Что такое сопромат (сопротивление материалов)? Сопротивление материалов это


Краткий курс сопротивления материалов

Часть 1 Глава 1. Введение

1.1. Задачи и методы сопротивления материалов

Сопротивление материалов – наука о прочности и надёжности деталей машин и конструкций. В её задачи входит обобщение инженерного опыта создания машин и сооружений, разработка научных основ проектирования и конструирования надёжных изделий, совершенствование методов оценки прочности.

Изучая процессы деформирования и разрушения твёрдых тел, сопротивление материалов устанавливает основные методы расчётов деталей машин и конструкций на прочность, жёсткость и устойчивость.

Расчёт на прочность преследует цель определить наименьшие размеры детали, исключающие возможность разрушения.

Расчёт на жёсткость связан с определением деформации конструкции в процессе эксплуатации.

Под устойчивостью подразумевается способность элементов конструкций сохранять первоначально заданную форму равновесия.

Сопротивление материалов – инженерная наука, для неё характерно использование приближённых методов, опирающихся на опыт и эксперимент.

Сопротивление материалов, в отличие от теоретической механики, рассматривает не абсолютно твёрдые, а деформированные тела. Сопротивление материалов является одним из разделов механики твёрдого деформируемого тела. К ней относятся также теория упругости, теория пластичности, теория ползучести, теория пластин и оболочек, механика разрушения, строительная механика стержневых систем. В этих разделах механики зачастую рассматривают те же проблемы, что и в сопротивлении материалов, но в более строгой математической постановке. Сопротивление материалов решает свои задачи возможно более простыми методами, применяя сравнительно несложный математический аппарат.

Итак, сопротивление материалов – это азбука расчётов на прочность.

1.2. Реальный объект и расчётная схема

Расчёт на прочность реальной детали всегда начинается с выбора расчётной схемы. Он заключается в устранении второстепенных факторов, незначительно влияющих на работу конструкции; в схематизации самого рассматриваемого объекта.

Для одного и того же объекта может быть предложено несколько расчётных схем. С другой стороны, одной расчётной схеме может быть поставлено в соответствие много реальных объектов. Последнее обстоятельство является весьма важным, так как, исследуя некоторую схему, можно получить решение целого класса задач, сводящихся к данной схеме. Схематизируя реальный объект, мы фактически заменяем его некоторой моделью. При этом разрабатываются и принимаются четыре вспомогательные модели: материала, формы, нагружения и разрушения. Построение указанных частных моделей является важным этапом, существенно влияющим на достоверность оценки прочностной надёжности.

1.2.1. Модели материала

Основными конструкционными материалами в машиностроении являются сплавы чёрных и цветных металлов. Используются также различные неорганические и органические материалы (полимеры, пластмассы, керамика). В последнее время нашли применения композиционные материалы, состоящие из высокопрочных нитей стекла, бора, углерода и связующего полимера.

Металлы имеют поликристаллическое (зернистое) строение. Но инженерные модели материала наделяют его следующими свойствами: однородность, сплошность, упругость, изотропность.

Однородность понимается в том смысле, что все неоднородные структурные дискретные элементы заменяются «осредненной» непрерывной средой. Свойства не зависят от величины выделенного из тела объёма.

Сплошность понимается в том смысле, что материал заполняет весь объем тела без пустот, раковин и прочих дефектов. Хотя эти дефекты вполне возможны в реальных деталях.

Упругость – это способность тела восстанавливать свои первоначальные размеры после снятия нагрузки.

Изотропность – это независимость механических свойств от направления нагрузки. Материалы, не обладающие этим свойством, называются анизотропными (древесина, композиты на основе стеклоткани).

В подавляющем большинстве случаев такая модель вполне адекватно отражает свойства реальных конструкционных материалов. Однако иногда такая модель становится недостаточной и приходится принимать более сложную модель: материал наделяют свойствами пластичности и ползучести. Пластичностью называется свойство тела сохранять после прекращения действия нагрузки полученную при нагружении деформацию (например, изгиб медной проволоки). Ползучестью называется свойство тела увеличивать деформацию при постоянных внешних нагрузках (например, осадка фундамента или ослабление затяжки болтов вследствие их удлинения со временем).

      1. Модели формы

Основными моделями формы в моделях прочностной надёжности являются: стержни, пластинки, оболочки, пространственные тела (массивы).

Стержнем (или брусом) называется тело, поперечные размеры которого малы по сравнению с его длиной (рис.1.1).

Образование стержня можно представить как результат движения вдоль прямой или пространственной кривой (оси стержня) плоской фигуры (поперечного сечения стержня). Поперечное сечение стержня может быть переменным по длине. При движении вдоль оси оно может поворачиваться и тогда стержень называется закрученным. Стержневой модели соответствует колоссальное количество реальных деталей и конструкций: колонны зданий, подкрановые балки, мосты, телебашня, валы турбин, двигателей внутреннего сгорания, редукторов, электродвигателей, лопатки компрессоров, паровых и газовых турбин (закрученные стержни переменного сечения) и т.д.

Рис. 1.1

Пластиной называется тело, ограниченное двумя плоскими или слабоизогнутыми поверхностями (рис.1.2). Толщина пластины много меньше двух других размеров. Схеме пластины соответствуют плиты междуэтажных перекрытий, диски турбин и т.д.

Рис. 1.2

Оболочкой называется тело, ограниченное двумя близкими криволинейными поверхностями. Расстояние между поверхностями – толщина оболочки – мало по сравнению с радиусами кривизны поверхностей (рис.1.3). Оболочечной моделью описывается столь же большее количество конструкций, что и стержневой. Это трубопроводы, сосуды для хранения жидкостей и газов, корпуса химических аппаратов, кузова автомобилей и железнодорожных вагонов, корпуса самолётов и ракет, перекрытия концертных залов и стадионов и т.д.

Замкнутая цилиндрическая оболочка Незамкнутая оболочка

Рис.1.3

Массивом называется тело, у которого все размеры одного порядка. Это могут быть элементы деталей машин (проушины, головки болтов, стержни с выточками или отверстиями). Этой модели соответствует значительно меньшее количество конструкций, чем стержневой или оболочечной (рис.1.4).

Рис.1.4. Плотина

Модели нагружения имеют существенное значение для расчётов на прочность, поэтому рассмотрим их отдельно.

studfiles.net

Сопротивление материалов - это... Что такое Сопротивление материалов?

Внешние силовые линии увеличиваются около отверстия, в общем случае концентрации напряжений

Сопротивление материалов (в обиходе — сопромат) — часть механики деформируемого твёрдого тела, которая рассматривает методы инженерных расчётов конструкций на прочность, жесткость и устойчивость при одновременном удовлетворении требований надежности, экономичности и долговечности. Сопротивление материалов относится к фундаментальным дисциплинам общеинженерной подготовки специалистов с высшим техническим образованием, за исключением специальностей, не связанных с проектированием объектов, для которых прочность является важным показателем.

Определение

Сопротивление материалов базируется на понятии "прочность", что является способностью материала противостоять приложенным нагрузкам и воздействиям без разрушения. Сопротивление материалов оперирует такими понятиями как: внутренние усилия, напряжения, деформации. Приложенная внешняя нагрузка к некоторому телу порождает внутренние усилия в нём, противодействующие активному действию внешней нагрузки. Внутренние усилия, распределенные по сечениям тела называются напряжениями. Таким образом, внешняя нагрузка порождает внутреннюю реакцию материала, характеризующуюся напряжениями,которые в свою очередь прямо пропорциональны деформациям тела. Деформации бывают линейные такие как удлинение,укорочение, сдвиг и углы поворота сечений. Основные понятия сопротивления материалов оценивающие способность материала сопротивляться внешним воздействиям являются:

1. Несущая способность - способность материала воспринимать внешнюю нагрузку не разрушаясь;

2. Жесткость - способность материала сохранять свои геометрические параметры в допустимых пределах при внешних воздействиях

3. Устойчивость - способность материала сохранять в стабильности свою форму и положение при внешних воздействиях

Связь с другими науками

В теоретической части сопротивление материалов базируется на математике и теоретической механике, в экспериментальной части — на физике и материаловедении и применяется при проектировании машин, приборов и конструкций. Практически все специальные дисциплины подготовки инженеров по разным специальностям содержат разделы курса сопротивления материалов, так как создание работоспособной новой техники невозможно без анализа и расчета её прочности, жёсткости и надёжности.

Задачей сопротивления материалов, как одного из разделов механики сплошной среды, является определение деформаций и напряжений в твёрдом упругом теле, которое подвергается силовому или тепловому воздействию.

Эта же задача среди других рассматривается в курсе теории упругости. Однако методы решения этой общей задачи в том и другом курсах существенно отличаются друг от друга. Сопротивление материалов решает её главным образом для бруса, базируясь на ряде гипотез геометрического или физического характера. Такой метод позволяет получить, хотя и не во всех случаях, вполне точные, но достаточно простые формулы для вычисления напряжений. Также поведением деформируемых твёрдых тел под нагрузкой занимается теория пластичности и теория вязкоупругости.

Гипотезы и допущения

Расчет конструкций и их элементов является или теоретически невозможным, или практически неприемлемым по своей сложности. Поэтому в сопротивлении материалов существует модель идеализированного деформируемого тела.

  1. Гипотеза сплошности и однородности — материал представляет собой однородную сплошную среду; свойства материала во всех точках тела одинаковы и не зависят от размеров тела.
  2. Гипотеза об изотропности материала — физико-механические свойства материала одинаковы по всем направлениям.
  3. Гипотеза об идеальной упругости материала — тело способно восстанавливать свою первоначальную форму и размеры после устранения причин, вызвавших его деформацию.
  4. Гипотеза (допущение) о малости деформаций — деформации в точках тела считаются настолько малыми, что не оказывают существенного влияния на взаимное расположение нагрузок, приложенных к телу.
  5. Допущение о справедливости закона Гука — перемещения точек конструкции в упругой стадии работы материала прямо пропорциональны силам, вызывающим эти перемещения.
  6. Принцип независимости действия сил — принцип суперпозиции; результат воздействия нескольких внешних факторов равен сумме результатов воздействия каждого из них, прикладываемого в отдельности, и не зависит от последовательности их приложения.
  7. Гипотеза Бернулли о плоских сечениях — поперечные сечения, плоские и нормальные к оси стержня до приложения к нему нагрузки, остаются плоскими и нормальными к его оси после деформации.
  8. Принцип Сен-Венана — в сечениях, достаточно удалённых от мест приложения нагрузки, деформация тела не зависит от конкретного способа нагружения и определяется только статическим эквивалентом нагрузки.

Эти положения ограниченно применимы к решению конкретных закдач. Например, для решения задач устойчивости утверждения 4-6 не справедливы, утверждение 3 справедливо не всегда.

Теории прочности

Прочность конструкций определяется с использованием теории разрушения — науки о прогнозировании условий, при которых твердые материалы разрушаются под действием внешних нагрузок. Материалы, как правило, подразделяются на разрушающиеся хрупко и пластично. В зависимости от условий (например, температура, состояние напряжений, виды нагрузки) большинство материалов может быть отнесено к хрупким или пластичным или обоим видам одновременно. Тем не менее, для большинства практических ситуаций, материалы могут быть классифицированы как хрупкие или пластичные. Несмотря на то, что теория разрушения находится в разработке уже более 200 лет, уровень её приемлемости для механики сплошных сред, не всегда достаточен.

В математических терминах, теория разрушения выражается в виде различных критериев разрушения, которые справедливы для конкретных материалов. Критерием разрушения является поверхность разрушения, выраженная через напряжения или деформации. Поверхность разрушения разделяет «поврежденное» и «не поврежденное» состояния. Для «поврежденного» состояния трудно дать точное физическое определение. Поэтому это понятие следует рассматривать как рабочее определение, используемое в инженерном сообществе. Термин «поверхность разрушения», используемый в теории прочности, не следует путать с аналогичным термином, который определяет физическую границу между поврежденными и не поврежденными частями тела. Довольно часто феноменологические критерии разрушения одного и того же вида используются для прогнозирования хрупкого и пластичного разрушения.

Среди феноменологических теорий прочности наиболее известными являются следующие теории, которые принято называть «классическими» теориями прочности:

1. Теория наибольших нормальных напряжений.

2. Теория наибольших деформаций.

3. Теория наибольших касательных напряжений Треска (Tresca).

4. Теория наибольшей удельной потенциальной энергии формоизменения фон Мизеса (von Mises).

5. Теория Мора (Mohr).

Классические теории прочности имеют существенные ограничения для их применения. Так теории наибольших нормальных напряжений и наибольших деформаций применимы лишь для расчета прочности хрупких материалов, причём только для некоторых определённых условий нагружения. Поэтому эти теории прочности сегодня применяют весьма ограниченно. Из перечисленных теорий наиболее часто используют теорию Мора, которую также называют критерием Мора-Кулона. Кулон (Coulomb) в 1781 г. на основе выполненных им испытаний установил закон сухого трения, который использовал для расчета устойчивости подпорных стенок. Математическая формулировка закона Кулона совпадает с теорией Мора, если в ней выразить главные напряжения через касательные и нормальные напряжения на площадке среза. Достоинством теории Мора является то, что она применима к материалам, имеющим разные сопротивления сжатию и растяжению, а недостатком то, что она учитывает влияние только двух главных напряжений — максимального и минимального. Поэтому теория Мора не точно оценивает прочность при трехосном напряженном состоянии, когда необходимо учитывать все три главных напряжения. Кроме того, при использовании эта теория не учитывается поперечное расширение (дилатацию) материала при сдвиге. На эти недостатки теории Мора неоднократно обращал внимание А. А. Гвоздев, который доказал неприменимость теории Мора для бетона [2].

На смену «классическим» теориям прочности в современной практике пришли многочисленные новые новые теории разрушения. Большинство из них используют различные комбинации инвариантов тензора напряжений Коши (Cauchy) Среди них наиболее известны следующие критерии разрушения:

Перечисленные критерии прочности предназначены для расчета прочности однородных (гомогенных) материалов. Некоторые из них используются для расчёта анизотропных материалов.

Для расчета прочности неоднородных (не гомогенных) материалов используется два подхода, называемые макро-моделированием и микро-моделированием. Оба подхода ориентированы на использование метода конечных элементов и вычислительной техники. При макро-моделировании предварительно выполняется гомогенизация — условная замена неоднородного (гетерогенного) материала на однородный (гомогенный). При микро-моделировании компоненты материала рассматриваются с учётом их физических характеристик. Микро-моделирование используют в основном в исследовательских целях, так как расчет реальных конструкций требует чрезмерно больших затрат машинного времени. Методы гомогенизации широко используются для расчета прочности каменных конструкций, в первую очередь для расчета стен-диафрагм жесткости зданий. Критерии разрушения каменных конструкций учитывают многообразные формы разрушения каменной кладки. Поэтому поверхность разрушения, как правило. принимается в виде нескольких пересекающихся поверхностей, которые могут иметь разную геометрическую форму.

Применение

Методы сопротивления материалов широко используются при расчете несущих конструкций зданий и сооружений, в дисциплинах связанных с проектированием деталей машин и механизмов.

Как правило, именно из-за оценочного характера результатов, получаемых с помощью математических моделей этой дисциплины, при проектировании реальных конструкций все прочностные характеристики материалов и изделий выбираются с существенным запасом (в несколько раз относительно результата, полученного при расчетах).

В студенческой среде сопротивление материалов считается одной из наиболее сложных общепрофессиональных дисциплин, что дало богатую пищу студенческому фольклору и породило целый ряд шуток и анекдотов.

См. также

Литература

1.^Старовойтов Э. И. Сопротивление материалов. — М.: ФИЗМАТЛИТ, 2008. — С. 384. — ISBN 978-5-9221-0883-6

2.^Гениев Г.А., Киссюк В.Н., Тюпин Г.А. Теория пластичности бетона и железобетона. — М.: Стройиздат, 1974.

dic.academic.ru

Что такое сопромат или сопротивление материалов?

Сопромат – это дисциплина о методах и способах расчета элементов конструкций на прочность, жесткость и устойчивость. Сопромат – это сокращенное название предмета «сопротивление материалов». Изучается этот предмет студентами вторых курсов, в основном, два семестра. После освоения таких дисциплин как математика, материаловедение, теоретическая механика. Особенно важно освоить перед изучением сопромата термех. Хоть и в теоретической механике все тела рассматриваются абсолютно твердыми телами, то есть никак не реагирующие на внешнее воздействие, в плане деформаций. Но все же важность представляет раздел статики. Без знаний статики не решить практически ни одной задачи по сопромату.

Зачем вообще нужен сопромат?

Ни одна строительная конструкция, будь это многоэтажный дом или мост, ни одна машина, механизм не обходится при проектировании без расчетов на прочность и жесткость. Конечно, сегодня инженеры, не будут рассчитывать, скажем, вращающуюся печь для обжига шлама методами, которые предлагает сопромат. Хоть это и возможно. Но зачем если есть компьютер? Все расчеты производятся на ЭВМ, с помощью такого программного обеспечения как Nastran, ANSYS и им подобным. В основе этих программ лежит метод конечных элементов. Суть этого метода в том, что компьютер разбивает расчетную модель на много небольших участков и считает. Причем для каждого последующего участка входными данными является результат, полученный при расчете предыдущего участка. Расчет получается быстрым, а самое главное точным.

Зачем тогда спрашивается изучать сопромат студенту год, а может и полтора? Сопромат способствует пониманию тех процессов, которые происходят внутри нагруженных элементов строительных конструкций или деталей машин. Формирует представление о том, как более рационально спроектировать тот или иной элемент конструкции, чтобы он был максимально прочным при минимальном расходе материала, одновременно удовлетворял таким критериям как долговечность и надежность. Даже чтобы кнопки нажимать на компьютере, подобрать правильно расчетную схему, входные данные, а потом считать результат, выданный ЭВМ, проанализировать его, нужны знания сопромата.

Основные разделы в сопромате

1. Растяжение (сжатие) – это самый простой раздел, с него, как правило, студенты начинают знакомиться с сопроматом. Учатся строить первые эпюры внутренних усилий, подбирают рациональные размеры поперечных сечений для стержней центрально сжатых или растянутых. Проводят первые расчеты на прочность, жесткость, сравнивая допустимое перемещение с перемещением расчетным. Свои навыки, полученные на лекциях, студенты оттачивают на двух основных типах задач этого раздела. На центрально растянутых (сжатых) брусьях или стержневых системах.2. Изгиб является самым популярным разделом в сопромате. У многих людей, когда-то изучавших сопромат, эта дисциплина ассоциируется с балками и эпюрами для них. Так как в ВУЗах в основном делается упор именно на этот раздел. 1/6 часть любого учебника по сопротивлению материалов приходится на изгиб, и это не случайно. Практически все элементы конструкций, в той или иной степени, работают на изгиб. Тем более понимание процессов происходящих при поперечном, его еще называют прямым, изгибе облегчает понимание процессов происходящих при более сложных видах сопротивления: косом изгибе, внецентренном растяжении (сжатии) и т.д.

При решении задач на изгиб приходится иметь дело, с вышеупомянутыми, балками, а также не менее интересными рамами. Для тех и других, обязательно строятся эпюры внутренних силовых факторов, а затем, обычно, проверяется, соблюдается ли условие прочности, если все размеры известны изначально или подбираются размеры из условия прочности. Это далеко не все, что предстоит делать с балками и рамами, это только самый популярный сценарий расчета. Также особое внимание уделяется методам определения перемещений поперечных сечений элементов работающих на изгиб. Перемещения при изгибе определяются несколько сложнее, чем при растяжении или кручении. Здесь поперечные сечения помимо того, что перемещаются вертикально, так еще и поворачивают на определенный угол, все это высчитываются несколькими способами, которые рассмотрены на этом сайте.

ssopromat.ru

Наука о сопротивлении материалов - сопромат.

Сопротивление материалов



Наука о сопротивлении материалов

Наука о сопротивлении материалов возникла в эпоху Возрождения, когда развитие техники, строительства, торговли, мореплавания и военного дела потребовало научных обоснований, необходимых для постройки крупных объектов и сооружений, морских судов и других сложных конструкций. Основоположником этой науки считают итальянского ученого Г. Галилея (1564-1642 гг.)

Как показывает практика, все части конструкций под действием нагрузок деформируются, т. е. изменяют свою форму и размеры, а в некоторых случаях происходит разрушение конструкций.

В этом плане показательна древняя китайская мудрость о вечности. Согласно легенде, китайские мудрецы так описывали понятие вечности своим ученикам: "Если положить на берега Ганга огромную алмазную глыбу и раз в тысячелетие к этой глыбе будет прилетать ворон, чтобы почистить клюв, то время, через которое алмазная глыба сотрется о клюв ворона и превратится в песчинку, - всего лишь краткий миг, по сравнению с вечностью". Тоже самое можно сказать и о деформируемости элементов конструкций. Какая бы прочная ни была конструкция, из каких бы прочнейших материалов она была бы создана, но даже крохотный комар, севший на массивную деталь, вызовет деформацию этой детали. Понятно, что эта деформация будет крайне ничтожной, но, тем не менее, она имеет место.

Сопротивление материалов есть наука о прочности и деформируемости материалов и элементов машин и сооружений. Применяя способы и методы этой науки можно производить с достаточной степенью погрешности расчеты конструкций машин и объектов на прочность, жесткость и устойчивость.

Прочностью называется способность материала конструкций и их элементов сопротивляться действию внешних сил, не разрушаясь. Расчеты на прочность дают возможность определить размеры и форму деталей конструкций, способные выдержать заданную нагрузку при наименьших затратах материалов.

Жесткость – способность тел или конструкций противостоять образованию деформаций. Расчеты на жесткость позволяют определить размеры, материал и форму конструкций, при которых возникающие в результате нагрузок деформации не превысят допустимых величин и норм.

Под устойчивостью понимают способность конструкции сопротивляться усилиям, стремящимся вывести ее из исходного состояния равновесия. Расчеты на устойчивость позволяют предотвратить внезапную потерю устойчивости конструкции и искривления ее элементов в результате приложения внешней нагрузки. Примером потери устойчивости может служить внезапное искривление длинного прямолинейного стержня при сильном сжатии его вдоль оси.



На практике в большинстве случаев приходится иметь дело с конструкциями сложной формы, но их можно представить состоящими из отдельных элементов, например, брусьев, пластин, оболочек или массивов. Основным расчетным элементом в сопротивлении материалов является брус, т. е. тело, поперечные размеры которого малы по сравнению с длиной. Брусья бывают прямолинейными, криволинейными, постоянного и переменного сечения. В зависимости от их назначения в конструкции брусья называют колоннами, балками, стержнями.

Плоское сечение, перпендикулярное оси прямолинейного бруса называют поперечным, сечение, параллельное оси прямолинейного бруса – продольным, остальные виды плоских сечений называют наклонными.

Кроме расчёта брусьев сопротивление материалов занимается расчетом пластин и оболочек, т. е. тел, имеющих малую толщину по сравнению с другими размерами (резервуары, трубы, обшивка судов и самолетов и т. п.). Тела, у которых все три измерения одинакового порядка называются массивами (фундаменты, станины станков и т. п.).

При деформации тела под действием внешних силовых факторов внутри него возникают силы упругости, которые препятствуют деформации и стремятся вернуть частицы тела в исходное положение. Появление сил упругости обусловлено существованием в теле внутренних сил молекулярного взаимодействия. В сопротивлении материалов изучают деформации тел и возникающие при этих деформациях внутренние силовые факторы.

В зависимости от способности сохранять исходную форму под действием деформирующих сил различают пластичные и хрупкие тела. Пластичные могут изменять в той или иной степени форму даже после снятия внешних нагрузок (остаточная деформация), хрупкие обладают малой пластичностью и способны сохранять исходную форму вплоть до разрушения из-за внешних нагрузок.

***

Материалы раздела "Сопротивление материалов":

Методические рекомендации и контрольные задания для студентов заочных отделений технических и машиностроительных специальностей:

Примечание: Документы размещены в формате Word, и могут быть сохранены на компьютере или распечатаны на принтере.

Гипотезы и допущения



Правильные ответы на тестовые вопросы: Тест №1    2-1-1-4-3       Тест №7    4-3-4-2-4 Тест №2    3-4-3-2-1       Тест №8    1-4-1-3-2 Тест №3    3-1-4-1-3       Тест №9    2-3-4-1-3 Тест №4    1-2-4-3-4       Тест №10   3-1-4-2-2 Тест №5    4-3-4-2-4       Тест №11   4-3-1-1-4 Тест №6    2-1-4-4-1       Тест №12   2-1-4-3-3

k-a-t.ru

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ - это... Что такое СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ?

 СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ раздел механики твердого тела, изучающий напряжения и деформации, которые обусловлены силами, действующими на твердые тела - элементы конструкции. Эту дисциплину можно характеризовать и как науку о методах расчета элементов конструкции на прочность, жесткость и устойчивость. Напряжение, создаваемое в твердом теле внешними нагрузками, есть мера (с размерностью силы на единицу площади) интенсивности внутренних сил, действующих со стороны одной, мысленно отсекаемой, части тела на другую, оставшуюся (метод сечений). Внешние нагрузки вызывают деформацию тела, т.е. изменение его размеров и формы. В сопротивлении материалов исследуются соотношения между нагрузками, напряжениями и деформациями, причем исследования ведутся, с одной стороны, путем математического вывода формул, связывающих нагрузки с вызываемыми ими напряжениями и деформациями, а с другой - путем экспериментального определения характеристик материалов, применяемых в строениях и машинах.См. такжеМЕТАЛЛОВ МЕХАНИЧЕСКИЕ СВОЙСТВА;МЕТАЛЛОВ ИСПЫТАНИЯ.По найденным формулам с учетом результатов испытания материалов рассчитываются размеры элементов строений и машин, обеспечивающие сопротивление заданным нагрузкам. Сопротивление материалов не относится к точным наукам, так как многие его формулы выводятся на основе предположений о поведении материалов, которые не всегда точно выполняются. Тем не менее, пользуясь ими, грамотный инженер может создавать надежные и экономичные конструкции. С сопротивлением материалов тесно связана математическая теория упругости, в которой тоже рассматриваются напряжения и деформации. Она позволяет решать те задачи, которые с трудом поддаются решению обычными методами сопротивления материалов. Однако между сопротивлением материалов и теорией упругости нет четкой границы. Хотя почти все задачи о распределении напряжений решены методами математического анализа, при сложных условиях эти решения требуют трудоемких выкладок. И тогда на помощь приходят экспериментальные методы анализа напряжений.НАПРЯЖЕНИЕ И ДЕФОРМАЦИЯВиды напряжений. Самое важное понятие в сопротивлении материалов - это понятие напряжения как силы, действующей на малую площадку и отнесенной к площади этой площадки. Напряжения бывают трех видов: растяжения, сжатия и сдвига. Если на металлическом стержне подвешен груз, как показано на рис. 1,а, то такой стержень называется растянутым или работающим на растяжение. Напряжение S, создаваемое силой P в растянутом стержне с площадью поперечного сечения, равной A, дается выражением S = P/A. Если вес груза равен 50 000 Н, то растягивающая сила тоже равна 50 000 Н. Далее, если ширина стержня равна 0,05 м, а толщина - 0,02 м, так что площадь поперечного сечения составляет 0,001 м2, то растягивающее напряжение равно 50 000/0,001 = 50 000 000 Н/м2 = 50 МПа. Растянутый стержень длиннее, чем до приложения растягивающих сил.Рис. 1. РАСТЯНУТЫЙ (а) И СЖАТЫЙ (б) СТЕРЖНИРассмотрим короткий цилиндр (рис. 1,б), на верхний торец которого положен груз. При этом во всех поперечных сечениях цилиндра действуют напряжения сжатия. Если напряжение равномерно распределено по всему сечению, то справедлива формула S = P/A. Сжатый цилиндр короче, чем в отсутствие деформаций. Напряжение сдвига возникает, например, в болте (рис. 2,а), на котором верхним концом держится растянутый стержень AB с грузом 50 000 Н (рис. 1,а). Болт удерживает стержень, действуя с силой 50 000 Н, направленной вверх, на ту часть стержня, которая расположена непосредственно над отверстием в стержне, а стержень в свою очередь давит на среднюю часть болта с силой 50 000 Н. Силы, действующие на болт, приложены так, как показано на рис. 2,б. Если бы болт был сделан из материала с низким пределом прочности на сдвиг, например из свинца, то он был бы срезан по двум вертикальным плоскостям (рис. 2,в). Если же болт стальной и достаточно большого диаметра, то он не срежется, но в двух его вертикальных поперечных сечениях будут существовать напряжения сдвига. Если напряжения сдвига равномерно распределены, то они даются формулой S = P/A. Полная сила сдвига, действующая в каждом из поперечных сечений, равна 25 000 Н, и если диаметр болта равен 0,02 м (площадь поперечного сечения равна приблизительно 0,0003 м2), то напряжение сдвига Ss будет составлять 25 000 Н/0,0003 м2, т.е. немногим более 80 МПа.Рис. 2. НАПРЯЖЕНИЯ СДВИГА В БОЛТЕНапряжения растяжения и сжатия направлены по нормали (т.е. вдоль перпендикуляра) к площадке, в которой они действуют, а напряжение сдвига - параллельно площадке. Поэтому напряжения растяжения и сжатия называются нормальными, а напряжения сдвига - касательными.Деформация. Деформацией называется изменение размера тела под действием приложенных к нему нагрузок. Деформация, отнесенная к полному размеру, называется относительной. Если изменение каждого малого элемента длины тела одинаково, то относительная деформация называется равномерной. Относительную деформацию часто обозначают символом d, а полную - символом D. Если относительная деформация постоянна по всей длине L, то d = D/L. Например, если длина стального стержня до приложения растягивающей нагрузки равна 2,00 м, а после нагружения - 2,0015 м, то полная деформация D равна 0,0015 м, а относительная - d = 0,0015/2,00 = 0,00075 (м/м). Почти для всех материалов, применяемых в строениях и машинах, относительная деформация пропорциональна напряжению, пока оно не превысит т.н. предела пропорциональности. Это очень важное соотношение называется законом Гука. Оно было экспериментально установлено и сформулировано в 1678 английским изобретателем и часовых дел мастером Р.Гуком. Данное соотношение между напряжением и деформацией для любого материала выражается формулой S = Ed, где E - постоянный множитель, характеризующий материал. Этот множитель называют модулем Юнга по имени Т.Юнга, который ввел его в 1802, или же модулем упругости. Из обычных конструкционных материалов наибольший модуль упругости у стали; он равен примерно 200 000 МПа. В стальном стержне относительная деформация, равная 0,00075, из приводившегося ранее примера вызывается напряжением S = Ed = 200 000ґ0,00075 = 150 МПа, что меньше предела пропорциональности конструкционной стали. Если бы стержень был из алюминия с модулем упругости около 70 000 МПа, то, чтобы вызвать ту же самую деформацию 0,00075, достаточно было бы напряжения немногим более 50 МПа. Из сказанного ясно, что упругие деформации в строениях и машинах очень малы. Даже при сравнительно большом напряжении 150 МПа из приведенного выше примера относительная деформация стального стержня не превышает одной тысячной. Столь большая жесткость стали - ее ценное качество. Чтобы наглядно представить деформацию сдвига, рассмотрим, например, прямоугольную призму ABCD (рис. 3). Ее нижний конец жестко заделан в твердое основание. Если на верхнюю часть призмы действует горизонтальная внешняя сила F, она вызывает деформацию сдвига, показанную штриховыми линиями. Смещение D есть полная деформация на длине (высоте) L. Относительная деформация сдвига d равна D/L. Для деформации сдвига тоже выполняется закон Гука при условии, что напряжение не превышает предела пропорциональности для сдвига. Следовательно, Ss = Esd, где Es - модуль сдвига. Для любого материала величина Es меньше E. Для стали она составляет около 2/5 E, т.е. приблизительно 80 000 МПа. Важный случай деформации сдвига - деформация в валах, на которые действуют внешние скручивающие моменты.Рис. 3. ДЕФОРМАЦИЯ СДВИГА определяется как смещение D, отнесенное к исходной высоте L.Выше речь шла об упругих деформациях, которые вызываются напряжениями, не превышающими предела пропорциональности. Если же напряжение выходит за предел пропорциональности, то деформация начинает расти быстрее, чем напряжение. Закон Гука перестает быть справедливым. В случае конструкционной стали в области, лежащей чуть выше предела пропорциональности, небольшое увеличение напряжения приводит к увеличению деформации во много раз по сравнению с деформацией, соответствующей пределу пропорциональности. Напряжение, при котором начинается столь быстрый рост деформации, называется пределом текучести. Материал, в котором разрушению предшествует большая неупругая деформация, называется пластичным.ДОПУСКАЕМЫЕ НАПРЯЖЕНИЯДопускаемое (допустимое) напряжение - это значение напряжения, которое считается предельно приемлемым при вычислении размеров поперечного сечения элемента, рассчитываемого на заданную нагрузку. Можно говорить о допускаемых напряжениях растяжения, сжатия и сдвига. Допускаемые напряжения либо предписываются компетентной инстанцией (скажем, отделом мостов управления железной дороги), либо выбираются конструктором, хорошо знающим свойства материала и условия его применения. Допускаемым напряжением ограничивается максимальное рабочее напряжение конструкции. При проектировании конструкций ставится цель создать конструкцию, которая, будучи надежной, в то же время была бы предельно легкой и экономной. Надежность обеспечивается тем, что каждому элементу придают такие размеры, при которых максимальное рабочее напряжение в нем будет в определенной степени меньше напряжения, вызывающего потерю прочности этим элементом. Потеря прочности не обязательно означает разрушение. Машина или строительная конструкция считается отказавшей, когда она не может удовлетворительно выполнять свою функцию. Деталь из пластичного материала, как правило, теряет прочность, когда напряжение в ней достигает предела текучести, так как при этом из-за слишком большой деформации детали машина или конструкция перестает соответствовать своему назначению. Если же деталь выполнена из хрупкого материала, то она почти не деформируется, и потеря ею прочности совпадает с ее разрушением.Запас прочности. Разность напряжения, при котором материал теряет прочность, и допускаемого напряжения есть тот "запас прочности", который необходимо предусматривать, учитывая возможность случайной перегрузки, неточностей расчета, связанных с упрощающими предположениями и неопределенными условиями, наличия не обнаруженных (или не обнаружимых) дефектов материала и последующего снижения прочности из-за коррозии металла, гниения дерева и пр.Коэффициент запаса. Коэффициент запаса прочности какого-либо элемента конструкции равен отношению предельной нагрузки, вызывающей потерю прочности элемента, к нагрузке, создающей допускаемое напряжение. При этом под потерей прочности понимается не только разрушение элемента, но и появление в нем остаточных деформаций. Поэтому для элемента конструкции, выполненного из пластичного материала, предельным напряжением является предел текучести. В большинстве случаев рабочие напряжения в элементах конструкции пропорциональны нагрузкам, а поэтому коэффициент запаса определяется как отношение предела прочности к допускаемому напряжению (коэффициент запаса по пределу прочности). Так, если предел прочности конструкционной стали равен 540 МПа, а допускаемое напряжение - 180 МПа, то коэффициент запаса равен 3.РАВНОМЕРНОЕ РАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙВ сопротивлении материалов большое внимание уделяется выводу соотношений между заданными нагрузками, размерами и формой элемента конструкции, несущего эти нагрузки или сопротивляющегося им, и напряжениями, возникающими в определенных сечениях элемента конструкции. Как правило, цель расчетов состоит в том, чтобы найти необходимые размеры элемента, при которых максимальное рабочее напряжение в нем не будет превышать допускаемого. В элементарном курсе сопротивления материалов рассматривается ряд типичных случаев равномерного распределения напряжений: растянутые стержни, короткие сжатые стержни, тонкостенные цилиндры, работающие под давлением внутренней среды (котлы и резервуары), заклепочные и сварные соединения, температурные напряжения и такие статически неопределимые системы, как растянутые стержни из нескольких разных материалов. Если напряжение одинаково во всех точках поперечного сечения, то S = P/A. Конструктор находит необходимую площадь поперечного сечения, поделив заданную нагрузку на допускаемое напряжение. Но нужно уметь отличать случаи, в которых напряжение действительно распределено равномерно, от других, сходных случаев, в которых этого нет. Необходимо также (как в задаче о заклепочных соединениях, в которых существуют напряжения и растяжения, и сжатия, и сдвига) находить плоскости, в которых действуют напряжения разного вида, и определять максимальные местные напряжения.Тонкостенный цилиндр. Такой резервуар выходит из строя (разрывается), когда напряжение растяжения в его оболочке становится равным пределу прочности материала. Формулу, связывающую толщину стенки t, внутренний диаметр резервуара D, напряжение S и внутреннее давление R, можно вывести, рассмотрев условия равновесия кольца, вырезанного из его оболочки двумя поперечными плоскостями, разделенными расстоянием L (рис. 4,а). Внутреннее давление действует на внутреннюю поверхность полукольца с направленной вверх силой, равной произведению RDL, а напряжения в двух горизонтальных концевых сечениях полукольца создают две направленные вниз силы, каждая из которых равна tLS. Приравнивая, получаем RDL = 2tLS, откуда S = RD/2t.Рис. 4. ЭЛЕМЕНТ ТОНКОСТЕННОГО ЦИЛИНДРА (а) и двухзаклепочное соединение внахлестку (б). Заклепочное соединение. На рис. 4,б представлено двухзаклепочное соединение двух полос внахлестку. Такое соединение может выйти из строя из-за перерезывания обеих заклепок, разрыва одной из полос в том месте, где она ослаблена отверстием под заклепку, или из-за слишком больших напряжений смятия по площади соприкосновения заклепки с полосой. Напряжение смятия в заклепочном соединении вычисляется как нагрузка на одну заклепку, деленная на диаметр заклепки и на толщину полосы. Допускаемой для такого соединения принимается наименьшая из нагрузок, соответствующих допускаемым напряжениям трех указанных видов. Вообще говоря, напряжение, действующее в поперечном сечении растянутого или короткого сжатого стержня, можно с полным основанием считать равномерно распределенным, если равные и противоположно направленные нагрузки приложены так, что равнодействующая каждой из них проходит через центр тяжести рассматриваемого поперечного сечения. Но нужно иметь в виду, что ряд задач (и к ним относится задача о напряжениях смятия в заклепочном соединении) решается в предположении о равномерном распределении напряжения, хотя это заведомо не соответствует действительности. Допустимость такого подхода проверяется опытным путем.НЕРАВНОМЕРНОЕ РАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙМногие элементы строений и детали машин нагружаются так, что напряжения во всех их поперечных сечениях распределены неравномерно. Чтобы вывести формулы для расчета напряжений в таких условиях, мысленно разрезают элемент плоскостью, которая дает нужное поперечное сечение, на две части и рассматривают условия равновесия одной из них. На эту часть действуют одна или несколько заданных внешних сил, а также силы, эквивалентные напряжениям в данном поперечном сечении. Действующие напряжения должны удовлетворять условиям равновесия и соответствовать деформациям. Эти два требования составляют основу для решения задачи. Второе из них подразумевает справедливость закона Гука. Типичными элементами с неравномерным распределением напряжений являются нагруженные балки, валы под действием скручивающих сил, растянутые или сжатые стержни с дополнительным изгибом и колонны.БАЛКИБалка - это длинный стержень с опорами и нагрузками, работающий в основном на изгиб. Поперечное сечение балки обычно одинаково по всей ее длине. Силы, с которыми опоры действуют на балку, называются реакциями опор. Наиболее распространены два вида балок: консольная (рис. 5,а) и балка с двумя опорами, называемая простой (рис. 5,б). Под действием нагрузок балка прогибается. При этом "волокна" на ее верхней стороне сокращаются, а на нижней - удлиняются. Очевидно, что где-то между верхней и нижней сторонами балки имеется тонкий слой, длина которого не изменяется. Он называется нейтральным слоем. Изменение длины волокна, расположенного между верхней (или нижней) стороной балки и ее нейтральным слоем, пропорционально расстоянию до нейтрального слоя. Если справедлив закон Гука, то напряжения тоже пропорциональны этому расстоянию.Рис. 5. ДВА ТИПА БАЛОК: а - консольная, б - простая. P, P1 и P2 - сосредоточенные нагрузки; R1 и R2 - реакции опор; L - длина.Формула изгиба. На основе указанного распределения напряжений, дополненного условиями статики, выведена т.н. формула изгиба, в которой напряжение выражается через нагрузки и размеры балки. Она обычно представляется в виде S = Mc/I, где S - максимальное напряжение в рассматриваемом поперечном сечении, c - расстояние от нейтрального слоя до наиболее напряженного волокна, M - изгибающий момент, равный сумме моментов всех сил, действующих по одну сторону от этого сечения, а I - момент инерции поперечного сечения (определенная функция формы и размеров последнего). Характер изменения нормальных напряжений в поперечном сечении балки показан на рис. 6.Рис. 6. РАСПРЕДЕЛЕНИЕ НОРМАЛЬНЫХ НАПРЯЖЕНИЙ в поперечном сечении балки. P - нагрузка, R - реакция, W - вес (распределенная нагрузка).В поперечных сечениях балок действуют также касательные напряжения. Их вызывает равнодействующая всех вертикальных сил, приложенных по одну сторону поперечного сечения горизонтальной балки. Сумма всех внешних сил и реакций, действующих на одну из двух частей балки, называется сдвигом в сечении балки и обычно обозначается через V. Касательные напряжения неравномерно распределены по сечению: они равны нулю на верхнем и нижнем краях сечения и почти всегда максимальны в нейтральном слое.Прогиб балки. Часто требуется рассчитать прогиб балки, вызванный действием нагрузки, т.е. вертикальное смещение точки, лежащей в нейтральном слое. Это очень важная задача, поскольку прогиб и кривизну балки нужно знать при решении задач, относящихся к широкому кругу т.н. статически неопределимых систем. Еще в 1757 Л. Эйлер вывел формулу для кривизны изогнутой балки. В этой формуле кривизна балки выражается через переменный изгибающий момент. Чтобы найти ординату упругой кривой (прогиб), необходимо брать двойной интеграл. В 1868 О.Мор (Германия) предложил метод, основанный на эпюрах изгибающих моментов. Этот графоаналитический метод имеет огромное преимущество перед прежними методами, так как позволяет свести все математические вычисления к сравнительно простым арифметическим выкладкам. Он дает возможность вычислять прогиб и наклон в любой точке балки при любой нагрузке.Статически неопределимые балки. Многие балки, используемые в строениях и машинах, имеют более двух опор или только две опоры, но с заделкой одного из концов, исключающей возможность поворота. Такие балки называются статически неопределимыми, поскольку уравнений статики недостаточно для определения реакций в опорах и моментов в заделке. Чаще всего рассматриваются подобные балки трех типов: с одним заделанным (защемленным) концом и одной опорой, с заделанными обоими концами и неразрезные балки, имеющие более двух опор (рис. 7).Рис. 7. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ БАЛКИ: а - с одним заделанным концом; б - с двумя заделанными концами; в - неразрезная трехпролетная. P, P1, P2 - сосредоточенные нагрузки; R - реакция; L1, L2, L3 - длины; W, W1, W2, W3 - веса (распределенные нагрузки).Первое решение задачи о неразрезных балках было опубликовано французским инженером Б. Клапейроном в 1857. Он доказал т. н. теорему о трех моментах. Уравнение трех моментов представляет собой соотношение между изгибающими моментами в трех последовательных опорах одной неразрезной балки. Например, в случае неразрезной балки с равномерной нагрузкой на каждом пролете это уравнение имеет вид MAL1 + 2MB (L1 + L2) + MCL2 = - (W1L13)/4 - (W2L23)/4. Здесь MA, MB и MC - изгибающие моменты в трех опорах, L1 и L2 - длины левого и правого пролетов, W1 - нагрузка на левый пролет, а W2 - нагрузка на правый пролет. Нужно написать такое уравнение для каждой пары смежных пролетов, а затем решить полученную систему уравнений. Если число пролетов равно n, то число уравнений будет равно n - 1. В 1930 Х. Кросс опубликовал свой метод расчета широкого круга статически неопределимых рам и неразрезных балок. Его "метод распределения моментов" позволяет обходиться без решения систем уравнений, сводя все вычисления к сложению и вычитанию чисел.НАПРЯЖЕНИЕ ПРИ КРУЧЕНИИЕсли к концам вала приложены равные, но противоположно направленные внешние скручивающие моменты, то во всех его поперечных сечениях существуют только касательные напряжения, т.е. напряженное состояние в точках скручиваемого стержня представляет собой чистый сдвиг. В круговом поперечном сечении вала деформации сдвига и касательные напряжения равны нулю в центре и максимальны на краю; в промежуточных точках они пропорциональны расстоянию от центра тяжести сечения. Обычная формула для максимального касательного напряжения при кручении такова: S = Tc/J, где T - скручивающий момент на одном конце, c - радиус вала и J - полярный момент сечения. Для круга J = pr4/2. Эта формула применима только в случае кругового поперечного сечения. Формулы для валов с поперечным сечением другой формы выводятся путем решения соответствующих задач методами математической теории упругости с привлечением в некоторых случаях методов экспериментального анализа.СЛОЖНОЕ СОПРОТИВЛЕНИЕНередко приходится рассчитывать балки, на которые в дополнение к поперечным нагрузкам действуют продольные силы растяжения или сжатия, приложенные к концам. В таких случаях напряжение в любой точке поперечного сечения равно алгебраической сумме нормального напряжения, создаваемого продольной нагрузкой, и изгибного напряжения, создаваемого поперечными нагрузками. Общая формула для напряжения в случае совместного действия изгиба и растяжения-сжатия такова: S = ± (P/A) ± (Mc/I), где знак "плюс" относится к растягивающему напряжению.КОЛОННЫКаркасы зданий и фермы мостов состоят в основном из растянутых стержней, балок и колонн. Колонны - это длинные сжатые стержни, примером которых в каркасах зданий могут служить вертикальные стержни, несущие межэтажные перекрытия. Если длина сжатого стержня более чем в 10-15 раз превышает его толщину, то под действием критических нагрузок, приложенных к его концам, он, потеряв устойчивость, изогнется, даже если нагрузки номинально приложены по его оси (продольный изгиб). Вследствие такого изгиба нагрузка оказывается внецентренной. Если эксцентриситет в среднем поперечном сечении колонны равен D, то максимальное сжимающее напряжение в колонне будет равно (P/A) + (PDc/I). Отсюда видно, что допускаемая нагрузка для колонны должна быть меньше, чем для короткого сжатого стержня. Формулу для устойчивости гибких колонн вывел в 1757 Л. Эйлер. Максимальная нагрузка P, которую может нести гибкая колонна высотой L, равна mEA /(L/r)2, где m - постоянный множитель, зависящий от конструкции основания, A - площадь поперечного сечения колонны, а r - наименьший радиус инерции поперечного сечения. Отношение L/r называется гибкостью (при продольном изгибе). Как нетрудно видеть, допускаемая нагрузка быстро убывает с увеличением гибкости колонны. В случае колонн с малой гибкостью формула Эйлера непригодна, и конструкторы вынуждены пользоваться эмпирическими формулами. В строениях часто встречаются внецентренно нагруженные колонны. В результате точного теоретического анализа таких колонн были получены "формулы секанса". Но расчеты по этим формулам весьма трудоемки, а потому часто приходится прибегать к эмпирическим методам, дающим хорошие результаты.СЛОЖНЫЕ НАПРЯЖЕННЫЕ СОСТОЯНИЯНапряжение в какой-либо точке той или иной плоскости нагруженного тела, вычисленное по обычным формулам, не обязательно будет наибольшим в этой точке. Поэтому важное значение имеет вопрос о соотношениях между напряжениями в разных плоскостях, проходящих через одну точку. Такие соотношения являются предметом раздела механики, посвященного сложным напряженным состояниям.Соотношения между напряжениями. Напряженное состояние в некоторой точке любого нагруженного тела можно полностью охарактеризовать, представив напряжения, действующие на грани элементарного куба в этой точке. Часто встречаются случаи, к которым относятся и рассмотренные выше, двухосного (плоского) напряженного состояния с напряжениями, равными нулю, на двух противоположных гранях куба. Напряжения, существующие в точке тела, неодинаковы в плоскостях с разным наклоном. Исходя из основных положений статики, можно сделать ряд важных выводов о соотношении между напряжениями в разных плоскостях. Приведем три из них: 1. Если в некоторой точке заданной плоскости имеется касательное напряжение, то точно такое же напряжение имеется в проходящей через эту точку плоскости, перпендикулярной заданной. 2. Существует плоскость, в которой нормальное напряжение больше, чем в любой другой. 3. В плоскости, перпендикулярной этой плоскости, нормальное напряжение меньше, чем в какой-либо другой. Максимальное и минимальное нормальные напряжения, о которых говорится в п. 2 и 3, называются главными напряжениями, а соответствующие плоскости - главными плоскостями. Необходимость в анализе главных напряжений на основе указанных соотношений не всегда возникает, так как простые формулы, которыми обычно пользуются инженеры, в большинстве случаев дают именно максимальные напряжения. Но в некоторых случаях, например при расчете вала, сопротивляющегося одновременно скручивающему и изгибающему моментам, нельзя обойтись без соотношений для сложного напряженного состояния.БОЛЕЕ СЛОЖНЫЕ ЗАДАЧИВ задачах, о которых говорилось выше, рассматривались напряжения либо равномерно распределенные, либо линейно меняющиеся с удалением от нейтральной оси, где напряжение равно нулю. Однако во многих случаях закон изменения напряжения более сложен. В качестве примера задач с нелинейным распределением напряжений можно привести искривленные балки, толстостенные сосуды, работающие под высоким внутренним или наружным давлением, валы некругового поперечного сечения и нагруженные тела с резкими изменениями поперечного сечения (канавками, буртиками и т.д.). Для таких задач рассчитываются коэффициенты концентрации напряжений. Кроме того, выше речь шла только о статических нагрузках, постепенно прилагаемых и снимаемых. Переменные же и периодически меняющиеся нагрузки, многократно повторенные, могут приводить к потере прочности, даже если они не превышают статического предела прочности рассматриваемого материала. Такие отказы называются усталостными, а проблема их предотвращения приобрела важное значение в наш век машин и механизмов, работающих на необычайно высоких скоростях.См. такжеСТАТИКА;ПРОЧНОСТНОЙ РАСЧЕТ КОНСТРУКЦИИ;КОНСТРУКЦИОННЫЕ И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ.ЛИТЕРАТУРАБеляев Н.М. Сопротивление материалов. М., 1978 Павлов П.А. Механические состояния и прочность материалов. Л., 1980 Биргер И.А., Мавлютов Р.Р. Сопротивление материалов. М., 1986 Писаренко Г.С. и др. Сопротивление материалов. Киев, 1986 Степин П.А. Сопротивление материалов. М., 1988 Бородин Н.А. Сопротивление материалов. М., 1992

Энциклопедия Кольера. — Открытое общество. 2000.

Смотреть что такое "СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ" в других словарях:

dic.academic.ru

лекции, примеры решения задач, книги, справочник по сопротивлению материалов

Что такое сопромат?

Сопромат – это фундаментальная дисциплина о надежности, прочности и жесткости конструкций и машин. Если Вы обучаетесь на инженерной специальности, то нельзя обойти стороной дисциплину сопротивление материалов, поскольку сопромат является связующим звеном между фундаментальными дисциплинами, которые изучают в техническом ВУЗе первые два года, и специальными, связанными с профессией будущего специалиста, поскольку, игнорируя фактор надежности – предмет изучения сопромата, создание новой техники невозможно.

Несмотря на появление современных производительных компьютеров, прецизионных станков, роль изучения "сопротивления материалов" только возросла, поскольку создание новой техники определяется не только скоростью вычислений, но в большей степени творческим потенциалом человека и знаниями, значительная доля которых должна принадлежать сопромату.

Зачем нужен сопромат?

Сопротивление материалов дает представление о процессах, происходящих внутри материала конструкции при испытании им нагрузки, значительная часть которых в сопромате существует в виде гипотез и допущений. Однако это не мешает производить вычисления с инженерной точностью и прогнозировать, выдержит ли материал нагрузку во время эксплуатации. Понимание этих процессов определяет Ваш профессиональный уровень. Обладая знанием сопромата, вы повысите эффективность вашей работы, и если даже вы не будете знать, пригодятся ли ваши наработки, вы будете знать, для чего производите расчет и станете уверенным в том, что конструкция не развалится в течение эксплуатационного периода.

Сопромат и профессия инженера

Сопромат, в отличие от фундаментальных дисциплин (математики, физики, теоретической механики и др.) требует в большей степени не умение использовать сложные расчеты, а творческий, инженерный подход к решению задачи сопротивления материалов, который заключается в умении выбирать достаточную, целесообразную точность, обеспечивающую сочетание надежности конструкции, простоты технологии изготовления и экономичности. Если вы обучаетесь на инженерной специальности, то должны понимать, что инженер должен не только уметь производить вычисления (компьютер справится с этой задачей быстро, точно и без ошибок), а уметь находить наилучшее решение производственной задачи, характеризуемой экономичностью, простотой, технологичностью и надежностью, а хорошей базой является сопромат.

Почему sopromato.ru – лучший сайт о сопромате?

sopromato.ru не перегружен лишней информацией, содержит только важные сведения по сопромату, имеет удобную навигацию, содержит много справочной информации, полезной студентам технических ВУЗов:

Кто ищет, тот всегда находит, а sopromato.ru поможет получить быстрый результат и оказать помощь тем, кто изучает сопромат

sopromato.ru

Сопротивление материалов

1. Общие сведения

Любая машина или конструкция помимо элементов, обеспечивающих своё функциональное назначение, имеет несущие конструкции, обеспечивающие прочность, жесткость и устойчивость (силовой каркас).

Сопротивление материалов – является наукой о прочности, жёсткости и устойчивости элементов конструкции.

1.1. Основные понятия и определения.

Работоспособность детали – это способность выполнять заданные функции, сохраняя эксплуатационные показатели в заданных нормативных пределах.

Работоспособность зависит от свойств материала.

В курсе «сопротивление материалов» рассматриваются три критерия работоспособности:

Прочность – способность детали выдерживать внешние нагрузки без разрушения.

Жесткость – способность детали сопротивляться изменению формы и размеров под действием внешних сил.

Устойчивость – способность конструкции (стержня) сопротивляться изменению формы при осевом сжатии.

1.2. Схематизация внешних нагрузок.

Силы, действующие на тело со стороны других тел, называются внешними нагрузками:

1) Сосредоточенные силы – это силы, действующие на площадку во много раз меньшую, чем вся рассматриваемая поверхность или сила, приложенная к точке.

2) Распределенные нагрузки.

Нагрузка, распределённая по длине (б) .

Для неравномерной нагрузки задаётся закон распределения нагрузки по длине (в) .

Нагрузка, распределенная по поверхности (а) (по площади или объёму )

3) Изгибающий момент.

4) Крутящий момент.

1.3 Схематизация элементов конструкций

Для расчета конструкции ее упрощают, т.е. составляют расчетную схему.

Основными элементами расчетных схем являются:

1) Стержень (брус) – элемент конструкции, длина которого значительно превышает его поперечные размеры.

l >> b, h, d

2) Балка- элемент конструкции (стержень) работающий на изгиб.

3

Ткр

Ткр

) Вал – элемент конструкции (стержень), работающий на кручение.

4) Оболочка – элемент конструкции, длина и ширина которого много больше толщины.

5) Массивное тело – элемент конструкции, размеры которых сопоставимы друг с другом.

1.4. Типы опор, реакции связей

Опоры, подвижные (а), неподвижные (б), защемление (в)

а) б) в)

а) в шарнирно-подвижной опоре возникает только одна составляющая реакции – вертикальная ;

б) в шарнирно-неподвижной опоре возникает две составляющие реакции – вертикальная и горизонтальная;

в) в защемлении возникает три составляющие реакции – вертикальная , горизонтальнаяи реактивный момент.

Реакции опор определяются уравнениями статики.

1.5 Деформация тел

Изменение формы тела или его размеров вследствие воздействия внешних сил или изменения температуры – называется деформацией.

Деформации могут быть упругие (исчезающие полностью после снятия нагрузки) и пластические (не восстанавливают форму и размеры после снятия нагрузки).

1.6. Гипотезы и допущения сопротивления материалов

Для упрощения расчетов, в сопротивлении материалов применяют ряд допущений и гипотез, полученных путём экспериментальных исследований и математического анализа.

1. Гипотеза о сплошном строении тела – предполагает, что материал полностью занимает объём тела, пустоты отсутствуют.

2. Об идеальной упругости материала: материал полностью восстанавливает свою форму и размеры после снятия нагрузки.

3. Гипотеза об однородности и изотропности материала – все частицы материала обладают одинаковыми свойствами, во всех направлениях свойства не меняются.

4. Гипотеза о плоских сечениях: сечения плоские и нормальные к оси бруса до деформации остаются такими же и после приложения нагрузки.

5. Гипотеза о малых перемещениях: перемещения или деформации малы по сравнению с размерами тела и не учитываются в расчётах на прочность.

6. Допущение о линейной зависимости сил и деформаций: деформация считается строго прямо пропорциональной приложенной нагрузке.

7. Принцип суперпозиции (принцип независимости действия сил): при действии на тело нескольких нагрузок приложенных в одной точке, они складываются друг с другом. То же самое происходит и с деформацией.

studfiles.net