Сколько искусственных спутников летает сейчас в космосе? Сколько спутников летает вокруг земли


Сколько искусственных спутников вращается вокруг земли

Вы когда нибудь интересовались сколько спутников вращается вокруг Земли?

Первый искусственный спутник был выведен на орбиту земли 4 октября 1957 года. За годы освоения космоса в околоземном пространстве скопилось несколько тысяч летательных объектов

Над нашей головой пролетает 16 800 искусственных объектов, среди них 6000 спутников, остальные считаются космическим мусором — это разгонные блоки и обломки. Активно функционирующих аппаратов меньше — около 850.

Долгожителем среди спутников считается AMSAT OSCAR-7, запущенный на орбиту 15 ноября 1974 года. Этот маленький аппарат (его вес —28,8 килограмма) предназначен для любительской радиосвязи. Самый крупный объект на орбите — Международная космическая станция (МКС). Ее масса — около 450 тонн.

Спутники, обеспечивающие связь сотовых операторов («Билайн», МТС и «Мегафон»), размещают на орбитах двух типов: низкой и геостационарной.

На низкой высоте, 780 километров от Земли, находится используемая мобильными операторами глобальная система связи «Иридиум». Идею ее создания предложила в 1980-х годах компания Motorola. Названием система обязана химическому элементу иридию: в ее составе должно было быть 77 аппаратов, что равно атомному номеру иридия. Сейчас в «Иридиуме» 66 спутников.

Геостационарная орбита расположена на высоте 35 786 километров над экватором. Размещать на ней спутники связи выгоднее, так как не нужно постоянно наводить антенну — аппараты вращаются вместе с Землей и всегда находятся над одной точкой. На геостационаре 178 спутников. Самая большая группа в России принадлежит ФГУП «Космическая связь»: 9 спутников серии «Экспресс» обеспечивают телерадиовещание, мобильную, а также правительственную и президентскую связь, Интернет. Также на геостационарной орбите размещаются метеорологические и спутники наблюдения. Метеорологические спутники фиксируют изменения в атмосфере, «наблюдатели» определяют степень созревания зерновых, степень засухи и прочее.

2015-04-20 23:05:11

govzalla.com

Сколько спутников в космосе?

Вселенная > Сколько спутников в космосе?

Отслеживаемые спутники на орбите Земли

Узнайте, сколько искусственных спутников находится в космосе: история космических исследований, запуск первого спутника, количество на околоземной орбите.

4 октября 1957 года стартовала космическая эра с запуском первого спутника «Спутник-1». Ему было суждено провести на орбите 3 месяца и сгореть в атмосфере. С того момента в космос отправляли множество аппаратов: земная орбита, Луна, вокруг Солнца, других планет и даже за пределы Солнечной системы. Только на Земной орбите вращается 1071 операционных спутников, 50% из которых представлено разработками США.

Половина расположена на низкой околоземной орбите (несколько сотен км). Среди них Международная космическая станция, космический телескоп Хаббл и спутники наблюдения.  Определенная часть находится на средней околоземной орбите (20000 км) – спутники, используемые для навигации. Небольшая группа выходит на эллиптическую орбиту. Остальные вращаются по геостационарной орбите (36000 км).

Если бы могли видеть их невооруженным глазом, то они показались бы статичными. Наличие их на определенной географической области обеспечивает коммуникационную стабильность, беспрерывность трансляций и осуществление метеорологических наблюдений.

Но это не весь список. Вокруг планеты вращается множество искусственных объектов. Среди этого мусора заметны ускорители, неактивные спутники и даже детали кораблей и костюмов. Было подсчитано, что на орбите находится примерно 21000 объектов, больше 10 см (малая часть – операционные спутники). 500000 обломков достигают размера 1-10 см.

Наша орбита настолько сильно переполнена мусором, что Международной космической станции приходится перемещаться, чтобы избежать опасных столкновений. Ученые переживают, что в недалеком будущем эти осколки станут серьезной угрозой для космических запусков. Получится так, что мы просто закроем себя от всего пространства слоем металлических деталей.

Вокруг Луны также расположено несколько спутников. Кроме того, один корабль находится возле Меркурия, один на Венере, 3 на Марсе и один возле Сатурна. Солнце также не одиноко, хотя они расположены там на расстоянии, которое не допускает разрушения. В 2013 году Вояджер покинул солнечную гелиосферу и вышел в межзвездную среду.

Удивительно, как много аппаратов мы смогли отправить за больше чем полвека. Все эти миссии позволили расширить знания о пространстве, и вскоре неприветливый далекий космос раскроет свои тайны.

v-kosmose.com

Искусственные спутники Земли: Всё о спутниках

Спутник Земли — это любой объект, который движется по искривленному пути вокруг планеты. Луна — это оригинальный, естественный спутник Земли, и есть много искусственных спутников, обычно на близкой орбите к Земле. Путь, по которому проходит спутник, — это орбита, которая иногда принимает форму круга.

Чтобы понять, почему спутники двигаются таким образом, мы должны вернуться к нашему другу Ньютону. Ньютон предположил, что сила-гравитации существует между любыми двумя объектами во Вселенной. Если бы не эта сила, спутник, движущийся вблизи планеты, продолжал бы двигаться с той же скоростью и в том же направлении — по прямой. Однако этот прямолинейный инерционный путь спутника уравновешен сильным гравитационным притяжением, направленным к центру планеты.

Орбиты искусственных спутников Земли

Орбиты спутников

Иногда орбита искусственного спутника Земли выглядит как эллипс, раздавленный круг, который перемещается вокруг двух точек, известных как фокусы. Применяются те же основные законы движения, за исключением того, что планета находится в одном из фокусов. В результате, чистая сила, применяемая к спутнику, не равномерна по всей орбите, и скорость спутника постоянно изменяется. Он движется быстрее всего, когда он ближе всего к Земле — точка, известная как перигей — и самая медленная, когда она находится дальше всего от Земли — точка, известная как апогей.

Существует множество различных спутниковых орбит Земли. Те, которые получают наибольшее внимание — это геостационарные орбиты, поскольку они неподвижны над определенной точкой Земли.

Орбита, выбранная для искусственного спутника, зависит от ее применения. Например, для прямого вещательного телевидения используется геостационарная орбита. Многие спутники связи также используют геостационарную орбиту. Другие спутниковые системы, такие как спутниковые телефоны, могут использовать низкоземные орбиты.

Аналогичным образом спутниковые системы, используемые для навигации, такие как система Navstar или Global Positioning (GPS), занимают относительно низкую орбиту Земли. Есть также много других типов спутников. От метеорологических спутников, до спутников для исследований. Каждый из них будет иметь свой собственный тип орбиты в зависимости от его применения.

Фактическая выбранная орбита спутника Земли будет зависеть от факторов, включая ее функцию, и от области, в которой она должна служить. В некоторых случаях орбита спутника Земли может достигать 100 миль (160 км) для низкоорбитальной орбиты LEO, в то время как другие могут достигать более 22 000 миль (36000 км), как в случае GEO-орбитальной орбиты GEO.

Первый искусственный спутник земли

Первый искусственный спутник земли был запущен 4 октября 1957 года Советским Союзом и был первым искусственным спутником в истории.

Спутник 1 был первым из нескольких спутников, запущенных Советским Союзом в программе «Спутник», большинство из которых были успешными. Спутник 2 следовал за вторым спутником на орбите, а также первым, чтобы нести животное на борту, суку по имени Лайка. Первый провал потерпел Спутник 3.

Первый спутник земли

Первый спутник земли имел приблизительную массу 83 кг, имел два радиопередатчика (20,007 и 40,002 МГц) и вращался на орбите Земли на расстоянии 938 км от своего апогея и 214 км на своем перигее. Анализ радиосигналов использовался для получения информации о концентрации электронов в ионосфере. Температура и давление были закодированы в течение длительности радиосигналов, которые он излучал, что указывает на то, что спутник не был перфорирован метеоритом.

Первый спутник земли представлял собой алюминиевую сферу диаметром 58 см, имеющую четыре длинные и тонкие антенны длиной от 2,4 до 2,9 м. Антенны выглядели как длинные усы. Космический аппарат получил информацию о плотности верхних слоев атмосферы и распространении радиоволн в ионосфере. Приборы и источники электрической энергии были размещены в капсуле, которая также включала радиопередатчики, работающие в 20.007 и 40.002 МГц (около 15 и 7,5 м на длине волны), выбросы были сделаны в альтернативных группах по 0, 3 с продолжительности. Заземление телеметрии включало данные о температуре внутри и на поверхности сферы.

https://tagweb.ru/wp-content/uploads/2017/10/Sputnik_beep.ogg

Поскольку сфера была заполнена азотом под давлением, у «Спутника 1» появилась первая возможность обнаружить метеориты, хотя она и не обнаружила. Потеря давления внутри, из-за проникновения на внешнюю поверхность, была отражена в данных о температуре.

Виды искусственных спутников

Искусственные спутники бывают разных видов, форм, размеров и играют разные роли.

Виды спутников

Земля с искусственного спутника в реальном времени

Изображения земли с искусственного спутника, транслируемое в режиме реального времени НАСА с Международной космической станции. Изображения захватываются четырьмя камерами высокого разрешения, изолированными от низких температур, что позволяет нам чувствовать себя ближе к космосу, чем когда-либо.

Эксперимент (HDEV) на борту МКС был активирован 30 апреля 2014 года. Он установлен на внешнем грузовом механизме модуля Columbus Европейского космического агентства. Этот эксперимент включает несколько видеокамер высокой четкости, которые заключены в корпус.

Совет; поместите плеер в HD и полный экран. Бывают случаи, когда экран будет черным, это может быть по двум причинам: станция проходит через зону орбиты, где она находится ночью, орбита длится приблизительно 90 мин. Либо экран темнеет когда камеры меняются.

Сколько спутников на орбите Земли 2017?

Согласно индексу объектов, запускаемых в космическое пространство, которое ведет Управление Организации Объединенных Наций по вопросам космического пространства (UNOOSA), в настоящее время на орбите Земли около 4 256 спутников, что на 4,39% больше, чем в прошлом году.

Сколько спутников на орбите Земли?

221 спутник был запущен в 2015 году, что является вторым по величине за один год, хотя он ниже рекордного количества 240, запущенного в 2014 году. Увеличение числа спутников, вращающихся вокруг Земли, меньше, чем число, запущенное в прошлом году, поскольку спутники имеют ограниченную продолжительность жизни. Большие спутники связи от 15 и более лет, в то время как малые спутники, такие как CubeSat, могут рассчитывать только на срок службы 3-6 месяцев.

Сколько из этих орбитальных спутников Земли работает?

Союз ученых (UCS) уточняет, какие из этих орбитальных спутников работают, и это не так много, как вы думаете! В настоящее время существует только 1 419 оперативных спутников Земли- всего около одной трети из всего числа на орбите. Это означает, что вокруг планеты много бесполезного металла! Вот почему существует большой интерес со стороны компаний, которые смотрят, как они захватывают и возвращают космический мусор, с использованием таких методов, как космические сети, рогатки или солнечные паруса.

Что делают все эти спутники?

Согласно данным UCS, основными целями операционных спутников являются:

Следует отметить, что некоторые спутники имеют несколько целей.

Кому принадлежат спутники Земли?

Интересно отметить, что в базе данных UCS есть четыре основных типа пользователей, хотя принадлежность 17% спутников у нескольких пользователей.

Сколько спутников у стран

По данным UNOOSA около 65 стран запустили спутники, хотя в базе данных UCS имеется только 57 стран, зарегистрированных с использованием спутников, и некоторые спутники перечислены с совместными / многонациональными операторами. Самые большие:

Помните, когда вы смотрите!В следующий раз, когда вы посмотрите на ночное небо, помните, что между вами и звездами есть около двух миллионов килограммов металла, окружающего Землю!

Источник: Территория знаний

tagweb.ru

Сколько искусственных спутников летает сейчас в космосе?

Всего с 1957 г. в космос было запущено свыше 5800 спутников, и около 3100 из них все еще продолжает летать, хотя работает только около 1000 аппаратов, а остальные - это уже космический мусор.

В наше время космические агентства стараются обеспечить вывод с орбиты каждого отработавшего свой ресурс спутника так, чтобы он упал в заданном месте, но в начале космической эры никто об этом не задумывался. После нескольких лет полета низкоорбитальные спутники падают на Землю (или сгорают) естественным образом в результате трения о чрезвычайно разреженную внешнюю часть земной атмосферы.

Еще статьи:

Значительная часть всего космического мусора - эт

В октябре 1957 г. Советский Союз запустил в космос пе

У наземных астрономических наблюдений есть целый

Ракеты, приводимые в движение черным порохом, стал

Искусственные спутники Земли - это не дорогие игру

kosmolog.ru

Какие спутники летают у нас над головой?

Первый искусственный спутник, запущенный в СССР ничего не умел. Он только транслировал в пространство «бип-бип» и быстро сгорел в плотных слоях атмосферы. С тех пор прошло каких-то 60 лет. а жизнь без космических аппаратов уже невозможна. Что же за спутники кружат у нас над головой?

Ученые говорят, что над землей летает уже около 100 тыс рукотворных космических объектов. Но сколько точно — не знает никто. Ведь большинство из этих объектов — так называемый космический мусор: обломки ракет, навсегда умолкшие старые спутники, оброненный космонавтами инструмент… Исправных аппаратов на орбите сегодня около 700.

Формально космос начинается на высоте 100 км. Но, двигаясь от Земли вертикально вверх, на этой высоте мы не встретим ни одного космического аппарата. Первый рукотворный объект попадется нам на 370-м километре. Он будет и самым крупным: это МКС, Международная космическая станция. Поднимать ее выше слишком дорого: вывод на орбиту одного килограмма груза стоит десятки тысяч долларов, а станция весит сотни тонн. И опускать ниже тоже нерационально: с уменьшением высоты возрастает сила торможения.

Орбиту МКС, если нужно, можно периодически поднимать с помощью грузовых кораблей но со спутником так не выйдет. Поэтому, чтобы они дольше летали, их обычно забрасывают выше 500 км. Орбиты, по которым летают спутники, простираются от 500 до 100 тыс. км от Земли. А дальше начинается космическая пустыня — открытый космос, холодный и бездонный.

Что находится на орбите?

Высоты от 100 до 300 км, хотя и являются космосом, не используются человеком. Спутников здесь нет. Разве что попадется частный космоплан Берта Рутана, но он суборбитальный аппарат и не делает витков вокруг Земли. На самых «низких» орбитах обычно летают самые большие космические объекты. Ни один из орбитальных комплексов не поднимался выше 400 км, а Юрий Гагарин сделал виток совсем низко по сегодняшним меркам — от 170 до 300 км. Самый крупный объект на этой высоте — МКС, но уже через несколько десятилетий ближний космос будет, видимо, застроен частными космическими отелями. А вот космического мусора здесь практически не бывает: он быстро тормозится сверхразреженным воздухом, опускается ниже и сгорает.

Космический телескоп Hubble.

590 км. Орбита знаменитого космического телескопа Hubble. Это самый большой орбитальный телескоп, диаметр его зеркала 2,4 м. Для наземных аппаратов это не очень много, но на орбите наблюдениям не мешает атмосфера, поэтому изображения с телескопа поступают исключительно четкие. Hubble был запущен американским NASA в 1990 году, с его помощью сделано множество научных открытий. Так, именно Hubble помог точно установить возраст нашей Вселенной. Он открыл неизвестные ранее галактики, нашел свидетельства существования массивных черных дыр в центрах галактик и даже несколько планетарных систем, похожих на Солнечную.

650 км. Орбита запущенного NASA спутника SORCE, который изучает влияние солнечного излучения на климат Земли. Для этого у аппарата есть спектрометр и фотометр.

Спутник TERRA.

700 км. Здесь «живет» американский спутник TERRA, один из участников большой научной программы, задача которой — понять, как связаны между собой суша, океаны, атмосфера и биосфера Земли. Спутник вращается вокруг планеты в районе экватора. Часть его инструментов служит для изучения образования облаков, другая следит за теплообменными процессами между сушей и океаном.

750 км. На этой высоте обитает французский аппарат SARA — 11-метровая радиоастрономическая обсерватория, направленная на Юпитер.

Спутник RADARSAT-2.

800 км. Спутник RADARSAT-2 занимается сбором информации для океанографов, климатологов и геологов, следит за косяками рыбы в южных морях и проводит разведку нефти.

820 км. Здесь находится американский спутник QuickSCAT, который специализируется на измерении скорости ветра вблизи поверхности океана. Это очень важно и для климатологов, и для метеорологов.

1200 км. Нижняя точка орбиты спутника IMAGE. В верхней точке этот аппарат уходит очень далеко от Земли на 45 тыс. км. IMAGE занимается изучением влияния солнечного ветра на магнитосферу Земли — того, что в прогнозах погоды называют «магнитными бурями».

1340 км. Здесь некогда расположился аппарат Poseidon, миссия которого заключалась в точнейших измерениях уровня моря. Объектом его наблюдений было гигантское океанское течение Эль-Ниньо, а основная задача американо-французского проекта ТОРЕХ, в рамках которого он был запущен,- изучать влияние глобального потепления на климат. Вместо потепления спутник, как ни странно, зафиксировал очень слабое похолодание. Аппарат покрывал 90% площади мирового океана за 11 дней. Миссия прекратилась в 2006 году.

2651 км. На этой высоте витает один из наших многочисленных «Интеркосмосов», запущенных еще в советское время.

4619 км. Это высота орбиты американского спутника EXOS D, который занят изучением космических частиц, вызывающих магнитные бури и северные сияния.

Радиотелескоп Chandra.

10.000 км. Это нижняя точка орбиты еще одного астрономического прибора NASA — радиотелескопа Chandra, названного в честь великого астрофизика XX века Субраманьяна Чандрасекара. В высшей точке он поднимается более чем на 140 тыс. км. Именно с его помощью была открыта «темная материя», которая, как предполагается, в конце концов поглотит наш мир.

14.000 км. Тут работает еще один рентгеновский телескоп, запущенный Европейским космическим агентством,- он называется Newton и занят массой дел: слежением за двойными звездами, скоплениями межзвездного газа и изучением сверхновых, то есть взорвавшихся звезд в ближних галактиках. Высшая точка у Newton — 107 тыс. км.

20.000 км. Здесь расположены спутники американской системы GPS и отечественной ГЛОНАСС (читайте подробнее о данной системе ТУТ), без которых не будет работать ни один электронным навигатор ни в самолете, ни на корабле, ни в вашем автомобиле. На каждом спутнике установлены две пары суперточных атомных часов. Благодаря им сегодня можно определить свое местоположение с точностью до одного-двух метров.

36.000 км. Это так называемая геостационарная орбита. На такой высоте спутники совершают один оборот точно за сутки. Поскольку Земля вращается с той же скоростью, то получается, что спутники как бы зависают над ней. Здесь около двухсот космических аппаратов. Больше всего телевизионных спутников, и ваш любимый европейский Hotbird, на который настроена «тарелка», летает тоже на этой высоте. Немало и спутников связи, например, для обслуживания спутниковых телефонов. Есть здесь и отечественные аппараты. Один из них, «Экспресс-AM1», занят, в частности, обслуживанием президентской и правительственной спецсвязи. Аппарат охватывает территорию европейской части России, СНГ, Европы, Северной Африки, Ближнего Востока и Индии.

Проблема «космического мусора»

Проблема «космического мусора» актуальна уже сегодня, а через 10-15 лет от этих отходов некуда будет деться.Но решение есть. Американские ученые разработали так называемую «привязь терминатора». Это катушка с тонким кабелем длиной 5 км. Как только спутник получит с Земли команду на самоуничтожение, кабель будет размотан. При движении через ионосферу, насыщенную электронами, по кабелю потечет электрический ток. От этого возникнет сила, которая быстро стащит спутник с орбиты. Если аппарат летает на высоте 1400 км, то самостоятельно он упадет через 9 тысяч лет, а с помощью «привязи» сгорит в атмосфере уже через 37 суток.

Конструкция спутников

Спутники, хотя и выглядят на картинках очень хитрыми устройствами, на самом деле не так уж сложны. Дело в том, что конструкция подавляющего большинства спутников модульная: их собирают из отдельных блоков наподобие конструктора. Одни блоки обеспечивают спутник питанием, другие отвечают за передачу данных на Землю, третьи обслуживают измерительную аппаратуру. Такой тип аппаратов называется унифицированной космической платформой. В мире нисколько платформ, одну из них использует российская РКК «Энергия». На ее базе были созданы спутники связи «Ямал» и другие аппараты.

Специфика спутников

Исследования космоса, планет и Солнца, изучение Мирового океана и поверхности Земли, радионавигация, контроль за посевами и изучение эрозии почв, наблюдение за состоянием лесов и загрязнением воды, разведка косяков рыбы, полезных ископаемых, прогнозирование погоды, топосъемка, связь и телевещание — вот что делают для нас спутники.

©При частичном или полном использовании данной статьи — активная гиперссылка ссылка на познавательный журнал alfaed.ru ОБЯЗАТЕЛЬНА

Вас это заинтересует:

alfaed.ru

Сколько спутников летает вокруг Земли

Проблема с мусором на Земле в последние десятилетия достаточно острая. Люди пытаются перерабатывать или сжигать отходы. Частично это удается, но образовывается много свалок с гниющими отходами. Аналогичная проблематика и с околоземным космическим пространством. Над Землей кружит более пятнадцати тысяч спутников разного назначения и миллионы обломков и единиц разного хлама.

 

Околоземное космическое пространство нужно людям для полетов в космос, к Международной космической станции или к другим планетам, для запуска метеорологических и коммуникативных спутников. Ученые уже работают над проблемой утилизации космического мусора и очистки околоземной орбиты.

Эффект Кесслера

Еще в 1977 году сотрудник NASA Кесслер заявил о том, что каждый запуск космической ракеты со спутником или зондом для дальних исследований, несет засорение околоземного пространства. Он обратил внимание других ученых, что космический мусор сгорает в плотных слоях атмосферы, но за пределами атмосферы может кружить над планетой тысячи лет. Синдром Кесслера напоминает о том, что при столкновении куски ракет и прочие отходы разбиваются на более мелкие фрагменты, каждый из которых представляет угрозу для населения планеты.

Происходят в космосе столкновения, которые приводят к новым обломкам. Крупнейшая авария произошла в 2009 году между американским и российским спутниками Иридиум и Космос. Два аппарата весом в сотни килограммов случайно столкнулись и разлетелись на части. МКС даже пришлось маневрировать, чтобы избежать столкновения с крупными кусками спутников.

Разрабатывается много проектов для уничтожения космического мусора. Ученые предлагают сжигать объекты лазерными пушками, ловить гигантскими сетями. Или специальные роботы ликвидаторы будут отправлять обломки на более дальние расстояния, чтобы они не мешали космическим полетам с Земли.

Казино вулкан не производит никакого мусора – это виртуальное заведение. Здесь каждый посетитель сможет найти себе игровой автомат по вкусу от классических слотов до самых современных аппаратов от ведущих производителей. Кроме традиционных игр можно принять участие в розыгрыше лотерей и призов, получить бонусы и сорвать солидный джек-пот. Если посетитель не желает рисковать, то имеет возможность играть в бесплатно режиме, а решив перейти к реальным ставкам, в любой момент сможет это сделать. Работает казино круглосуточно и без выходных. Честную игру и безоговорочную выплату выигранных средств заведение гарантирует.

Проекты и катастрофы

Засорение космоса началось с момента его освоения. Первый советский спутник был выведен на орбиту ракетой-носителем, обломки которой остались в космосе. Аналогично поступали и американцы. Когда Гагарин полетел в космос, вокруг планеты уже летали около двухсот рукотворных обломков.

В 60-е годы ХХ столетия американцы начали осуществлять проект "Вестфорд" – искусственное создание ионосферы для улучшения передачи радиоволн. В космос было вывезено до полумиллиарда медных иголок длиной до двух миллиметров. Они должны были образовать металлическое облако, отражающее радиоволны. Но этот проект представлял опасность для жителей планеты и его закрыли. Облака небольших медных иголок, которые должны были стать антеннами, летают вокруг Земли. В 80-е годы китайцы испытывали космические пушки, сбивая собственные, пришедшие в негодность спутники. А программа «звездных войн» между США и СССР привела к еще большей засоренности ближнего космоса.

www.satcore.info

На какой высоте летают спутники, расчет орбиты, скорость и направление движения

Подобно тому, как места в театре позволяют по-разному взглянуть на представление, различные орбиты спутников дают перспективу, каждая из которых имеет свое назначение. Одни кажутся висящими над точкой поверхности, они обеспечивают постоянный обзор одной стороны Земли, в то время как другие кружат вокруг нашей планеты, за день проносясь над множеством мест.

Типы орбит

На какой высоте летают спутники? Различают 3 типа околоземных орбит: высокие, средние и низкие. На высокой, наиболее удаленной от поверхности, как правило, находятся многие погодные и некоторые спутники связи. Сателлиты, вращающиеся на средней околоземной орбите, включают навигационные и специальные, предназначенные для мониторинга конкретного региона. Большинство научных космических аппаратов, в том числе флот системы наблюдения за поверхностью Земли НАСА, находится на низкой орбите.

От того, на какой высоте летают спутники, зависит скорость их движения. По мере приближения к Земле гравитация становится все сильнее, и движение ускоряется. Например, спутнику НАСА Aqua требуется около 99 минут, чтобы облететь вокруг нашей планеты на высоте около 705 км, а метеорологическому аппарату, удаленному на 35 786 км от поверхности, для этого потребуется 23 часа, 56 минут и 4 секунды. На расстоянии 384 403 км от центра Земли Луна завершает один оборот за 28 дней.

Аэродинамический парадокс

Изменение высоты спутника также изменяет его скорость движения по орбите. Здесь наблюдается парадокс. Если оператор спутника хочет повысить его скорость, он не может просто запустить двигатели для ускорения. Это увеличит орбиту (и высоту), что приведет к уменьшению скорости. Вместо этого следует запустить двигатели в направлении, противоположном направлению движения спутника, т. е. совершить действие, которое на Земле бы замедлило движущееся транспортное средство. Такое действие переместит его ниже, что позволит увеличить скорость.

Характеристики орбит

В дополнение к высоте, путь движения спутника характеризуется эксцентриситетом и наклонением. Первый относится к форме орбиты. Спутник с низким эксцентриситетом движется по траектории, близкой к круговой. Эксцентричная орбита имеет форму эллипса. Расстояние от космического аппарата до Земли зависит от его положения.

Наклонение – это угол орбиты по отношению к экватору. Спутник, который вращается непосредственно над экватором, имеет нулевой наклон. Если космический аппарат проходит над северным и южным полюсами (географическими, а не магнитными), его наклон составляет 90°.

Все вместе – высота, эксцентриситет и наклонение – определяют движение сателлита и то, как с его точки зрения будет выглядеть Земля.

Высокая околоземная

Когда спутник достигает ровно 42164 км от центра Земли (около 36 тыс. км от поверхности), он входит в зону, где его орбита соответствует вращению нашей планеты. Поскольку аппарат движется с той же скоростью, что и Земля, т. е. его период обращения равен 24 ч, кажется, что он остается на месте над единственной долготой, хотя и может дрейфовать с севера на юг. Эта специальная высокая орбита называется геосинхронной.

Спутник движется по круговой орбите прямо над экватором (эксцентриситет и наклонение равны нулю) и относительно Земли стоит на месте. Он всегда расположен над одной и той же точкой на ее поверхности.

Геостационарная орбита чрезвычайно ценна для мониторинга погоды, так как спутники на ней обеспечивают постоянный обзор одного и того же участка поверхности. Каждые несколько минут метеорологические аппараты, такие как GOES, предоставляют информацию об облаках, водяном паре и ветрах, и этот постоянный поток информации служит основой для мониторинга и прогнозирования погоды.

Кроме того, геостационарные аппараты могут быть полезны для коммуникации (телефонии, телевидения, радио). Спутники GOES обеспечивают работу поисково-спасательного радиомаяка, используемого для помощи в поиске кораблей и самолетов, терпящих бедствие.

Наконец, многие высокоорбитальные сателлиты Земли занимаются мониторингом солнечной активности и отслеживают уровни магнитного поля и радиации.

Вычисление высоты ГСО

На спутник действует центростремительная сила Fц=(M1v2)/R и сила тяжести Fт=(GM1M2)/R2. Так как эти силы одинаковы, можно уравнять правые части и сократить их на массу M1. В результате получится равенство v2=(GM2)/R. Отсюда скорость движения v=((GM2)/R)1/2

Так как геостационарная орбита представляет собой окружность длиной 2πr, орбитальная скорость равна v=2πR/T.

Отсюда R3=T2GM/(4π2).

Так как T=8,64x104с, G=6,673x10-11 Н·м2/кг2, M=5,98x1024кг, то R=4,23x107 м. Если вычесть из R радиус Земли, равный 6,38x106 м, можно узнать, на какой высоте летают спутники, висящие над одной точкой поверхности – 3,59x107м.

Точки Лагранжа

Другими замечательными орбитами являются точки Лагранжа, где сила притяжения Земли компенсируется силой тяжести Солнца. Все, что там находится, в равной степени притягивается к этим небесным телам и вращается с нашей планетой вокруг светила.

Из пяти точек Лагранжа в системе Солнце-Земля только две последних, называемых L4 и L5, являются стабильными. В остальных спутник подобен мячу, балансирующему на вершине крутого холма: любое незначительное возмущение будет выталкивать его. Чтобы оставаться в сбалансированном состоянии, космические аппараты здесь нуждаются в постоянной корректировке. В последних двух точках Лагранжа спутники уподобляются шару в шаре: даже после сильного возмущения они вернутся обратно.

L1 расположена между Землей и Солнцем, позволяет сателлитам, находящимся в ней, иметь постоянный обзор нашего светила. Солнечная обсерватория SOHO, спутник НАСА и Европейского космического агентства следят за Солнцем из первой точки Лагранжа, в 1,5 млн км от нашей планеты.

L2 расположена на том же расстоянии от Земли, но находится позади нее. Спутникам в этом месте требуется только один тепловой экран, чтобы защититься от света и тепла Солнца. Это хорошее место для космических телескопов, используемых для изучения природы Вселенной путем наблюдения фона микроволнового излучения.

Третья точка Лагранжа расположена напротив Земли с другой стороны Солнца, так что светило всегда находится между ним и нашей планетой. Спутник в этом положении не будет иметь возможность общаться с Землей.

Чрезвычайно стабильны четвертая и пятая точки Лагранжа в орбитальной траектории нашей планеты в 60° впереди и позади Земли.

Средняя околоземная орбита

Находясь ближе к Земле, спутники двигаются быстрее. Различают две средние околоземные орбиты: полусинхронную и «Молнию».

На какой высоте летают спутники, находящиеся на полусинхронной орбите? Она почти круглая (низкий эксцентриситет) и удалена на расстояние 26560 км от центра Земли (около 20200 км над поверхностью). Сателлит на этой высоте совершает полный оборот за 12 ч. По мере его движения Земля вращается под ним. За 24 ч он пересекает 2 одинаковые точки на экваторе. Эта орбита последовательна и весьма предсказуема. Используется системой глобального позиционирования GPS.

Орбита «Молния» (наклонение 63,4°) используется для наблюдения в высоких широтах. Геостационарные спутники привязаны к экватору, поэтому они не подходят для дальних северных или южных регионов. Эта орбита весьма эксцентрична: космический аппарат движется по вытянутому эллипсу с Землей, расположенной близко к одному краю. Так как спутник ускоряется под действием силы тяжести, он движется очень быстро, когда находится близко к нашей планете. При удалении его скорость замедляется, поэтому он больше времени проводит на вершине орбиты в самом дальнем от Земли краю, расстояние до которого может достигать 40 тыс. км. Период обращения составляет 12 ч, но около двух третей этого времени спутник проводит над одним полушарием. Подобно полусинхронной орбите сателлит проходит по одному и тому же пути через каждые 24 ч. Используется для связи на крайнем севере или юге.

Низкая околоземная

Большинство научных спутников, многие метеорологические и космическая станция находятся на почти круговой низкой околоземной орбите. Их наклон зависит от того, мониторингом чего они занимаются. TRMM был запущен для мониторинга осадков в тропиках, поэтому имеет относительно низкое наклонение (35°), оставаясь вблизи экватора.

Многие из спутников системы наблюдения НАСА имеют почти полярную высоконаклонную орбиту. Космический аппарат движется вокруг Земли от полюса до полюса с периодом 99 мин. Половину времени он проходит над дневной стороной нашей планеты, а на полюсе переходит на ночную.

По мере движения спутника под ним вращается Земля. К тому времени, когда аппарат переходит на освещенный участок, он находится над областью, прилегающей к зоне прохождения своей последней орбиты. За 24-часовой период полярные спутники покрывают большую часть Земли дважды: один раз днем и один раз ночью.

Солнечно-синхронная орбита

Подобно тому как геосинхронные спутники должны находиться над экватором, что позволяет им оставаться над одной точкой, полярно-орбитальные имеют способность оставаться в одном времени. Их орбита является солнечно-синхронной – при пересечении космическим аппаратом экватора местное солнечное время всегда одно и то же. Например, спутник Terra пересекает его над Бразилией всегда в 10:30 утра. Следующее пересечение через 99 мин над Эквадором или Колумбией происходит также в 10:30 по местному времени.

Солнечно-синхронная орбита необходима для науки, так как позволяет сохранять угол падения солнечного света на поверхность Земли, хотя он будет меняться в зависимости от сезона. Такое постоянство означает, что ученые могут сравнивать изображения нашей планеты одного времени года в течение нескольких лет, не беспокоясь о слишком больших скачках в освещении, которые могут создать иллюзию изменений. Без солнечно-синхронной орбиты было бы сложно отслеживать их с течением времени и собирать информацию, необходимую для изучения изменений климата.

Путь спутника здесь очень ограничен. Если он находится на высоте 100 км, орбита должна иметь наклон 96°. Любое отклонение будет недопустимым. Поскольку сопротивление атмосферы и сила притяжения Солнца и Луны изменяют орбиту аппарата, ее необходимо регулярно корректировать.

Выведение на орбиту: запуск

Запуск спутника требует энергии, количество которой зависит от расположения места старта, высоты и наклона будущей траектории его движения. Чтобы добраться до удаленной орбиты, требуется затратить больше энергии. Спутники со значительным наклоном (например, полярные) более энергозатратны, чем те, которые кружат над экватором. Выведению на орбиту с низким наклоном помогает вращение Земли. Международная космическая станция движется под углом 51,6397°. Это необходимо для того, чтобы космическим челнокам и российским ракетам было легче добраться до нее. Высота МКС – 337–430 км. Полярные спутники, с другой стороны, от импульса Земли помощи не получают, поэтому им требуется больше энергии, чтобы подняться на такое же расстояние.

Корректировка

После запуска спутника необходимо приложить усилия, чтобы удержать его на определенной орбите. Поскольку Земля не является идеальной сферой, ее гравитация в некоторых местах сильнее. Эта неравномерность, наряду с притяжением Солнца, Луны и Юпитера (самой массивной планеты Солнечной системы), изменяет наклон орбиты. На протяжении всего своего срока службы положение спутников GOES корректировалось три или четыре раза. Низкоорбитальные аппараты НАСА должны регулировать свой наклон ежегодно.

Кроме того, на околоземные спутники оказывает воздействие атмосфера. Самые верхние слои, хотя и достаточно разрежены, оказывают достаточно сильное сопротивление, чтобы притягивать их ближе к Земле. Действие силы тяжести приводит к ускорению спутников. Со временем они сгорают, по спирали опускаясь все ниже и быстрее в атмосферу, или падают на Землю.

Атмосферное сопротивление сильнее, когда Солнце активно. Так же, как воздух в воздушном шаре расширяется и поднимается при нагревании, атмосфера поднимается и расширяется, когда Солнце дает ей дополнительную энергию. Разреженные слои атмосферы поднимаются, а их место занимают более плотные. Поэтому спутники на орбите Земли должны изменять свое положение примерно четыре раза в год, чтобы компенсировать сопротивление атмосферы. Когда солнечная активность максимальна, положение аппарата приходится корректировать каждые 2-3 недели.

Космический мусор

Третья причина, вынуждающая менять орбиту – космический мусор. Один из коммуникационных спутников Iridium столкнулся с нефункционирующим российским космическим аппаратом. Они разбились, образовав облако мусора, состоящее из более чем 2500 частей. Каждый элемент был добавлен ​​в базу данных, которая сегодня насчитывает свыше 18000 объектов техногенного происхождения.

НАСА тщательно отслеживает все, что может оказаться на пути спутников, т. к. из-за космического мусора уже несколько раз приходилось менять орбиты.

Инженеры центра управления полетами отслеживают положение космического мусора и сателлитов, которые могут помешать движению и по мере необходимости тщательно планируют маневры уклонения. Эта же команда планирует и выполняет маневры по регулировке наклона и высоты спутника.

fb.ru