Решение неравенств методом интервалов. Решить методом интервалов неравенство


Неравенства методом интервалов

Рассмотрим, как решать неравенства методом интервалов, на конкретных примерах.

   

Используем алгоритм метода интервалов. Приравниваем к нулю левую часть:

   

   

   

Полученные точки отмечаем на числовой прямой:

Для проверки знака берем 0 (желательно на числовой прямой отметить взятую точку, чтобы потом не забыть, куда ставить знак). Подставляем 0 в последнее неравенство: (2∙0-14)(5∙0+25)= -14∙25, то есть (-)∙(+)= -. Таким образом, в промежуток, из которого взяли нуль, ставим знак «-«, остальные знаки чередуем в шахматном порядке. Поскольку решаем неравенство ≥0, выбираем промежутки со знаком «+» и записываем ответ.

Ответ:

   

   

Приравниваем к нулю левую часть:

   

   

Полученные точки отмечаем на числовой прямой:

Для проверки знака берем 0 и подставляем его в последнее неравенство. По знакам получаем:

   

В промежуток, которому принадлежит 0, ставим «+», остальные знаки расставляем в шахматном порядке. Поскольку решаем неравенство ≤0, в ответ выбираем промежутки со знаком «-«. (Не забываем, когда точки закрашенные, а когда — выколотые. Те точки, в которых знаменатель обращается в нуль, выколотые всегда).

Ответ:

   

   

Приравниваем к нулю левую часть:

   

По теореме, обратной теореме Виета

   

Полученные точки отмечаем на числовой прямой:

Для определения знака берем 0 и подставляем его в последнее неравенство. Получает (-)/(-)=(+). Остальные знаки расставляем в шахматном порядке. Поскольку решаем неравенство ≥0, выбираем промежутки со знаком «+» и записываем ответ.

Ответ:

   

   

Переносим все слагаемые в левую часть, приводим к наименьшему общему знаменателю и упрощаем: 

   

   

   

   

После упрощения решаем неравенство методом интервалов.

Приравниваем к нулю левую часть:

   

   

Точек, в которых числитель обращается в нуль, нет. На числовой прямой отмечаем только одну точку:

Для проверки берем нуль. Подставляя его в последнее неравенство, получаем «+». На другом интервале — «-«. Нам нужен интервал с «-«.

Ответ:

   

Как решать более сложные неравенства методом интервалов, рассмотрим в следующий раз.

www.uznateshe.ru

Репетитор по математике и физике » Решение неравенств методом интервалов

Статья посвящена разбору примеров решения неравенств методом интервалов. При том, что этот метод решения неравенств достаточно универсален, важно помнить, что не всегда применение данного метода оправдано с точки зрения объема вычислений. Иногда бывает удобнее воспользоваться некоторыми другими методами решения неравенств. Все рассмотренные в статье неравенства взяты из реальных вариантов ЕГЭ по математике разных лет. Присутствует подробный видеоразбор одного из заданий.

 

Метод интервалов

Пусть заданное неравенство имеет вид: Для решения этого неравенства используется так называемый метод интервалов (метод промежутков), который состоит в следующем.

Во-первых, на числовую ось наносят точки разбивающие ее на промежутки, в которых выражение определено и сохраняет знак («плюс» или «минус»). Такими точками могут быть корни уравнений и Соответствующие этим корням точки отмечают на числовой оси: закрашенными кружками — точки, удовлетворяющие заданному неравенству, а светлыми кружками — не удовлетворяющие ему.

Во-вторых, определяют и отмечают на числовой оси знак выражения для значении , принадлежащих каждому из полученных промежутков. Если функции и являются многочленами и не содержат множителей вида где  то достаточно определить знак функции в любом таком промежутке, а в остальных промежутках знаки «плюс» и «минус» будут чередоваться.

Если же в числителе или знаменателе дроби  имеется множитель вида  где  то непосредственной проверкой выясняют, удовлетворяет ли значение заданному неравенству.

Изменение знаков удобно иллюстрировать с помощью волнообразной кривой (кривой знаков), проведенной через отмеченные точки и лежащей выше или ниже числовой оси в соответствии со знаком дроби в рассматриваемом промежутке. Промежутки, которые содержат точки, удовлетворяющие данному неравенству, иногда покрывают штрихами. На ту же ось помещают и точки, соответствующие Заштрихованная область в совокупности с полученными точками будет являться ответом к неравенству.

Общий вид прямой знаков в методе интервалов

Примеры решения неравенств методом интервалов

Пример 1. Решите неравенство:

   

Решение. Упрощаем неравенство путем равносильных преобразований:

При умножении или делении обеих частей неравенства на отрицательное число, меняется знак неравенства!

   

   

Выражения, стоящие в числителе и знаменателе, можно разложить на множители, тогда неравенство примет вид:

   

Далее по алгоритму решения неравенств методом интервалов находим корни уравнений и . Из первого получаем Из второго получаем Наносим на числовую прямую получившиеся точки, причем точки и обозначаем закрашенными кружочками (для них неравенство выполняется), а точки и — светлыми (для них неравенство не выполняется, при этих значениях, выражение, стоящее слева от знака неравенства, вообще не имеет смысла):

Числовая прямая с отмеченными точками

Определяем теперь знаки выражения на полученных промежутках (подставляем любое значение из каждого полученного промежутка в данное выражение), изображаем кривую знаков, заштриховываем те промежутки, на которых исходное неравенство выполняется:

Кривая знаков для исходного неравенства

Итак, исходному неравенству удовлетворяют следующие значения:

Ответ: 

Задача для самостоятельного решения №1. Решите неравенство:

   

Показать ответ

Ответ: Пример 2. Решите неравенство:

   

Решение. Подкоренное выражение, как известно, не может принимать отрицательных значений, также не допускается нахождение в знаменателе дроби нуля. Следовательно, область допустимых значений данного неравенства определяется неравенством и тем условием, что Решаем уравнения и Из первого уравнения получаем, что Из второго уравнения получаем, что Наносим область допустимых значений неравенства и полученные точки на числовую прямую, причем эти точки будет светлыми, поскольку ни одно из значений и не удовлетворяет неравенству. Сразу определяем знаки выражения в каждом из полученных промежутков и рисуем кривую знаков:

Кривая знаков для решения исходного неравенства

Верхней стрелкой на рисунке обозначена область допустимых значений неравенства. Ответом к неравенству будет являться промежуток, соответствующий на рисунке заштрихованной области.

Ответ:

Задача для самостоятельного решения №2. Решите неравенство:

   

Показать ответ

Ответ: Пример 3. Решите неравенство:

   

Решение. Подкоренное выражение не может принимать отрицательных значений, а в знаменателе дроби не должно быть нуля. Следовательно, область допустимых значений неравенства определяется следующей системой:

   

   

Решаем уравнение и Из первого получаем, что и Из второго получаем, что Наносим полученные точки на числовую прямую, не забывая о том, какие из них следует закрасить, а какие осветлить. Изображаем также на ней область допустимых значений и изображаем кривую знаков:

Кривая знаков для исходного неравенства

Пунктирные лини на рисунке ограничивают область допустимых значений неравенства. Заштрихованная область соответствует решению неравенства.

Ответ:

Задача для самостоятельного решения №3. Решите неравенство:

   

Показать ответ

Ответ:

Метод интервалов — универсальный, но не единственный метод решения неравенств. Уметь использовать этот метод, конечно, необходимо, но не достаточно для успешного решения задач по математики. Как репетитор по математике советую вам освоить и другие более частные методы решения неравенств. Успехов вам!

Сергей ВалерьевичПреподаватель математики и физики

Мы знаем столько, сколько удерживаем в памяти.© Латинская пословица

yourtutor.info

Метод интервалов - материалы для подготовки к ЕГЭ по Математике

Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

1. Рассмотрим, например, такое неравенство

Метод интервалов позволяет решить его за пару минут.

В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

Метод интервалов основан на следующем свойстве дробно-рациональной функции.

Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. (Если вы не помните, что такое нули функции и знак функции на промежутке – смотрите статью «Исследование графика функции»).

Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида  .

, где  и  — корни квадратного уравнения .

Получим:

Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

Нули знаменателя и  - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и  - закрашены, так как неравенство нестрогое. При  и  наше неравенство выполняется, так как обе его части равны нулю.

Эти точки разбивают ось на промежутков.

Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна. . Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак .

Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .

. Возьмем . При выражение положительно - следовательно, оно положительно на всем промежутке от до .

При  левая часть неравенства отрицательна. 

И, наконец, . Подставим и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак .

Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:

Ответ: .

Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным.

Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

, или , или , или .

(в левой части - дробно-рациональная функция, в правой - нуль).

Затем - отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.Остается только выяснить ее знак на каждом промежутке.Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого - записываем ответ. Вот и всё.

Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

Ты нашел то, что искал? Поделись с друзьями!

2. Рассмотрим еще одно неравенство.

Снова расставляем точки на оси . Точки и  - выколотые, поскольку это нули знаменателя. Точка  - тоже выколота, поскольку неравенство строгое.

При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :

При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :

При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :

Наконец, при все множители положительны, и левая часть имеет знак :

Ответ: .

Почему нарушилось чередование знаков? Потому что при переходе через точку "ответственный" за неё множитель не изменил знак. Следовательно, не изменила знак и вся левая часть нашего неравенства.

Вывод: если линейный множитель  стоит в чётной степени (например, в квадрате), то при переходе через точку  знак выражения в левой части не меняется. В случае нечётной степени знак, разумеется, меняется.

3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

Ответ: .

В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

Квадратный трехчлен  на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно - положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции.

И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:

- которое легко решается методом интервалов.

Обратите внимание - мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

5. Рассмотрим еще одно неравенство, на вид совсем простое:

Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину - знак неравенства меняется.

Мы поступим по другому — соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

И после этого - применим метод интервалов.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Метод интервалов

 

Метод интервалов — это специальный алгоритм, предназначенный для решения сложных неравенств вида f(x) > 0. Алгоритм состоит из 5 шагов:

 

  1. Решить уравнение f(x) = 0. Таким образом, вместо неравенства получаем уравнение, которое решается намного проще;
  2. Отметить все полученные корни на координатной прямой. Таким образом, прямая разделится на несколько интервалов;
  3. Найти кратность корней. Если корни четной кратности, то над корнем рисуем петлю. (Корень считается кратным, если существует четное количество одинаковых решений)
  4. Выяснить знак (плюс или минус) функции f(x) на самом правом интервале. Для этого достаточно подставить в f(x) любое число, которое будет правее всех отмеченных корней;
  5. Отметить знаки на остальных интервалах, чередуя их.

После этого останется лишь выписать интервалы, которые нас интересуют. Они отмечены знаком «+», если неравенство имело вид f(x) > 0, или знаком «−», если неравенство имеет вид f(x) < 0.

В случае с нестрогими неравенствами( ≤ , ≥) необходимо включить в интервалы точки, которые являются решением уравнения f(x) = 0;

 

Пример 1:

 

Решить неравенство:

(x - 2)(x + 7) < 0

Работаем по методу интервалов.

Шаг 1: заменяем неравенство уравнением и решаем его:

(x - 2)(x + 7) = 0

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю:

x - 2 = 0 => x = 2

x + 7 = 0 => x = -7

Получили два корня.

 

Шаг 2: отмечаем эти корни на координатной прямой. Имеем:

 

 

Шаг 3: находим знак функции на самом правом интервале (правее отмеченной точки x = 2). Для этого надо взять любое число, которое больше числа x = 2. Например, возьмем x = 3 (но никто не запрещает взять x = 4, x = 10 и даже x = 10 000). 

Получим:

f(x) = (x - 2)(x + 7)

x = 3

f(3)=(3 - 2)(3 + 7) = 1*10 = 10

Получаем, что f(3) = 10 > 0 (10 – это положительное число), поэтому в самом правом интервале ставим знак плюс.

 

Шаг 4:  нужно отметить знаки на остальных интервалах. Помним, что при переходе через каждый корень знак должен меняться. Например, справа от корня x = 2 стоит плюс (мы убедились в этом на предыдущем шаге), поэтому слева обязан стоять минус. Этот минус распространяется на весь интервал (−7; 2), поэтому справа от корня x = −7 стоит минус. Следовательно, слева от корня x = −7 стоит плюс. Осталось отметить эти знаки на координатной оси. 

 

 

Вернемся к исходному неравенству, которое имело вид:

(x - 2)(x + 7) < 0

Итак, функция должна быть меньше нуля. Значит, нас интересует знак минус, который возникает лишь на одном интервале: (−7; 2). Это и будет ответ.

 

Пример 2:

 

Решить неравенство:

(9x2 - 6x + 1)(x - 2) ≥ 0

Решение: 

Для начала необходимо найти корни уравнения 

(9x2 - 6x + 1)(x - 2) = 0

Свернем первую скобку, получим:

(3x - 1)2(x - 2) = 0

Отсюда:

x - 2 = 0; (3x - 1)2 = 0

Решив эти уравнения получим:

x1 = 2; x2 = ; x3= ;

Нанесем точки на числовую прямую:

Т.к. x2 и x3 – кратные корни, то на прямой будет одна точка и над ней “петля”.

Возьмем любое число меньшее самой левой точки   и подставим в исходное неравенство. Возьмем число -1.

(9*(-1)2 - 6*(-1) + 1)(-1 - 2) = -12

Т.к. решение уравнения при x = -1 отрицательное (-12), то на графике в крайнем левом интервале пишем -, и далее чередуя знак записываем его в следующие интервалы:

Далее выбираем отрицательные интервалы, т.к. знак нашего неравенства ≤.

Не забываем включать решение уравнения (найденные X), т.к. наше неравенство нестрогое.

Ответ: {} U [2;+∞)

 

Пример 3:

 

Решить неравенство:

(9x2 - 6x + 1)(x - 2) > 0

Все, чем данное неравенство отличается от предыдущего – вместо нестрогого неравенства (≥) стоит строгое (>). Как ни странно, решение данного неравенства будет иным.

Найдем корни уравнения (9x2 - 6x + 1)(x - 2) ≠ 0 (знак ≠ означает, что найденные корни не могут быть решениями нашего неравенства, т.к. оно строгое). Проделав все этапы, что и в предыдущем примере получим:

x1= 2; x2,3 =;

Вынесем наши решения на числовую прямую (обратите внимания, что данные точки не включены, т.к. неравенство строгое, т.е. левая часть неравенства не равна нулю)

Обратите внимание, что корни x2 и x3 совпадают, корень “” является кратным. Соответственно, в данной точке на числовой прямой рисуем петлю.

Возьмем число -1.

(9*(-1)2 - 6*(-1) + 1)(-1 - 2) = -12

Т.к. решение уравнения при x = -1 отрицательное (-12), то на графике в крайнем левом интервале пишем -, и далее чередуя знак записываем его в следующие интервалы:

Далее выбираем отрицательные интервалы, т.к. знак нашего неравенства <.

Найденные корни не включаем в ответ.

Ответ: (2;+∞).

ya-znau.ru

Метод интервалов. Примеры

Продолжаем рассматривать метод интервалов. Примеры, в которых в ходе решения квадратного уравнения получаем дискриминант, равный нулю — следующие.

   

Используем алгоритм метода интервалов. Приравниваем к нулю левую часть:

   

Ищем дискриминант:

   

Поскольку дискриминант равен нулю, квадратное уравнение имеет один корень:

   

В точке x=3 на числовой прямой — «петля»:

Неравенство нестрогое, точка — закрашенная. Знак неравенства — больше либо равно, поэтому нам нужны промежутки с «+». Ответ:

   

   

От предыдущего неравенства это отличается только тем, что является строгим. Соответственно, точка x=3 — выколотая, и в ответ ее не включаем:

Ответ:

   

   

Поскольку знак неравенства — меньше либо равно, нам нужны промежутки с «-»  а их нет. Отдельно стоящие закрашенные точки включаем в ответ. Здесь такая точка есть —  x=3 (напоминаю, знак в петле — «виртуальный», на самом деле при x=3 выражение, стоящее в правой части,  равно нулю, а нуль не является ни положительным, ни отрицательным числом).

Ответ:

   

   

Здесь нет ни одной точки удовлетворяющей условию неравенства.

Ответ:

   

   

Приравниваем к нулю левую часть. Получаем:

   

Поскольку в ходе решения уравнения x²-10x+25=0 получили дискриминант, равный нулю, в соответствующей точке x=5  — «петля». Отмечаем полученные точки на числовой прямой:

Знак неравенства — меньше либо равно, поэтому выбираем промежутки со знаком «-«. Точка х=5 — закрашенная, поэтому ее включаем в ответ (то есть разрывать промежуток от -3 до 6 не нужно).

Ответ: х∈(-3;6).

   

От предыдущего примера данный отличается только тем, что неравенство — строгое. Соответственно, все точки выколотые и в ответ х=5 уже не входит (промежуток от -3 до 6 разбивается на два).

Ответ: х∈(-3;5)U(5;6).

   

Здесь выбираем промежутки с «+». Отдельно стоящую закрашенную точку также включаем в ответ:

Ответ:

   

   

Поскольку неравенство — строгое, ни одну из точек в ответ не включаем:

Ответ:

   

Следует заметить, что если бы мы решали квадратные уравнения, в которых дискриминант равен нулю, используя теорему Виета, то получили бы два одинаковых корня (то есть один и тот же корень встречается четное число раз). Если бы свернули квадратный трехчлен по формулам квадрата суммы или квадрата разности, то получили бы кратный корень четной степени. То есть, при любом подходе пришли бы к «петле».

www.uznateshe.ru

Метод интервалов в рациональных неравенствах. Примеры, тест

 

 

Чтобы оценить все могущество метода интервалов, давайте сначала решим несложное неравенство так, как если бы мы его решали, не зная метода интервалов. + показать

 

Решим неравенство .

Как мы будем рассуждать?

Произведение двух множителей дает знак «+», когда

1) оба множителя положительны;

2) оба множителя отрицательны.

Поэтому предстоит решить совокупность двух систем неравенств:

Решение первой системы:

 

Решение второй системы:

Итак, нам осталось объединить решения первой и второй систем:

Ответ:

 

А теперь представьте, если бы у нас было не два множителя, как выше, а три-четыре, а если бы при этом множители представляли из себя многочлены второй степени, например.

Представляете, сколько было бы перебора различных ситуаций?

Метод интервалов для рациональных неравенств

 

Метод интервалов выручит! Избавит нас от рутины!

Мы ведь понимаем, что любое число – либо отрицательное (-), либо положительное (+), либо ноль.  Где «переход» из одной зоны (+или – ) в другую (- или +)? В нуле!

               

На рисунке 1 функция обращается в нуль в точках -2; 1; 5  и 7. Именно при переходе через них она и меняет свой знак с одного на другой.

Функция может также коснуться оси (ох), и «не перескочить» в другую зону (как на рисунке 2). В данном случае  точка – корень четной кратности (мы еще поговорим об этом).

В любом случае, если функция попала из одной «зоны» («+,-») в другую («-,+»), – значит она в какой-то точке должна  была обратиться в ноль.

Поэтому-то нули функции и помогут нам!

Итак, давайте выработаем алгоритм, которого будем придерживаться при решении рациональных неравенств.

Алгоритм решения рациональных неравенств

 

Пусть нам дано неравенство вида , где – один из знаков .

1. Раскладываем на множители (если это возможно*).

2. Находим нули .

3. Отмечаем корни (нули) функции на оси в порядке возрастания.  Эти числа разбивают числовую ось на  интервалы. На каждом из этих интервалов  выражение сохраняет знак, а, переходя через отмеченные точки, меняет знак на противоположный (или не меняет, если корень – четной кратности, например, в неравенстве     – корень четной кратности, корень – обычный).

4. Расставляем  знаки на интервалах, начиная от крайнего правого. Советую брать «миллиончик» – не промахнетесь (шучу). Нам не важно само значение функции в выбранной точке, но только ЗНАК в ней, поэтому не утруждайте себя подсчетами  – только грубая прикидка.

5. Выбираем подходящие нам промежутки, записываем ответ. Например, если неравенство со знаком «>», то берем интервалы со знаком «+», если неравенство со знаком «<», то берем интервалы со знаком «-», если неравенство со знаком (), то берем промежутки со знаком «+» («-») c закрытыми концами.

Практика

Пример 1.

Решить неравенство:

Решение: + показать

1) Разложим вторую скобку неравенства на множители по формуле «разность квадратов»: 

2) Нули:

3)

4) Взяв «миллиончик» и «подставив» в  , конечно же будем иметь знак «-». Далее знаки чередуются.

5) Выбираем подходящие нам промежутки, записываем ответ:

Ответ: . 

Пример 2.

Решить неравенство:

Решение: + показать

1) Попадаем в ситуацию (*) – на множители-то не раскладывается, так как .

2) –

3) А отмечать-то нечего на оси :(

4) Так значит, меняться знаку негде! Он – либо «+» либо «-» всюду! Берем любое число, например, 0 и смотрим, какой знак в нем принимает выражение . Очевидно, это «+». Поэтому 

5) Ответ: . 

 

Пример 3.

Решить неравенство:

Решение: + показать

1) Раскладываем первую скобку на множители по формуле разность кубов:

. Заметим, дальше на множители не раскладывается, так как для этого квадратного трехчлена. А значит, эта скобка несет в себе только один знак (не трудно понять, что «+»). То есть, вообще говоря, мы можем поделить обе части исходного неравенства на  . Полученное тогда неравенство равносильно исходному.

Будем дальше решать именно это неравенство:

2) Нули: .

3)-4) Обратите внимание: корень – четной кратности, при переходе через него не будет происходить смена знаков! Ну действительно, знак неравенства определяется только выражением , ведь принимает только «+» (то есть не влияет на знак произведения) или обращается в ноль.

Далее

Обратите внимание – в ответ пойдет и точка {-5}! Так как знак неравенства  нестрогий, мы должны взять и все точки, лежащие на оси.

5) Ответ: {}. 

Пример 4.

Решить неравенство:

Решение: + показать

Пример 5.

Решить неравенство:

Решение: + показать

Надеюсь, у вас не возникает желания разложить  на множители каждую из скобок? Ни в коем случае! Должен быть  «0» справа!

Поэтому, первое, что нужно сделать, – перенести «-5» в левую сторону. Но раскрывать скобки и выходить на 4-ю степень не хотелось бы.

Замечаем, что есть одинаковые компоненты () в скобках, поэтому, можно сделать замену переменной. Обозначим за . Тогда получаем следующее неравенство: .

Далее: .

1) Раскладываем на множители:

2) Нули: 1; 5

3)-5) Ось у нас будет называться :

.

Теперь нам предстоит сделать обратную замену: .

Перепишем двойное неравенство в виде системы:

Нам предстоит решить два неравенства, а потом пересечь их решения.

Решаем первое неравенство: 

Раскладываем на множители: .

Решение первого неравенства:

Решаем второе неравенство:

Раскладываем на множители: 

Решение второго неравества: .

Пересекаем решения неравенств:

Ответ: . 

 

 

Пример 6.

Решить неравенство: (|x|-3)(|x|-7)>0.

Решение: + показать

Введем переменную: , заметим, при этом .

Или, что тоже самое:

Обратная замена:

Тогда (как раскрывать модуль)

Ответ: . 

 

Здесь предлагаю ознакомиться с решением дробно-рациональных неравенств методом интервалов.

Вы можете пройти тест  тест по теме «Метод интервалов для рациональных неравенств»

 

 

 

egemaximum.ru

Метод интервалов решения неравенств

Метод интервалов применяют при решении линейных, квадратных и дробно-рациональных неравенств.

Алгоритм метода интервалов

Метод интервалов решения неравенств основан на следующем алгоритме:

  1. Решаем уравнение и находим нули функции (если — дробно-рациональная, то находим нули числителя и нули знаменателя).
  2. Отмечаем полученные значения на числовой оси нули. Нули знаменателя всегда выколотые точки, нули числителя выколотые, если неравенство строгое; закрашенные, если неравенство нестрогое.
  3. Полученные точки разбивают числовую ось на интервалы. В каждом интервале определяем знак функции .
  4. Если при переходе через закрашенную точку знак не меняется, то эта точка (если она не находится внутри промежутка решения) является изолированной точкой-решением.

Примеры решения неравенств методом интервалов

Понравился сайт? Расскажи друзьям!

ru.solverbook.com