и на всю комплексную плоскость, исключаяособые точки при .

 

Пи-функция, определённая для всех вещественных чисел, кроме отрицательных целых, и совпадающая при натуральных значениях аргумента с факториалом.

Более непосредственным обобщением факториала на множество вещественных (и комплексных) чисел является пи-функция, определяемая как

.

Поскольку  то пи-функция натурального числа совпадает с его факториалом:  Как факториал, пи-функция удовлетворяет рекурсивному соотношению 

Формула Стирлинга[править ]

Основная статья: Формула Стирлинга

Формула Стирлинга — асимптотическая формула для вычисления факториала:

см. O-большое[2].

Во многих случаях для приближённого значения факториала достаточно рассматривать только главный член формулы Стирлинга:

При этом можно утверждать, что

Формула Стирлинга позволяет получить приближённые значения факториалов больших чисел без непосредственного перемножения последовательности натуральных чисел. Так, с помощью формулы Стирлинга легко подсчитать, что

Разложение на простые числа[править ]

Каждое простое число p входит в разложение n! на простые множители в степени

Таким образом,

где произведение берётся по всем простым числам. Нетрудно видеть, что для всякого простого p большего n соответствующий множитель в произведении равен 1, а потому произведение можно брать лишь по простым p, не превосходящим n.

Связь с производной от степенной функции[править ]

Для целого неотрицательного числа n:

Например:

Другие свойства[править ]

Обобщения[править ]

Двойной факториал[править ]

Двойной факториал числа n обозначается n!! и определяется как произведение всех натуральных чисел в отрезке [1,n], имеющих ту же чётность, что и n.

Связь между двойными факториалами двух соседних целых неотрицательных чисел и обычным факториалом одного из них.

Выведение формул

Осуществив замену  для чётного n и  для нечётного n соответственно, где  — целое неотрицательное число, получим:

По договорённости: . Также это равенство выполняется естественным образом:

Двойной факториал, также как и обычный факториал, определён только для целых неотрицательных чисел.

Последовательность значений n!! начинается так:

1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, 10 395, 46 080, 135 135, 645 120, 2 027 025, 10 321 920, 34 459 425, 185 794 560, 654 729 075, 3 715 891 200, 13 749 310 575, 81 749 606 400, 316 234 143 225, 1 961 990 553 600, 7 905 853 580 625, 51 011 754 393 600, …[3].

Кратный факториал[править ]

m-кратный факториал числа n обозначается  и определяется следующим образом. Пусть число n представимо в виде  где   Тогда[4]

Обычный и двойной факториалы являются частными случаями m-кратного факториала для m = 1 и m = 2 соответственно.

Кратный факториал связан с гамма-функцией следующим соотношением[5]:

Неполный факториал[править ]

Убывающий факториал[править ]

Убывающим факториалом называется выражение

.

Например:

n = 7; k = 4,(n − k) + 1 = 4,3k = 7 • 6 • 5 • 4 = 840.

Убывающий факториал даёт число размещений из n по k.

Возрастающий факториал[править ]

Возрастающим факториалом называется выражение

Праймориал или примориал[править ]

Сюда перенаправляется запрос «Праймориал». На эту тему нужна отдельная статья.

Праймориал или примориал (англ. primorial) числа n обозначается pn# и определяется как произведение n первых простых чисел. Например,

.

Иногда праймориалом называют число , определяемое как произведение всех простых чисел, не превышающих заданное n.

Последовательность праймориалов (включая ) начинается так:

1, 2, 6, 30, 210, 2310, 30 030, 510 510, 9 699 690, 223 092 870, 6 469 693 230, 200 560 490 130, 7 420 738 134 810, 304 250 263 527 210, 13 082 761 331 670 030, 614 889 782 588 491 410, 32 589 158 477 190 044 730, 1 922 760 350 154 212 639 070, …[6].

Суперфакториалы[править ]

Нейл Слоан и Саймон Плоуф (англ.) в 1995 году определили суперфакториал как произведение первых n факториалов. Согласно этому определению, суперфакториал четырёх равен

(поскольку устоявшегося обозначения нет, используется функциональное).

В общем

Последовательность суперфакториалов чисел  начинается так:

1, 1, 2, 12, 288, 34 560, 24 883 200, …[7].

Идея была обобщена в 2000 году Генри Боттомли (англ.), что привело к гиперфакториалам (англ. Superduperfactorial), которые являются произведением первых nсуперфакториалов. Последовательность гиперфакториалов чисел  начинается так:

1, 1, 2, 24, 6912, 238 878 720, 5 944 066 965 504 000, 745 453 331 864 786 829 312 000 000, 3 769 447 945 987 085 350 501 386 572 267 520 000 000 000, 6 916 686 207 999 802 072 984 424 331 678 589 933 649 915 805 696 000 000 000 000 000 …[8].

Продолжая рекуррентно, можно определить факториал кратного уровня, или m-уровневый факториал числа n, как произведение первых n (m−1)-уровневых факториалов, то есть

где  для  и 

Субфакториал[править ]

Основная статья: Субфакториал

Субфакториал !n определяется как количество беспорядков порядка n, то есть перестановок n-элементного множества без неподвижных точек.

См. также[править ]

В Викисловаре есть статья«факториал» Имеется викиучебник по теме«Реализация факториала на языке Си» Имеется викиучебник по теме«Примеры реализации функции факториал»

Примечания[править ]

  1. ↑ последовательность A000142 в OEIS
  2. ↑ Коэффициенты этого разложения дают последовательность A001163 в OEIS (числители) и последовательность A001164 в OEIS(знаменатели)
  3. ↑ последовательность A006882 в OEIS
  4. ↑ «Энциклопедия для детей» Аванта+. Математика.
  5. ↑ wolframalpha.com.
  6. ↑ последовательность A002110 в OEIS
  7. ↑ последовательность A000178 в OEIS
  8. ↑ последовательность A055462 в OEIS

intellect.ml

Обратный факториал Википедия

Факториа́л — функция, определённая на множестве неотрицательных целых чисел. Название происходит от лат. factorialis — действующий, производящий, умножающий; обозначается n!, произносится эн факториа́л. Факториал натурального числа n определяется как произведение всех натуральных чисел от 1 до n включительно:

n!=1⋅2⋅…⋅n=∏k=1nk{\displaystyle n!=1\cdot 2\cdot \ldots \cdot n=\prod _{k=1}^{n}k}.

Например,

5!=1⋅2⋅3⋅4⋅5=120{\displaystyle 5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120}.

Из определения факториала следует соотношение (n−1)!=n!n{\displaystyle (n-1)!={\frac {n!}{n}}}, откуда при n=1{\displaystyle n=1} формально находим

0!=1{\displaystyle 0!=1}.

Последнее равенство обычно принимают в качестве соглашения, хотя, как показано выше, оно следует из определения факториала для натуральных чисел при условии, что все значения функции связаны единым рекуррентным соотношением.

Факториалы всех чисел составляют последовательность A000142 в OEIS; значения в научной нотации округляются n n!
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000
18 6402373705728000
19 121645100408832000
20 2432902008176640000
25 ≈1,551121004 × 1025
50 ≈3,041409320 × 1064
70 ≈1,197857167 × 10100
100 ≈9,332621544 × 10157
450 ≈1,733368733 × 101000
1000 ≈4,023872601 × 102567
3249 ≈6,412337688 × 1010000
10000 ≈2,846259681 × 1035659
25206 ≈1,205703438 × 10100000
100000 ≈2,824229408 × 10456573
205023 ≈2,503898932 × 101000004
1000000 ≈8,263931688 × 105565708
10100 ≈109,956570552 × 10101
101000 ≈10101003
1010 000 ≈101010 004
10100 000 ≈1010100 005
1010100 ≈101010100

Факториал активно используется в различных разделах математики: комбинаторике, математическом анализе, теории чисел, функциональном анализе и др.

Факториал является чрезвычайно быстро растущей функцией. Он растёт быстрее, чем любая показательная функция или любая степенная функция, а также быстрее, чем любая сумма произведений этих функций. Однако, степенно-показательная функция nn{\displaystyle n^{n}} растёт быстрее факториала, так же как и большинство двойных степенных, например een{\displaystyle e^{e^{n}}}.

Свойства

Рекуррентная формула

n!={1n=0,n⋅(n−1)!n>0.{\displaystyle n!={\begin{cases}1&n=0,\\n\cdot (n-1)!&n>0.\end{cases}}}

Комбинаторная интерпретация

В комбинаторике факториал натурального числа n интерпретируется как количество перестановок (упорядочиваний) множества из n элементов. Например, для множества {A,B,C,D} из 4-х элементов существует 4! = 24 перестановки:

ABCD BACD CABD DABC ABDC BADC CADB DACB ACBD BCAD CBAD DBAC ACDB BCDA CBDA DBCA ADBC BDAC CDAB DCAB ADCB BDCA CDBA DCBA

Комбинаторная интерпретация факториала подтверждает целесообразность соглашения 0!=1{\displaystyle 0!=1}. Так, формула для числа размещений из n{\displaystyle n} элементов по m{\displaystyle m}

Anm=n!(n−m)!{\displaystyle A_{n}^{m}={\frac {n!}{(n-m)!}}}

при n=m{\displaystyle n=m} обращается в формулу для числа перестановок из n{\displaystyle n} элементов (порядка n{\displaystyle n}), которое равно n!{\displaystyle n!}.

Связь с гамма-функцией

Пи-функция, определённая для всех вещественных чисел, кроме отрицательных целых, и совпадающая при натуральных значениях аргумента с факториалом.

Факториал связан с гамма-функцией от целочисленного аргумента соотношением

n!=Γ(n+1){\displaystyle n!=\Gamma (n+1)}.

Это же выражение используют для обобщения понятия факториала на множество вещественных чисел. Используя аналитическое продолжение гамма-функции, область определения факториала также расширяют на всю комплексную плоскость, исключая особые точки при n=−1,−2,−3…{\displaystyle n=-1,-2,-3\ldots }.

Непосредственным обобщением факториала на множества вещественных и комплексных чисел служит пи-функция Π(z)=Γ(z+1){\displaystyle \Pi (z)=\Gamma (z+1)}, которая при Re(z)>−1{\displaystyle \mathrm {Re} (z)>-1} может быть определена как

Π(z)=∫0∞tze−tdt{\displaystyle \Pi (z)=\int _{0}^{\infty }t^{z}e^{-t}\,\mathrm {d} t} (интегральное определение).

Пи-функция натурального числа или нуля совпадает с его факториалом: Π(n)=n!{\displaystyle \Pi (n)=n!}. Как и факториал, пи-функция удовлетворяет рекуррентному соотношению Π(z)=zΠ(z−1){\displaystyle \Pi (z)=z\Pi (z-1)}.

Формула Стирлинга

Формула Стирлинга — асимптотическая формула для вычисления факториала:

n!=2πn(ne)n(1+112n+1288n2−13951840n3−5712488320n4+163879209018880n5+524681975246796800n6+O(n−7)),{\displaystyle n!={\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}\left(1+{\frac {1}{12n}}+{\frac {1}{288n^{2}}}-{\frac {139}{51840n^{3}}}-{\frac {571}{2488320n^{4}}}+{\frac {163879}{209018880n^{5}}}+{\frac {5246819}{75246796800n^{6}}}+O\left(n^{-7}\right)\right),}

см. O-большое[1].

Во многих случаях для приближённого значения факториала достаточно рассматривать только главный член формулы Стирлинга:

n!≈2πn(ne)n.{\displaystyle n!\approx {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}.}

При этом можно утверждать, что

2πn(ne)ne1/(12n+1)<n!<2πn(ne)ne1/(12n).{\displaystyle {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n+1)}<n!<{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n)}.}

Формула Стирлинга позволяет получить приближённые значения факториалов больших чисел без непосредственного перемножения последовательности натуральных чисел. Например, с помощью формулы Стирлинга легко подсчитать, что

Разложение на простые числа

Каждое простое число p входит в разложение n! на простые множители в степени

⌊np⌋+⌊np2⌋+⌊np3⌋+….{\displaystyle \left\lfloor {\frac {n}{p}}\right\rfloor +\left\lfloor {\frac {n}{p^{2}}}\right\rfloor +\left\lfloor {\frac {n}{p^{3}}}\right\rfloor +\ldots .}

Таким образом,

n!=∏pp⌊np⌋+⌊np2⌋+…,{\displaystyle n!=\prod _{p}p^{\lfloor {\frac {n}{p}}\rfloor +\lfloor {\frac {n}{p^{2}}}\rfloor +\ldots },}

где произведение берётся по всем простым числам. Можно заметить, что для всякого простого p большего n соответствующий множитель в произведении равен 1, следовательно произведение можно брать лишь по простым p, не превосходящим n.

Связь с производной от степенной функции

Для целого неотрицательного числа n:

(xn)(n)=n!{\displaystyle \left(x^{n}\right)^{(n)}=n!}

Например:

(x5)(5)=(5⋅x4)(4)=(5⋅4⋅x3)‴=(5⋅4⋅3⋅x2)″=(5⋅4⋅3⋅2⋅x)′=5⋅4⋅3⋅2⋅1=5!{\displaystyle \left(x^{5}\right)^{(5)}=\left(5\cdot x^{4}\right)^{(4)}=\left(5\cdot 4\cdot x^{3}\right)'''=\left(5\cdot 4\cdot 3\cdot x^{2}\right)''=\left(5\cdot 4\cdot 3\cdot 2\cdot x\right)'={5\cdot 4\cdot 3\cdot 2\cdot 1}=5!}

Другие свойства

Для натурального числа n: n!2⩾nn⩾n!⩾n{\displaystyle n!^{2}\geqslant n^{n}\geqslant n!\geqslant n}Для любого n>1: n!{\displaystyle n!} не является квадратом целого числа.

История

Факториальные выражения появились ещё в ранних исследованиях по комбинаторике, хотя компактное обозначение n!{\displaystyle n!} предложил французский математик Кристиан Крамп только в 1808 году[2]. Важным этапом стало открытие формулы Стирлинга, которую Джеймс Стирлинг опубликовал в своём трактате «Дифференциальный метод» (лат. Methodus differentialis, 1730 год). Немного ранее почти такую же формулу опубликовал друг Стирлинга Абрахам де Муавр, но в менее завершённом виде (вместо коэффициента 2π{\displaystyle {\sqrt {2\pi }}} была неопределённая константа)[3].

Стирлинг подробно исследовал свойства факториала, вплоть до выяснения вопроса о том, нельзя ли распространить это понятие на произвольные вещественные числа. Он описал несколько возможных путей к реализации этой идеи и высказал мнение, что:

(12)!=π2{\displaystyle \left({1 \over 2}\right)!={\frac {\sqrt {\pi }}{2}}}

Стирлинг не знал, что годом ранее решение проблемы уже нашёл Леонард Эйлер. В письме к Кристиану Гольдбаху Эйлер описал требуемое обобщение[4]:

x!=limm→∞mxm!(x+1)(x+2)…(x+m){\displaystyle x!=\lim _{m\to \infty }{\frac {m^{x}m!}{(x+1)(x+2)\dots (x+m)}}}

Развивая эту идею, Эйлер в следующем, 1730 году ввёл понятие гамма-функции в виде классического интеграла. Эти результаты он опубликовал в журнале Санкт-Петербургской Академии наук в 1729—1730 годах.

Обобщения

Двойной факториал

Двойной факториал числа n обозначается n‼ и определяется как произведение всех натуральных чисел в отрезке [1,n], имеющих ту же чётность, что и n.

n!!=2⋅4⋅6⋅…⋅n=∏i=1n22i=21n2⋅(n2)!{\displaystyle n!!=2\cdot 4\cdot 6\cdot \ldots \cdot n=\prod _{i=1}^{\frac {n}{2}}2i=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!}n!!=1⋅3⋅5⋅…⋅n=∏i=0n−12(2i+1)=n!21n−12⋅(n−12)!{\displaystyle n!!={1\cdot 3\cdot 5\cdot \ldots \cdot n}=\prod _{i=0}^{\frac {n-1}{2}}(2i+1)={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}

Связь между двойными факториалами двух соседних целых неотрицательных чисел и обычным факториалом одного из них.

n!!=(n+1)!(n+1)!!{\displaystyle n!!={\frac {(n+1)!}{(n+1)!!}}}n!!=n!(n−1)!!{\displaystyle n!!={\frac {n!}{(n-1)!!}}}

Выведение формул

Осуществив замену n=2k{\displaystyle n=2k} для чётного n и n=2k+1{\displaystyle n=2k+1} для нечётного n соответственно, где k{\displaystyle k} — целое неотрицательное число, получим:

(2k)!!=2⋅4⋅6⋅…⋅2k=∏i=1k2i=2k⋅k!{\displaystyle (2k)!!=2\cdot 4\cdot 6\cdot \ldots \cdot 2k=\prod _{i=1}^{k}2i=2^{k}\cdot k!}(2k+1)!!=1⋅3⋅5⋅…⋅(2k+1)=∏i=0k(2i+1)=(2k+1)!2k⋅k!{\displaystyle (2k+1)!!=1\cdot 3\cdot 5\cdot \ldots \cdot (2k+1)=\prod _{i=0}^{k}(2i+1)={\frac {(2k+1)!}{2^{k}\cdot k!}}}

По договорённости: 0!!=1{\displaystyle 0!!=1}. Также это равенство выполняется естественным образом:

0!!=20⋅0!=1⋅1=1{\displaystyle 0!!=2^{0}\cdot 0!=1\cdot 1=1}

Двойной факториал, также как и обычный факториал, определён только для целых неотрицательных чисел.

Последовательность значений n!! начинается так[5]:

1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, 10 395, 46 080, 135 135, 645 120, 2 027 025, 10 321 920, 34 459 425, 185 794 560, 654 729 075, 3 715 891 200, 13 749 310 575, 81 749 606 400, 316 234 143 225, 1 961 990 553 600, 7 905 853 580 625, 51 011 754 393 600, …

Кратный факториал

m-кратный факториал числа n обозначается n!!…!⏟m{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}} и определяется следующим образом. Пусть число n представимо в виде n=mk−r,{\displaystyle n=mk-r,} где k∈Z,{\displaystyle k\in \mathbb {Z} ,} r∈{0,1,…,m−1}.{\displaystyle r\in \{0,1,\ldots ,m-1\}.} Тогда[6]

n!!…!⏟m=∏i=1k(mi−r){\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)}

Обычный и двойной факториалы являются частными случаями m-кратного факториала для m = 1 и m = 2 соответственно.

Кратный факториал связан с гамма-функцией следующим соотношением[7]:

n!!…!⏟m=∏i=1k(mi−r)=mk⋅Γ(k−rm+1)Γ(1−rm).{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)=m^{k}\cdot {\frac {\Gamma \left(k-{\frac {r}{m}}+1\right)}{\Gamma \left(1-{\frac {r}{m}}\right)}}.}

Неполный факториал

Убывающий факториал

Убывающим факториалом называется выражение

(n)k=nk_=n[k]=n⋅(n−1)⋅…⋅(n−k+1)=n!(n−k)!=∏i=n−k+1ni{\displaystyle (n)_{k}=n^{\underline {k}}=n^{[k]}=n\cdot (n-1)\cdot \ldots \cdot (n-k+1)={\frac {n!}{(n-k)!}}=\prod _{i=n-k+1}^{n}i}.

Например:

n = 7; k = 4, (n − k) + 1 = 4, nk = 7 • 6 • 5 • 4 = 840.

Убывающий факториал даёт число размещений из n по k.

Возрастающий факториал

Возрастающим факториалом называется выражение

n(k)=nk¯=n⋅(n+1)⋅…⋅(n+k−1)=(n+k−1)!(n−1)!=∏i=n(n+k)−1i.{\displaystyle n^{(k)}=n^{\overline {k}}=n\cdot (n+1)\cdot \ldots \cdot (n+k-1)={\frac {(n+k-1)!}{(n-1)!}}=\prod _{i=n}^{(n+k)-1}i.}

Праймориал или примориал

Праймориал или примориал (англ. primorial) числа n обозначается pn# и определяется как произведение n первых простых чисел. Например,

p5#=2×3×5×7×11=2310{\displaystyle p_{5}\#=2\times 3\times 5\times 7\times 11=2310}.

Иногда праймориалом называют число n#{\displaystyle n\#}, определяемое как произведение всех простых чисел, не превышающих заданное n.

Последовательность праймориалов (включая 1#≡1{\displaystyle {\textstyle {1\#\equiv 1}}}) начинается так[8]:

1, 2, 6, 30, 210, 2310, 30 030, 510 510, 9 699 690, 223 092 870, 6 469 693 230, 200 560 490 130, 7 420 738 134 810, 304 250 263 527 210, 13 082 761 331 670 030, 614 889 782 588 491 410, 32 589 158 477 190 044 730, 1 922 760 350 154 212 639 070, …

Суперфакториалы

Нейл Слоан и Симон Плуффэ (англ.) в 1995 году определили суперфакториал как произведение первых n факториалов. Согласно этому определению, суперфакториал четырёх равен

sf⁡(4)=1!×2!×3!×4!=288{\displaystyle \operatorname {sf} (4)=1!\times 2!\times 3!\times 4!=288}

(поскольку устоявшегося обозначения нет, используется функциональное).

В общем

sf⁡(n)=∏k=1nk!=∏k=1nkn−k+1=1n⋅2n−1⋅3n−2⋯(n−1)2⋅n1.{\displaystyle \operatorname {sf} (n)=\prod _{k=1}^{n}k!=\prod _{k=1}^{n}k^{n-k+1}=1^{n}\cdot 2^{n-1}\cdot 3^{n-2}\cdots (n-1)^{2}\cdot n^{1}.}

Последовательность суперфакториалов чисел n⩾0{\displaystyle n\geqslant 0} начинается так[9]:

1, 1, 2, 12, 288, 34 560, 24 883 200, 125 411 328 000, 5 056 584 744 960 000, 1 834 933 472 251 084 800 000, 6 658 606 584 104 736 522 240 000 000, 265 790 267 296 391 946 810 949 632 000 000 000, 127 313 963 299 399 416 749 559 771 247 411 200 000 000 000, …

Идея была обобщена в 2000 году Генри Боттомли (англ.), что привело к гиперфакториалам (англ. Hyperfactorial), которые являются произведением первых n суперфакториалов. Последовательность гиперфакториалов чисел n⩾0{\displaystyle n\geqslant 0} начинается так[10]:

1, 1, 2, 24, 6912, 238 878 720, 5 944 066 965 504 000, 745 453 331 864 786 829 312 000 000, 3 769 447 945 987 085 350 501 386 572 267 520 000 000 000, 6 916 686 207 999 802 072 984 424 331 678 589 933 649 915 805 696 000 000 000 000 000, …

Продолжая рекуррентно, можно определить факториал кратного уровня, или m-уровневый факториал числа n, как произведение (m − 1)-уровневых факториалов чисел от 1 до n, то есть

mf⁡(n,m)=mf⁡(n−1,m)mf⁡(n,m−1)=∏k=1nk(n−k+m−1n−k),{\displaystyle \operatorname {mf} (n,m)=\operatorname {mf} (n-1,m)\operatorname {mf} (n,m-1)=\prod _{k=1}^{n}k^{n-k+m-1 \choose n-k},}

где mf⁡(n,0)=n{\displaystyle \operatorname {mf} (n,0)=n} для n>0{\displaystyle n>0} и mf⁡(0,m)=1.{\displaystyle \operatorname {mf} (0,m)=1.}

Субфакториал

Субфакториал !n определяется как количество беспорядков порядка n, то есть перестановок n-элементного множества без неподвижных точек.

См. также

Примечания

  1. ↑ Коэффициенты этого разложения дают A001163 (числители) и A001164 (знаменатели)
  2. ↑ Крамп, Кристиан
  3. ↑ Pearson, Karl (1924), "Historical note on the origin of the normal curve of errors", Biometrika Т. 16: 402–404 [p. 403], DOI 10.2307/2331714 : «Стирлинг лишь показал, что арифметическая константа в формуле Муавра равна 2π{\displaystyle {\sqrt {2\pi }}}. Я считаю, что это не делает его автором теоремы»
  4. ↑ Дональд Кнут. Искусство программирования, том I. Основные алгоритмы. — М.: Мир, 1976. — С. 79—81. — 736 с.
  5. ↑ Последовательность A006882 в OEIS
  6. ↑ «Энциклопедия для детей» Аванта+. Математика.
  7. ↑ wolframalpha.com.
  8. ↑ Последовательность A002110 в OEIS
  9. ↑ Последовательность A000178 в OEIS
  10. ↑ Последовательность A055462 в OEIS

wikiredia.ru

Двойной факториал Википедия

Факториа́л — функция, определённая на множестве неотрицательных целых чисел. Название происходит от лат. factorialis — действующий, производящий, умножающий; обозначается n!, произносится эн факториа́л. Факториал натурального числа n определяется как произведение всех натуральных чисел от 1 до n включительно:

n!=1⋅2⋅…⋅n=∏k=1nk{\displaystyle n!=1\cdot 2\cdot \ldots \cdot n=\prod _{k=1}^{n}k}.

Например,

5!=1⋅2⋅3⋅4⋅5=120{\displaystyle 5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120}.

Из определения факториала следует соотношение (n−1)!=n!n{\displaystyle (n-1)!={\frac {n!}{n}}}, откуда при n=1{\displaystyle n=1} формально находим

0!=1{\displaystyle 0!=1}.

Последнее равенство обычно принимают в качестве соглашения, хотя, как показано выше, оно следует из определения факториала для натуральных чисел при условии, что все значения функции связаны единым рекуррентным соотношением.

Факториалы всех чисел составляют последовательность A000142 в OEIS; значения в научной нотации округляются n n!
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000
18 6402373705728000
19 121645100408832000
20 2432902008176640000
25 ≈1,551121004 × 1025
50 ≈3,041409320 × 1064
70 ≈1,197857167 × 10100
100 ≈9,332621544 × 10157
450 ≈1,733368733 × 101000
1000 ≈4,023872601 × 102567
3249 ≈6,412337688 × 1010000
10000 ≈2,846259681 × 1035659
25206 ≈1,205703438 × 10100000
100000 ≈2,824229408 × 10456573
205023 ≈2,503898932 × 101000004
1000000 ≈8,263931688 × 105565708
10100 ≈109,956570552 × 10101
101000 ≈10101003
1010 000 ≈101010 004
10100 000 ≈1010100 005
1010100 ≈101010100

Факториал активно используется в различных разделах математики: комбинаторике, математическом анализе, теории чисел, функциональном анализе и др.

Факториал является чрезвычайно быстро растущей функцией. Он растёт быстрее, чем любая показательная функция или любая степенная функция, а также быстрее, чем любая сумма произведений этих функций. Однако, степенно-показательная функция nn{\displaystyle n^{n}} растёт быстрее факториала, так же как и большинство двойных степенных, например een{\displaystyle e^{e^{n}}}.

Свойства

Рекуррентная формула

n!={1n=0,n⋅(n−1)!n>0.{\displaystyle n!={\begin{cases}1&n=0,\\n\cdot (n-1)!&n>0.\end{cases}}}

Комбинаторная интерпретация

В комбинаторике факториал натурального числа n интерпретируется как количество перестановок (упорядочиваний) множества из n элементов. Например, для множества {A,B,C,D} из 4-х элементов существует 4! = 24 перестановки:

ABCD BACD CABD DABC ABDC BADC CADB DACB ACBD BCAD CBAD DBAC ACDB BCDA CBDA DBCA ADBC BDAC CDAB DCAB ADCB BDCA CDBA DCBA

Комбинаторная интерпретация факториала подтверждает целесообразность соглашения 0!=1{\displaystyle 0!=1}. Так, формула для числа размещений из n{\displaystyle n} элементов по m{\displaystyle m}

Anm=n!(n−m)!{\displaystyle A_{n}^{m}={\frac {n!}{(n-m)!}}}

при n=m{\displaystyle n=m} обращается в формулу для числа перестановок из n{\displaystyle n} элементов (порядка n{\displaystyle n}), которое равно n!{\displaystyle n!}.

Связь с гамма-функцией

Пи-функция, определённая для всех вещественных чисел, кроме отрицательных целых, и совпадающая при натуральных значениях аргумента с факториалом.

Факториал связан с гамма-функцией от целочисленного аргумента соотношением

n!=Γ(n+1){\displaystyle n!=\Gamma (n+1)}.

Это же выражение используют для обобщения понятия факториала на множество вещественных чисел. Используя аналитическое продолжение гамма-функции, область определения факториала также расширяют на всю комплексную плоскость, исключая особые точки при n=−1,−2,−3…{\displaystyle n=-1,-2,-3\ldots }.

Непосредственным обобщением факториала на множества вещественных и комплексных чисел служит пи-функция Π(z)=Γ(z+1){\displaystyle \Pi (z)=\Gamma (z+1)}, которая при Re(z)>−1{\displaystyle \mathrm {Re} (z)>-1} может быть определена как

Π(z)=∫0∞tze−tdt{\displaystyle \Pi (z)=\int _{0}^{\infty }t^{z}e^{-t}\,\mathrm {d} t} (интегральное определение).

Пи-функция натурального числа или нуля совпадает с его факториалом: Π(n)=n!{\displaystyle \Pi (n)=n!}. Как и факториал, пи-функция удовлетворяет рекуррентному соотношению Π(z)=zΠ(z−1){\displaystyle \Pi (z)=z\Pi (z-1)}.

Формула Стирлинга

Формула Стирлинга — асимптотическая формула для вычисления факториала:

n!=2πn(ne)n(1+112n+1288n2−13951840n3−5712488320n4+163879209018880n5+524681975246796800n6+O(n−7)),{\displaystyle n!={\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}\left(1+{\frac {1}{12n}}+{\frac {1}{288n^{2}}}-{\frac {139}{51840n^{3}}}-{\frac {571}{2488320n^{4}}}+{\frac {163879}{209018880n^{5}}}+{\frac {5246819}{75246796800n^{6}}}+O\left(n^{-7}\right)\right),}

см. O-большое[1].

Во многих случаях для приближённого значения факториала достаточно рассматривать только главный член формулы Стирлинга:

n!≈2πn(ne)n.{\displaystyle n!\approx {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}.}

При этом можно утверждать, что

2πn(ne)ne1/(12n+1)<n!<2πn(ne)ne1/(12n).{\displaystyle {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n+1)}<n!<{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n)}.}

Формула Стирлинга позволяет получить приближённые значения факториалов больших чисел без непосредственного перемножения последовательности натуральных чисел. Например, с помощью формулы Стирлинга легко подсчитать, что

Разложение на простые числа

Каждое простое число p входит в разложение n! на простые множители в степени

⌊np⌋+⌊np2⌋+⌊np3⌋+….{\displaystyle \left\lfloor {\frac {n}{p}}\right\rfloor +\left\lfloor {\frac {n}{p^{2}}}\right\rfloor +\left\lfloor {\frac {n}{p^{3}}}\right\rfloor +\ldots .}

Таким образом,

n!=∏pp⌊np⌋+⌊np2⌋+…,{\displaystyle n!=\prod _{p}p^{\lfloor {\frac {n}{p}}\rfloor +\lfloor {\frac {n}{p^{2}}}\rfloor +\ldots },}

где произведение берётся по всем простым числам. Можно заметить, что для всякого простого p большего n соответствующий множитель в произведении равен 1, следовательно произведение можно брать лишь по простым p, не превосходящим n.

Связь с производной от степенной функции

Для целого неотрицательного числа n:

(xn)(n)=n!{\displaystyle \left(x^{n}\right)^{(n)}=n!}

Например:

(x5)(5)=(5⋅x4)(4)=(5⋅4⋅x3)‴=(5⋅4⋅3⋅x2)″=(5⋅4⋅3⋅2⋅x)′=5⋅4⋅3⋅2⋅1=5!{\displaystyle \left(x^{5}\right)^{(5)}=\left(5\cdot x^{4}\right)^{(4)}=\left(5\cdot 4\cdot x^{3}\right)'''=\left(5\cdot 4\cdot 3\cdot x^{2}\right)''=\left(5\cdot 4\cdot 3\cdot 2\cdot x\right)'={5\cdot 4\cdot 3\cdot 2\cdot 1}=5!}

Другие свойства

Для натурального числа n: n!2⩾nn⩾n!⩾n{\displaystyle n!^{2}\geqslant n^{n}\geqslant n!\geqslant n}Для любого n>1: n!{\displaystyle n!} не является квадратом целого числа.

История

Факториальные выражения появились ещё в ранних исследованиях по комбинаторике, хотя компактное обозначение n!{\displaystyle n!} предложил французский математик Кристиан Крамп только в 1808 году[2]. Важным этапом стало открытие формулы Стирлинга, которую Джеймс Стирлинг опубликовал в своём трактате «Дифференциальный метод» (лат. Methodus differentialis, 1730 год). Немного ранее почти такую же формулу опубликовал друг Стирлинга Абрахам де Муавр, но в менее завершённом виде (вместо коэффициента 2π{\displaystyle {\sqrt {2\pi }}} была неопределённая константа)[3].

Стирлинг подробно исследовал свойства факториала, вплоть до выяснения вопроса о том, нельзя ли распространить это понятие на произвольные вещественные числа. Он описал несколько возможных путей к реализации этой идеи и высказал мнение, что:

(12)!=π2{\displaystyle \left({1 \over 2}\right)!={\frac {\sqrt {\pi }}{2}}}

Стирлинг не знал, что годом ранее решение проблемы уже нашёл Леонард Эйлер. В письме к Кристиану Гольдбаху Эйлер описал требуемое обобщение[4]:

x!=limm→∞mxm!(x+1)(x+2)…(x+m){\displaystyle x!=\lim _{m\to \infty }{\frac {m^{x}m!}{(x+1)(x+2)\dots (x+m)}}}

Развивая эту идею, Эйлер в следующем, 1730 году ввёл понятие гамма-функции в виде классического интеграла. Эти результаты он опубликовал в журнале Санкт-Петербургской Академии наук в 1729—1730 годах.

Обобщения

Двойной факториал

Двойной факториал числа n обозначается n‼ и определяется как произведение всех натуральных чисел в отрезке [1,n], имеющих ту же чётность, что и n.

n!!=2⋅4⋅6⋅…⋅n=∏i=1n22i=21n2⋅(n2)!{\displaystyle n!!=2\cdot 4\cdot 6\cdot \ldots \cdot n=\prod _{i=1}^{\frac {n}{2}}2i=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!}n!!=1⋅3⋅5⋅…⋅n=∏i=0n−12(2i+1)=n!21n−12⋅(n−12)!{\displaystyle n!!={1\cdot 3\cdot 5\cdot \ldots \cdot n}=\prod _{i=0}^{\frac {n-1}{2}}(2i+1)={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}

Связь между двойными факториалами двух соседних целых неотрицательных чисел и обычным факториалом одного из них.

n!!=(n+1)!(n+1)!!{\displaystyle n!!={\frac {(n+1)!}{(n+1)!!}}}n!!=n!(n−1)!!{\displaystyle n!!={\frac {n!}{(n-1)!!}}}

Выведение формул

Осуществив замену n=2k{\displaystyle n=2k} для чётного n и n=2k+1{\displaystyle n=2k+1} для нечётного n соответственно, где k{\displaystyle k} — целое неотрицательное число, получим:

(2k)!!=2⋅4⋅6⋅…⋅2k=∏i=1k2i=2k⋅k!{\displaystyle (2k)!!=2\cdot 4\cdot 6\cdot \ldots \cdot 2k=\prod _{i=1}^{k}2i=2^{k}\cdot k!}(2k+1)!!=1⋅3⋅5⋅…⋅(2k+1)=∏i=0k(2i+1)=(2k+1)!2k⋅k!{\displaystyle (2k+1)!!=1\cdot 3\cdot 5\cdot \ldots \cdot (2k+1)=\prod _{i=0}^{k}(2i+1)={\frac {(2k+1)!}{2^{k}\cdot k!}}}

По договорённости: 0!!=1{\displaystyle 0!!=1}. Также это равенство выполняется естественным образом:

0!!=20⋅0!=1⋅1=1{\displaystyle 0!!=2^{0}\cdot 0!=1\cdot 1=1}

Двойной факториал, также как и обычный факториал, определён только для целых неотрицательных чисел.

Последовательность значений n!! начинается так[5]:

1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, 10 395, 46 080, 135 135, 645 120, 2 027 025, 10 321 920, 34 459 425, 185 794 560, 654 729 075, 3 715 891 200, 13 749 310 575, 81 749 606 400, 316 234 143 225, 1 961 990 553 600, 7 905 853 580 625, 51 011 754 393 600, …

Кратный факториал

m-кратный факториал числа n обозначается n!!…!⏟m{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}} и определяется следующим образом. Пусть число n представимо в виде n=mk−r,{\displaystyle n=mk-r,} где k∈Z,{\displaystyle k\in \mathbb {Z} ,} r∈{0,1,…,m−1}.{\displaystyle r\in \{0,1,\ldots ,m-1\}.} Тогда[6]

n!!…!⏟m=∏i=1k(mi−r){\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)}

Обычный и двойной факториалы являются частными случаями m-кратного факториала для m = 1 и m = 2 соответственно.

Кратный факториал связан с гамма-функцией следующим соотношением[7]:

n!!…!⏟m=∏i=1k(mi−r)=mk⋅Γ(k−rm+1)Γ(1−rm).{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)=m^{k}\cdot {\frac {\Gamma \left(k-{\frac {r}{m}}+1\right)}{\Gamma \left(1-{\frac {r}{m}}\right)}}.}

Неполный факториал

Убывающий факториал

Убывающим факториалом называется выражение

(n)k=nk_=n[k]=n⋅(n−1)⋅…⋅(n−k+1)=n!(n−k)!=∏i=n−k+1ni{\displaystyle (n)_{k}=n^{\underline {k}}=n^{[k]}=n\cdot (n-1)\cdot \ldots \cdot (n-k+1)={\frac {n!}{(n-k)!}}=\prod _{i=n-k+1}^{n}i}.

Например:

n = 7; k = 4, (n − k) + 1 = 4, nk = 7 • 6 • 5 • 4 = 840.

Убывающий факториал даёт число размещений из n по k.

Возрастающий факториал

Возрастающим факториалом называется выражение

n(k)=nk¯=n⋅(n+1)⋅…⋅(n+k−1)=(n+k−1)!(n−1)!=∏i=n(n+k)−1i.{\displaystyle n^{(k)}=n^{\overline {k}}=n\cdot (n+1)\cdot \ldots \cdot (n+k-1)={\frac {(n+k-1)!}{(n-1)!}}=\prod _{i=n}^{(n+k)-1}i.}

Праймориал или примориал

Праймориал или примориал (англ. primorial) числа n обозначается pn# и определяется как произведение n первых простых чисел. Например,

p5#=2×3×5×7×11=2310{\displaystyle p_{5}\#=2\times 3\times 5\times 7\times 11=2310}.

Иногда праймориалом называют число n#{\displaystyle n\#}, определяемое как произведение всех простых чисел, не превышающих заданное n.

Последовательность праймориалов (включая 1#≡1{\displaystyle {\textstyle {1\#\equiv 1}}}) начинается так[8]:

1, 2, 6, 30, 210, 2310, 30 030, 510 510, 9 699 690, 223 092 870, 6 469 693 230, 200 560 490 130, 7 420 738 134 810, 304 250 263 527 210, 13 082 761 331 670 030, 614 889 782 588 491 410, 32 589 158 477 190 044 730, 1 922 760 350 154 212 639 070, …

Суперфакториалы

Нейл Слоан и Симон Плуффэ (англ.) в 1995 году определили суперфакториал как произведение первых n факториалов. Согласно этому определению, суперфакториал четырёх равен

sf⁡(4)=1!×2!×3!×4!=288{\displaystyle \operatorname {sf} (4)=1!\times 2!\times 3!\times 4!=288}

(поскольку устоявшегося обозначения нет, используется функциональное).

В общем

sf⁡(n)=∏k=1nk!=∏k=1nkn−k+1=1n⋅2n−1⋅3n−2⋯(n−1)2⋅n1.{\displaystyle \operatorname {sf} (n)=\prod _{k=1}^{n}k!=\prod _{k=1}^{n}k^{n-k+1}=1^{n}\cdot 2^{n-1}\cdot 3^{n-2}\cdots (n-1)^{2}\cdot n^{1}.}

Последовательность суперфакториалов чисел n⩾0{\displaystyle n\geqslant 0} начинается так[9]:

1, 1, 2, 12, 288, 34 560, 24 883 200, 125 411 328 000, 5 056 584 744 960 000, 1 834 933 472 251 084 800 000, 6 658 606 584 104 736 522 240 000 000, 265 790 267 296 391 946 810 949 632 000 000 000, 127 313 963 299 399 416 749 559 771 247 411 200 000 000 000, …

Идея была обобщена в 2000 году Генри Боттомли (англ.), что привело к гиперфакториалам (англ. Hyperfactorial), которые являются произведением первых n суперфакториалов. Последовательность гиперфакториалов чисел n⩾0{\displaystyle n\geqslant 0} начинается так[10]:

1, 1, 2, 24, 6912, 238 878 720, 5 944 066 965 504 000, 745 453 331 864 786 829 312 000 000, 3 769 447 945 987 085 350 501 386 572 267 520 000 000 000, 6 916 686 207 999 802 072 984 424 331 678 589 933 649 915 805 696 000 000 000 000 000, …

Продолжая рекуррентно, можно определить факториал кратного уровня, или m-уровневый факториал числа n, как произведение (m − 1)-уровневых факториалов чисел от 1 до n, то есть

mf⁡(n,m)=mf⁡(n−1,m)mf⁡(n,m−1)=∏k=1nk(n−k+m−1n−k),{\displaystyle \operatorname {mf} (n,m)=\operatorname {mf} (n-1,m)\operatorname {mf} (n,m-1)=\prod _{k=1}^{n}k^{n-k+m-1 \choose n-k},}

где mf⁡(n,0)=n{\displaystyle \operatorname {mf} (n,0)=n} для n>0{\displaystyle n>0} и mf⁡(0,m)=1.{\displaystyle \operatorname {mf} (0,m)=1.}

Субфакториал

Субфакториал !n определяется как количество беспорядков порядка n, то есть перестановок n-элементного множества без неподвижных точек.

См. также

Примечания

  1. ↑ Коэффициенты этого разложения дают A001163 (числители) и A001164 (знаменатели)
  2. ↑ Крамп, Кристиан
  3. ↑ Pearson, Karl (1924), "Historical note on the origin of the normal curve of errors", Biometrika Т. 16: 402–404 [p. 403], DOI 10.2307/2331714 : «Стирлинг лишь показал, что арифметическая константа в формуле Муавра равна 2π{\displaystyle {\sqrt {2\pi }}}. Я считаю, что это не делает его автором теоремы»
  4. ↑ Дональд Кнут. Искусство программирования, том I. Основные алгоритмы. — М.: Мир, 1976. — С. 79—81. — 736 с.
  5. ↑ Последовательность A006882 в OEIS
  6. ↑ «Энциклопедия для детей» Аванта+. Математика.
  7. ↑ wolframalpha.com.
  8. ↑ Последовательность A002110 в OEIS
  9. ↑ Последовательность A000178 в OEIS
  10. ↑ Последовательность A055462 в OEIS

wikiredia.ru

Таблица факториалов до 50

Главная > ф >

 Факториа́л числа n (лат. factorialis — действующий, производящий, умножающий; обозначается n!, произносится эн факториа́л) — произведение всех натуральных чисел от 1 до n включительно. Например: 4! = 4 × 3 × 2 × 1 = 24. Принято: 0! = 1.

В таблице приведены значения факториалов для чисел от 0 до 50.

число факториал числа
0! 1
1! 1
2! 2
3! 6
4! 24
5! 120
6! 720
7! 5040
8! 40320
9! 362880
10! 3628800
11! 39916800
12! 479001600
13! 6227020800
14! 87178291200
15! 1307674368000
16! 20922789888000
17! 355687428096000
18! 6402373705728000
19! 121645100408832000
20! 2432902008176640000
21! 51090942171709440000
22! 1124000727777607680000
23! 25852016738884976640000
24! 620448401733239439360000
25! 15511210043330985984000000
26! 403291461126605635584000000
27! 10888869450418352160768000000
28! 304888344611713860501504000000
29! 8841761993739701954543616000000
30! 265252859812191058636308480000000
31! 8222838654177922817725562880000000
32! 263130836933693530167218012160000000
33! 8683317618811886495518194401280000000
34! 295232799039604140847618609643520000000
35! 10333147966386144929666651337523200000000
36! 371993326789901217467999448150835200000000
37! 13763753091226345046315979581580902400000000
38! 523022617466601111760007224100074291200000000
39! 20397882081197443358640281739902897356800000000
40! 815915283247897734345611269596115894272000000000
41! 33452526613163807108170062053440751665152000000000
42! 1405006117752879898543142606244511569936384000000000
43! 60415263063373835637355132068513997507264512000000000
44! 2658271574788448768043625811014615890319638528000000000
45! 119622220865480194561963161495657715064383733760000000000
46! 5502622159812088949850305428800254892961651752960000000000
47! 258623241511168180642964355153611979969197632389120000000000
48! 12413915592536072670862289047373375038521486354677760000000000
49! 608281864034267560872252163321295376887552831379210240000000000
50! 30414093201713378043612608166064768844377641568960512000000000000

 



 

comments powered by HyperComments

tab.wikimassa.org

Факториал Википедия

Факториа́л — функция, определённая на множестве неотрицательных целых чисел. Название происходит от лат. factorialis — действующий, производящий, умножающий; обозначается n!, произносится эн факториа́л. Факториал натурального числа n определяется как произведение всех натуральных чисел от 1 до n включительно:

n!=1⋅2⋅…⋅n=∏k=1nk{\displaystyle n!=1\cdot 2\cdot \ldots \cdot n=\prod _{k=1}^{n}k}.

Например,

5!=1⋅2⋅3⋅4⋅5=120{\displaystyle 5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120}.

Из определения факториала следует соотношение (n−1)!=n!n{\displaystyle (n-1)!={\frac {n!}{n}}}, откуда при n=1{\displaystyle n=1} формально находим

0!=1{\displaystyle 0!=1}.

Последнее равенство обычно принимают в качестве соглашения, хотя, как показано выше, оно следует из определения факториала для натуральных чисел при условии, что все значения функции связаны единым рекуррентным соотношением.

Факториалы всех чисел составляют последовательность A000142 в OEIS; значения в научной нотации округляются n n!
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000
18 6402373705728000
19 121645100408832000
20 2432902008176640000
25 ≈1,551121004 × 1025
50 ≈3,041409320 × 1064
70 ≈1,197857167 × 10100
100 ≈9,332621544 × 10157
450 ≈1,733368733 × 101000
1000 ≈4,023872601 × 102567
3249 ≈6,412337688 × 1010000
10000 ≈2,846259681 × 1035659
25206 ≈1,205703438 × 10100000
100000 ≈2,824229408 × 10456573
205023 ≈2,503898932 × 101000004
1000000 ≈8,263931688 × 105565708
10100 ≈109,956570552 × 10101
101000 ≈10101003
1010 000 ≈101010 004
10100 000 ≈1010100 005
1010100 ≈101010100

Факториал активно используется в различных разделах математики: комбинаторике, математическом анализе, теории чисел, функциональном анализе и др.

Факториал является чрезвычайно быстро растущей функцией. Он растёт быстрее, чем любая показательная функция или любая степенная функция, а также быстрее, чем любая сумма произведений этих функций. Однако, степенно-показательная функция nn{\displaystyle n^{n}} растёт быстрее факториала, так же как и большинство двойных степенных, например een{\displaystyle e^{e^{n}}}.

Свойства

Рекуррентная формула

n!={1n=0,n⋅(n−1)!n>0.{\displaystyle n!={\begin{cases}1&n=0,\\n\cdot (n-1)!&n>0.\end{cases}}}

Комбинаторная интерпретация

В комбинаторике факториал натурального числа n интерпретируется как количество перестановок (упорядочиваний) множества из n элементов. Например, для множества {A,B,C,D} из 4-х элементов существует 4! = 24 перестановки:

ABCD BACD CABD DABC ABDC BADC CADB DACB ACBD BCAD CBAD DBAC ACDB BCDA CBDA DBCA ADBC BDAC CDAB DCAB ADCB BDCA CDBA DCBA

Комбинаторная интерпретация факториала подтверждает целесообразность соглашения 0!=1{\displaystyle 0!=1}. Так, формула для числа размещений из n{\displaystyle n} элементов по m{\displaystyle m}

Anm=n!(n−m)!{\displaystyle A_{n}^{m}={\frac {n!}{(n-m)!}}}

при n=m{\displaystyle n=m} обращается в формулу для числа перестановок из n{\displaystyle n} элементов (порядка n{\displaystyle n}), которое равно n!{\displaystyle n!}.

Связь с гамма-функцией

Пи-функция, определённая для всех вещественных чисел, кроме отрицательных целых, и совпадающая при натуральных значениях аргумента с факториалом.

Факториал связан с гамма-функцией от целочисленного аргумента соотношением

n!=Γ(n+1){\displaystyle n!=\Gamma (n+1)}.

Это же выражение используют для обобщения понятия факториала на множество вещественных чисел. Используя аналитическое продолжение гамма-функции, область определения факториала также расширяют на всю комплексную плоскость, исключая особые точки при n=−1,−2,−3…{\displaystyle n=-1,-2,-3\ldots }.

Непосредственным обобщением факториала на множества вещественных и комплексных чисел служит пи-функция Π(z)=Γ(z+1){\displaystyle \Pi (z)=\Gamma (z+1)}, которая при Re(z)>−1{\displaystyle \mathrm {Re} (z)>-1} может быть определена как

Π(z)=∫0∞tze−tdt{\displaystyle \Pi (z)=\int _{0}^{\infty }t^{z}e^{-t}\,\mathrm {d} t} (интегральное определение).

Пи-функция натурального числа или нуля совпадает с его факториалом: Π(n)=n!{\displaystyle \Pi (n)=n!}. Как и факториал, пи-функция удовлетворяет рекуррентному соотношению Π(z)=zΠ(z−1){\displaystyle \Pi (z)=z\Pi (z-1)}.

Формула Стирлинга

Формула Стирлинга — асимптотическая формула для вычисления факториала:

n!=2πn(ne)n(1+112n+1288n2−13951840n3−5712488320n4+163879209018880n5+524681975246796800n6+O(n−7)),{\displaystyle n!={\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}\left(1+{\frac {1}{12n}}+{\frac {1}{288n^{2}}}-{\frac {139}{51840n^{3}}}-{\frac {571}{2488320n^{4}}}+{\frac {163879}{209018880n^{5}}}+{\frac {5246819}{75246796800n^{6}}}+O\left(n^{-7}\right)\right),}

см. O-большое[1].

Во многих случаях для приближённого значения факториала достаточно рассматривать только главный член формулы Стирлинга:

n!≈2πn(ne)n.{\displaystyle n!\approx {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}.}

При этом можно утверждать, что

2πn(ne)ne1/(12n+1)<n!<2πn(ne)ne1/(12n).{\displaystyle {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n+1)}<n!<{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}e^{1/(12n)}.}

Формула Стирлинга позволяет получить приближённые значения факториалов больших чисел без непосредственного перемножения последовательности натуральных чисел. Например, с помощью формулы Стирлинга легко подсчитать, что

Разложение на простые числа

Каждое простое число p входит в разложение n! на простые множители в степени

⌊np⌋+⌊np2⌋+⌊np3⌋+….{\displaystyle \left\lfloor {\frac {n}{p}}\right\rfloor +\left\lfloor {\frac {n}{p^{2}}}\right\rfloor +\left\lfloor {\frac {n}{p^{3}}}\right\rfloor +\ldots .}

Таким образом,

n!=∏pp⌊np⌋+⌊np2⌋+…,{\displaystyle n!=\prod _{p}p^{\lfloor {\frac {n}{p}}\rfloor +\lfloor {\frac {n}{p^{2}}}\rfloor +\ldots },}

где произведение берётся по всем простым числам. Можно заметить, что для всякого простого p большего n соответствующий множитель в произведении равен 1, следовательно произведение можно брать лишь по простым p, не превосходящим n.

Связь с производной от степенной функции

Для целого неотрицательного числа n:

(xn)(n)=n!{\displaystyle \left(x^{n}\right)^{(n)}=n!}

Например:

(x5)(5)=(5⋅x4)(4)=(5⋅4⋅x3)‴=(5⋅4⋅3⋅x2)″=(5⋅4⋅3⋅2⋅x)′=5⋅4⋅3⋅2⋅1=5!{\displaystyle \left(x^{5}\right)^{(5)}=\left(5\cdot x^{4}\right)^{(4)}=\left(5\cdot 4\cdot x^{3}\right)'''=\left(5\cdot 4\cdot 3\cdot x^{2}\right)''=\left(5\cdot 4\cdot 3\cdot 2\cdot x\right)'={5\cdot 4\cdot 3\cdot 2\cdot 1}=5!}

Другие свойства

Для натурального числа n: n!2⩾nn⩾n!⩾n{\displaystyle n!^{2}\geqslant n^{n}\geqslant n!\geqslant n}Для любого n>1: n!{\displaystyle n!} не является квадратом целого числа.

История

Факториальные выражения появились ещё в ранних исследованиях по комбинаторике, хотя компактное обозначение n!{\displaystyle n!} предложил французский математик Кристиан Крамп только в 1808 году[2]. Важным этапом стало открытие формулы Стирлинга, которую Джеймс Стирлинг опубликовал в своём трактате «Дифференциальный метод» (лат. Methodus differentialis, 1730 год). Немного ранее почти такую же формулу опубликовал друг Стирлинга Абрахам де Муавр, но в менее завершённом виде (вместо коэффициента 2π{\displaystyle {\sqrt {2\pi }}} была неопределённая константа)[3].

Стирлинг подробно исследовал свойства факториала, вплоть до выяснения вопроса о том, нельзя ли распространить это понятие на произвольные вещественные числа. Он описал несколько возможных путей к реализации этой идеи и высказал мнение, что:

(12)!=π2{\displaystyle \left({1 \over 2}\right)!={\frac {\sqrt {\pi }}{2}}}

Стирлинг не знал, что годом ранее решение проблемы уже нашёл Леонард Эйлер. В письме к Кристиану Гольдбаху Эйлер описал требуемое обобщение[4]:

x!=limm→∞mxm!(x+1)(x+2)…(x+m){\displaystyle x!=\lim _{m\to \infty }{\frac {m^{x}m!}{(x+1)(x+2)\dots (x+m)}}}

Развивая эту идею, Эйлер в следующем, 1730 году ввёл понятие гамма-функции в виде классического интеграла. Эти результаты он опубликовал в журнале Санкт-Петербургской Академии наук в 1729—1730 годах.

Обобщения

Двойной факториал

Двойной факториал числа n обозначается n‼ и определяется как произведение всех натуральных чисел в отрезке [1,n], имеющих ту же чётность, что и n.

n!!=2⋅4⋅6⋅…⋅n=∏i=1n22i=21n2⋅(n2)!{\displaystyle n!!=2\cdot 4\cdot 6\cdot \ldots \cdot n=\prod _{i=1}^{\frac {n}{2}}2i=2^{{\color {white}1}^{\!\!\!\!{\frac {n}{2}}}}\cdot \left({\frac {n}{2}}\right)!}n!!=1⋅3⋅5⋅…⋅n=∏i=0n−12(2i+1)=n!21n−12⋅(n−12)!{\displaystyle n!!={1\cdot 3\cdot 5\cdot \ldots \cdot n}=\prod _{i=0}^{\frac {n-1}{2}}(2i+1)={\frac {n!}{2^{{\color {white}1}^{\!\!\!\!{\frac {n-1}{2}}}}\cdot \left({\frac {n-1}{2}}\right)!}}}

Связь между двойными факториалами двух соседних целых неотрицательных чисел и обычным факториалом одного из них.

n!!=(n+1)!(n+1)!!{\displaystyle n!!={\frac {(n+1)!}{(n+1)!!}}}n!!=n!(n−1)!!{\displaystyle n!!={\frac {n!}{(n-1)!!}}}

Выведение формул

Осуществив замену n=2k{\displaystyle n=2k} для чётного n и n=2k+1{\displaystyle n=2k+1} для нечётного n соответственно, где k{\displaystyle k} — целое неотрицательное число, получим:

(2k)!!=2⋅4⋅6⋅…⋅2k=∏i=1k2i=2k⋅k!{\displaystyle (2k)!!=2\cdot 4\cdot 6\cdot \ldots \cdot 2k=\prod _{i=1}^{k}2i=2^{k}\cdot k!}(2k+1)!!=1⋅3⋅5⋅…⋅(2k+1)=∏i=0k(2i+1)=(2k+1)!2k⋅k!{\displaystyle (2k+1)!!=1\cdot 3\cdot 5\cdot \ldots \cdot (2k+1)=\prod _{i=0}^{k}(2i+1)={\frac {(2k+1)!}{2^{k}\cdot k!}}}

По договорённости: 0!!=1{\displaystyle 0!!=1}. Также это равенство выполняется естественным образом:

0!!=20⋅0!=1⋅1=1{\displaystyle 0!!=2^{0}\cdot 0!=1\cdot 1=1}

Двойной факториал, также как и обычный факториал, определён только для целых неотрицательных чисел.

Последовательность значений n!! начинается так[5]:

1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, 10 395, 46 080, 135 135, 645 120, 2 027 025, 10 321 920, 34 459 425, 185 794 560, 654 729 075, 3 715 891 200, 13 749 310 575, 81 749 606 400, 316 234 143 225, 1 961 990 553 600, 7 905 853 580 625, 51 011 754 393 600, …

Кратный факториал

m-кратный факториал числа n обозначается n!!…!⏟m{\displaystyle \textstyle n\underbrace {!!\ldots !} _{m}} и определяется следующим образом. Пусть число n представимо в виде n=mk−r,{\displaystyle n=mk-r,} где k∈Z,{\displaystyle k\in \mathbb {Z} ,} r∈{0,1,…,m−1}.{\displaystyle r\in \{0,1,\ldots ,m-1\}.} Тогда[6]

n!!…!⏟m=∏i=1k(mi−r){\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)}

Обычный и двойной факториалы являются частными случаями m-кратного факториала для m = 1 и m = 2 соответственно.

Кратный факториал связан с гамма-функцией следующим соотношением[7]:

n!!…!⏟m=∏i=1k(mi−r)=mk⋅Γ(k−rm+1)Γ(1−rm).{\displaystyle n\underbrace {!!\ldots !} _{m}=\prod _{i=1}^{k}(mi-r)=m^{k}\cdot {\frac {\Gamma \left(k-{\frac {r}{m}}+1\right)}{\Gamma \left(1-{\frac {r}{m}}\right)}}.}

Неполный факториал

Убывающий факториал

Убывающим факториалом называется выражение

(n)k=nk_=n[k]=n⋅(n−1)⋅…⋅(n−k+1)=n!(n−k)!=∏i=n−k+1ni{\displaystyle (n)_{k}=n^{\underline {k}}=n^{[k]}=n\cdot (n-1)\cdot \ldots \cdot (n-k+1)={\frac {n!}{(n-k)!}}=\prod _{i=n-k+1}^{n}i}.

Например:

n = 7; k = 4, (n − k) + 1 = 4, nk = 7 • 6 • 5 • 4 = 840.

Убывающий факториал даёт число размещений из n по k.

Возрастающий факториал

Возрастающим факториалом называется выражение

n(k)=nk¯=n⋅(n+1)⋅…⋅(n+k−1)=(n+k−1)!(n−1)!=∏i=n(n+k)−1i.{\displaystyle n^{(k)}=n^{\overline {k}}=n\cdot (n+1)\cdot \ldots \cdot (n+k-1)={\frac {(n+k-1)!}{(n-1)!}}=\prod _{i=n}^{(n+k)-1}i.}

Праймориал или примориал

Праймориал или примориал (англ. primorial) числа n обозначается pn# и определяется как произведение n первых простых чисел. Например,

p5#=2×3×5×7×11=2310{\displaystyle p_{5}\#=2\times 3\times 5\times 7\times 11=2310}.

Иногда праймориалом называют число n#{\displaystyle n\#}, определяемое как произведение всех простых чисел, не превышающих заданное n.

Последовательность праймориалов (включая 1#≡1{\displaystyle {\textstyle {1\#\equiv 1}}}) начинается так[8]:

1, 2, 6, 30, 210, 2310, 30 030, 510 510, 9 699 690, 223 092 870, 6 469 693 230, 200 560 490 130, 7 420 738 134 810, 304 250 263 527 210, 13 082 761 331 670 030, 614 889 782 588 491 410, 32 589 158 477 190 044 730, 1 922 760 350 154 212 639 070, …

Суперфакториалы

Нейл Слоан и Симон Плуффэ (англ.) в 1995 году определили суперфакториал как произведение первых n факториалов. Согласно этому определению, суперфакториал четырёх равен

sf⁡(4)=1!×2!×3!×4!=288{\displaystyle \operatorname {sf} (4)=1!\times 2!\times 3!\times 4!=288}

(поскольку устоявшегося обозначения нет, используется функциональное).

В общем

sf⁡(n)=∏k=1nk!=∏k=1nkn−k+1=1n⋅2n−1⋅3n−2⋯(n−1)2⋅n1.{\displaystyle \operatorname {sf} (n)=\prod _{k=1}^{n}k!=\prod _{k=1}^{n}k^{n-k+1}=1^{n}\cdot 2^{n-1}\cdot 3^{n-2}\cdots (n-1)^{2}\cdot n^{1}.}

Последовательность суперфакториалов чисел n⩾0{\displaystyle n\geqslant 0} начинается так[9]:

1, 1, 2, 12, 288, 34 560, 24 883 200, 125 411 328 000, 5 056 584 744 960 000, 1 834 933 472 251 084 800 000, 6 658 606 584 104 736 522 240 000 000, 265 790 267 296 391 946 810 949 632 000 000 000, 127 313 963 299 399 416 749 559 771 247 411 200 000 000 000, …

Идея была обобщена в 2000 году Генри Боттомли (англ.), что привело к гиперфакториалам (англ. Hyperfactorial), которые являются произведением первых n суперфакториалов. Последовательность гиперфакториалов чисел n⩾0{\displaystyle n\geqslant 0} начинается так[10]:

1, 1, 2, 24, 6912, 238 878 720, 5 944 066 965 504 000, 745 453 331 864 786 829 312 000 000, 3 769 447 945 987 085 350 501 386 572 267 520 000 000 000, 6 916 686 207 999 802 072 984 424 331 678 589 933 649 915 805 696 000 000 000 000 000, …

Продолжая рекуррентно, можно определить факториал кратного уровня, или m-уровневый факториал числа n, как произведение (m − 1)-уровневых факториалов чисел от 1 до n, то есть

mf⁡(n,m)=mf⁡(n−1,m)mf⁡(n,m−1)=∏k=1nk(n−k+m−1n−k),{\displaystyle \operatorname {mf} (n,m)=\operatorname {mf} (n-1,m)\operatorname {mf} (n,m-1)=\prod _{k=1}^{n}k^{n-k+m-1 \choose n-k},}

где mf⁡(n,0)=n{\displaystyle \operatorname {mf} (n,0)=n} для n>0{\displaystyle n>0} и mf⁡(0,m)=1.{\displaystyle \operatorname {mf} (0,m)=1.}

Субфакториал

Субфакториал !n определяется как количество беспорядков порядка n, то есть перестановок n-элементного множества без неподвижных точек.

См. также

Примечания

  1. ↑ Коэффициенты этого разложения дают A001163 (числители) и A001164 (знаменатели)
  2. ↑ Крамп, Кристиан
  3. ↑ Pearson, Karl (1924), "Historical note on the origin of the normal curve of errors", Biometrika Т. 16: 402–404 [p. 403], DOI 10.2307/2331714 : «Стирлинг лишь показал, что арифметическая константа в формуле Муавра равна 2π{\displaystyle {\sqrt {2\pi }}}. Я считаю, что это не делает его автором теоремы»
  4. ↑ Дональд Кнут. Искусство программирования, том I. Основные алгоритмы. — М.: Мир, 1976. — С. 79—81. — 736 с.
  5. ↑ Последовательность A006882 в OEIS
  6. ↑ «Энциклопедия для детей» Аванта+. Математика.
  7. ↑ wolframalpha.com.
  8. ↑ Последовательность A002110 в OEIS
  9. ↑ Последовательность A000178 в OEIS
  10. ↑ Последовательность A055462 в OEIS

wikiredia.ru