Вспоминаем физику: закон сохранения энергии. Закон сохранения энергии автор


Закон сохранения энергии — Циклопедия

Закон сохранения энергии // Первый образовательный телеканал [4:39] 15.04 Закон сохранения полной механической энергии [38:08]

Закон сохранения энергии в физике, принцип, согласно которому полная энергия замкнутой системы сохраняется на протяжении времени. Энергия не возникает из ничего и не исчезает в никуда, а может только превращаться из одной формы в другую. Из-за этого закона невозможны вечные двигатели первого рода. Закон был изобретен независимо для разных видов энергии многими учеными, среди которых Готфрид Лейбниц — для кинетической энергии, Джеймс Джоуль — для внутренней энергии, Джон Пойнтинг — для электромагнитной энергии. Предвосхитивший закон сохранения энергии общий принцип, что материя всегда сохраняется, был сформулирован М. В. Ломоносовым в письме к Л. Эйлеру (5 июля 1748 года).

[править] Закон сохранения механической энергии

В механике закон сохранения энергии утверждает, что в замкнутой системе частиц, полная энергия, которая является суммой кинетической и потенциальной энергии и не зависит от времени, то есть является интегралом движения. Закон сохранения энергии справедлив только для замкнутых систем, то есть при отсутствии внешних полей или взаимодействий.

Силы взаимодействия между телами, для которых выполняется закон сохранения механической энергии называются консервативными силами. Закон сохранения механической энергии не выполняется для сил трения, поскольку при наличии сил трения происходит преобразование механической энергии в тепловую.

[править] Математическая формулировка

Эволюция механической системы материальных точек с массами [math] m_i[/math] по второму закону Ньютона удовлетворяет системе уравнений

[math] m_i\dot{\mathbf{v}_i} = \mathbf{F}_i [/math],

где [math] \mathbf{v}_i [/math] — скорости материальных точек, а [math] \mathbf{F}_i [/math] — силы, действующие на эти точки.

Если подать силы, как сумму потенциальных сил [math] \mathbf{F}_i^p [/math] и непотенциальных сил [math] \mathbf{F}_i^d [/math], а потенциальные силы записать в виде

[math] \mathbf{F}_i^p = - \nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) [/math],

то, домножив все уравнения на [math] \mathbf{v}_i [/math] можно получить

[math] \frac{d}{dt} \sum_i \frac{mv_i^2}{2} = - \sum_i \frac{d\mathbf{r}_i}{dt}\cdot \nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) + \sum_i \frac{d\mathbf{r}_i}{dt} \cdot \mathbf{F}_i^d [/math]

Первая сумма в правой части уравнения является ни чем иным, как производной по времени от сложной функции, а следовательно, если ввести обозначения

[math] E = \sum_i \frac{mv_i^2}{2} + U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) [/math]

и назвать эту величину механической энергией, то, интегрируя уравнения с момента времени t=0 до момента времени t, можно получить

[math] E(t) - E(0) = \int_L \mathbf{F}_i^d \cdot d\mathbf{r}_i[/math],

где интегрирование проводится вдоль траекторий движения материальных точек.

Таким образом, изменение механической энергии системы материальных точек со временем равно работе непотенциальных сил.

Закон сохранения энергии в механике выполняется только для систем, в которых все силы потенциальные[1].

[править] Однородность времени

Закон сохранения энергии связан с однородностью времени, а именно с принципом, согласно которому ни одно мгновение никоим образом не отличается от другого, поэтому одинаковые физические системы при одинаковых условиях всегда эволюционируют одинаково. В этом закон сохранения энергии является частным случаем общей теоремы Нётер.

С точки зрения аналитической механики, однородность времени сводится к утверждению, что механика Лагранжа или Гамильтона классической системы не зависит от времени непосредственно, а только опосредованно, через обобщенные координаты.

[править] Закон сохранения энергии в термодинамике

В термодинамике закон сохранения энергии устанавливает соотношение между внутренней энергией тела, количеством теплоты, переданного телу и проделанной работой.

Термодинамика изучает в основном неподвижные тела, кинетическая и потенциальная энергия которых остается неизменной. Однако, эти тела могут выполнять работу над другими телами, если, например, изменять их температуру. Итак, поскольку нагретое тело может выполнять работу, оно имеет определенную энергию. Эта энергия получила название внутренней энергии. С точки зрения физики микромира — физики атомов и молекул, внутренняя энергия тела является суммой кинетических и потенциальных энергий частиц, из которых это тело состоит. Однако, учитывая большое количество и малые размеры частиц и вообще неизвестные законы их взаимодействия, внутреннюю энергию тела определить трудно, исходя из его строения. Однако очевидно, что она зависит от температуры тела.

Определяющим моментом для установления закона сохранения энергии стало установление эквивалентности между теплом, количественной характеристикой которого является количество теплоты, и механической работой. Если телу предоставить определенное количество теплоты Q, то часть ее пойдет на выполнение механической работы A, а часть на увеличение внутренней энергии тела:

[math] Q = A + \Delta E [/math],

Эта формула составляет основу первого закона термодинамики.

Аналогичным образом при выполнении механической работы, часть энергии теряется в виде тепла, то есть идет на повышение температуры тела и окружающей среды.

В общем суммарный приток энергии в систему должен быть равен суммарному оттоку энергии из системы, плюс изменение энергии тел, из которых состоит сама система. Другими словами, энергия может быть преобразована из одной формы в другую, но не может быть создана или уничтожена.

[править] Уравнение непрерывности

В неизолированных физических системах энергия может переплывать с одной пространственной части системы к другой. В таком случае закон сохранения энергии принимает вид уравнения непрерывности

[math] \frac{dw}{dt} + \text{div}\, \mathbf{J}_E = 0[/math],

где [math] w [/math] — плотность энергии, [math] \mathbf{J}_E [/math] — плотность потока энергии.

Это уравнение означает, что изменение энергии определенного элементарного объема со временем равно разнице между притоком энергии в этот элементарный объем и оттоком энергии из него.

Так выглядит, в частности уравнение теплопроводности.

[править] Преобразование энергии

Энергия одного вида может превращаться в энергию другого вида, например, химическая энергия может превращаться в тепловую, а тепловая энергия в механическую и тому подобное.

В молекуле химического соединения атомы связаны между собой химическими связями. Для того, чтобы разорвать химическую связь нужно затратить определенную энергию, значение которой определяется типом связи. В одних молекулах энергия связи больше, в других меньше. Так, энергия связи в молекуле углекислого газа СО2 больше, чем суммарная энергия атома углерода в угле и атомов кислорода в молекуле кислорода O2. Поэтому возможна химическая реакция горения, в результате которой образуется углекислый газ, а остатки химической энергии передаются поступательному, тепловому движению молекул, то есть превращаются в тепло. Выделенное в результате горения тепло можно использовать, например, для нагрева пара в паровой турбине, которая, вращаясь, создает электродвижущую силу в генераторе, производя электроэнергию. Электроэнергия может, в свою очередь использоваться для выполнения механической работы, например, подъема лифта, или же для освещения, где электрическая энергия превращается в энергию электромагнитных волн — света.

  1. ↑ Хотя сила Лоренца, которая действует на движущиеся электрические заряды не является потенциальной, она не выполняет работы, поэтому в магнитном поле закон сохранения энергии тоже выполняется

cyclowiki.org

Зако́н сохране́ния эне́ргии — фундаментальный закон природы

Дата публикации: 8 февраля 2015

Закон сохранения энергии – фундаментальный закон природы

Содержание этого закона в наиболее краткой формулировке формулируется так : “Энергия любой замкнутой системы при всех процессах, происходящих в системе, остается постоянной. Энергия может только превращаться из одной формы в другую и перераспределяться между частями системы. Для незамкнутой системы увеличение/уменьшение ее энергии равно убыли/возрастанию энергии взаимодействующих с ней тел и физических полей.”

Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени.

Некоторые авторы не согласны с тем, что энергия является скалярной величиной. Ведь энергия — это физическая величина, характеризующая движение материи, а понятие движение очевидно связано с понятием направления. Закон сохранения энергии в современной трактовке ничего не говорит о сохранении направления движения, так как энергия трактуется как скалярная величина. Поскольку энергия является характеристикой движения, то закон сохранения энергии является частным случаем более общего закона сохранения движения, учитывающего не только сохранение количества энергии, но и сохранение направления движения. Именно закон сохранения движения отражает не только вечное существование материи, но и вечное ее движение. Впрочем, наш сайт — не место для научных споров и мы ограничимся наиболее распространенным понятием энергии как скалярной величины.

Закон сохранения энергии говорит, что энергия не создается из ничего и не теряется бесследно. При всех происходящих в природе процессах один вид энергии превращается в другой. Химическая энергия батареек фонарика превращается в электрическую, в лампочке электрическая энергия превращается в тепловую и световую — это простой пример «энергетической цепочки», показывающий как один вид энергии превращается в другой.

Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

Коэффициент полезного действия

На первый взгляд закон сохранения энергии как бы утверждает, что энергия при любых преобразованиях не должна теряться. Но все мы знакомы с понятием коэффициента полезного действия, то есть знаем, что превращение энергии одного вида в другой связано с потерями энергии. Противоречия тут нет, поскольку речь идет о «полезном действии». Когда мы говорим о коэффициенте полезного действия мы всегда, явно или неявно, имеем в виду некоторый процесс преобразования энергии в работу, причем сравниваем при этом количество затраченной энергии с полученной работой. Но коэффициент полезного действия ни одного реального (необратимого) процесса не может быть 100% при преобразовании энергии в работу (этот принцип известен как второй закон термодинамики). Причина в том, что в ходе любого такого процесса имеют место неизбежные потери энергии, в основном на трение и нагревание участвующих в процессе тел. Трение — это в результате тоже нагревание, то есть часть затраченной энергии всегда переходит в теплоту.

Коэффициент полезного действия (КПД) выражают в процентах.

КПД механизма тем больше, чем большая часть потребляемой энергии превращается в необходимую энергию. Например, а среднем автомобиль преобразует лишь 15% химической энергии бензина в кинетическую энергию. Вся остальная энергия превращается в тепло. КПД флуоресцентных ламп выше КПД обычных электрических лампочек, поскольку во флуоресцентных лампах больше электричества превращается в свет и меньше уходит на производство тепла.

Но при описании таких устройств как тепловые насосы мы встречаемся с утверждениями, что их КПД превышает 100%. На первый взгляд может показаться, что тут есть какое-то противоречие с законом сохранения энергии. В действительности же тут просто некорректно используется понятие КПД. Действительно, достоинством тепловых насосов как нагревательной техники является возможность получать больше теплоты, чем расходуется энергии на их работу. Холодильная машина может отвести от охлаждаемого конца больше теплоты, чем затрачивается энергии на организацию процесса. Но для характеристики эффективности теплового насоса нужно применять не КПД, а коэффициент преобразования или отопительный коэффициент СОР (coefficient of performance), равный отношению энергии, отдаваемой потребителю теплоты к мощности, потребляемой компрессором. Поскольку энергия, отдаваемая потребителю перекачивается от источника этой теплоты, значение коэффициэнта преобразования может быть и больше 100%.

Энтропия

Итак, мы видим, что при любом преобразовании энергии в работу количество «полезной» энергии уменьшается, то есть количество энергии для преобразования в работу или теплоту непрерывно уменьшается со временем, так как теплота спонтанно переходит из более теплой области к более холодной. Но первый закон термодинамики гласит, что энергию невозможно создать или уничтожить. Следовательно, количество энергии во вселенной всегда такое же, как было и при ее создании. Другими словами, количество энергии во вселенной остается постоянным, но возможность использования ее для того, чтобы проделать полезную работу, уменьшается при каждой теплопередаче и выполнении работы. Это явление в науке принято характеризовать величиной, которая называется энтропией.

Энтропия — это сокращение доступной энергии вещества в результате передачи энергии. Энтропия используется для измерения уменьшения пригодности энергии в результате процесса.

Термин «энтропия» используется для описания количества хаотичности в любой системе. В термодинамике энтропия указывает расположение молекул вещества или организацию энергии системы. Системы или вещества с высоким значением энтропии более дезорганизованы, чем с низким. Например, у молекул в твердых телах определенная кристаллическая структура, благодаря чему они лучше организованы, и у них ниже значение энтропии. При сообщении телу теплоты и изменении его состояния на жидкое увеличивается уровень его энтропии, так как кинетическая энергия увеличивает колебания молекул, в результате чего их положение становится случайным.

Энтропия увеличивается, когда жидкость изменяет состояние на газообразное при потреблении большего количества тепловой энергии. Такая же аналогия существует при описании порядка источников энергии. Если энергия заключена в ограниченном источнике, у нее низкое значение энтропии. Если она распределена среди большого количества молекул, ее интенсивность уменьшается, увеличивая энтропию. Например, если 1,05 кДж энергии у 1000 молекул передать 1 миллиону молекул, интенсивность энергии уменьшится, а энтропия возрастет.

Энтропию трудно понять, так как это абстрактное понятие беспорядка энергии во вселенной. Этот беспорядок связан с уменьшением пригодности энергии для преобразования в работу. Энергия всегда становится недоступной, если процессы уменьшают ее интенсивность, распространяя ее по вселенной. Если энергия распределена среди бесчисленных молекул вселенной, разница температур самых холодных и самых теплых участков уменьшается. Если разница температур уменьшается, тепловая энергия, которую можно преобразовать в полезную работу, также уменьшается. Следовательно, любой процесс, который производит увеличение энтропии, уменьшает энергию для будущих процессов. В конечном счете наступит момент, когда энтропия вселенной приблизится к максимальному значению, и преобразование теплоты в работу станет невозможным.

Абсолютная энтропия (S) вещества или процесса — это изменение доступной энергии при теплопередаче при данной температуре (Btu/R, Дж/К). Математически энтропия равняется теплопередаче, деленной на абсолютную температуру, при которой происходит процесс. Следовательно, процессы передачи большого количества теплоты больше увеличивают энтропию. Также изменения энтропии увеличатся при передаче теплоты при низкой температуре. Так как абсолютная энтропия касается пригодности всей энергии вселенной, температуру обычно измеряют в абсолютных единицах (R, К).

Удельную энтропию (S) измеряют относительно единицы массы вещества. Температурные единицы, которые используются при вычислении разниц энтропии состояний, часто приводятся с температурными единицами в градусах по Фаренгейту или Цельсию. Так как различия в градусах между шкалами Фаренгейта и Ренкина или Цельсия и Кельвина равные, решение в таких уравнениях будет правильным независимо от того, выражена энтропия в абсолютных или обычных единицах.

Все процессы преобразования энергии в конечном счете увеличивают энтропию вселенной. Вывод отсюда — полезная работа может производиться только до тех пор, пока не иссякли запасы доступной нам энергии.

Вечный двигатель

Люди веками мечтали (некоторые все еще мечтают) создать устройство, способное бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Но согласно закону сохранения энергии, все попытки создать такой двигатель обречены на провал. К выводу о невозможности создания вечного двигателя ученые пришли после того, как многочисленные попытки создать такой двигатель оказались безуспешными.

Проекты вечных двигателей разделяют на два типа по характеру совершаемой работы:

Вечный двигатель первого рода (физический \ механический, гидравлический, магнитный) — непрерывно действующая машина, которая, будучи запущенной один раз, совершает работу без получения энергии извне. Это устройства механического характера, принцип действия которых основывается на использовании некоторых физических явлений, например, на действии силы тяжести, законе Архимеда, капиллярных явлениях в жидкостях. Возможность работы такой машины неограниченное время означала бы получение энергии из ничего.

Вечный двигатель второго рода (естественный) — тепловая машина, которая в результате совершения цикла полностью преобразует в работу тепло, получаемое от какого- либо одного «неисчерпаемого» источника (океана, атмосферы и т. п.). Классический вечный двигатель второго рода предусматривает возможность накопления тепла за счет работы, затраты которой меньше полученного тепла, и использования части этого тепла для повторного совершения работы в новом цикле. Таким образом, должен образоваться избыток работы. Другой вариант этого двигателя подразумевает упорядочение хаотического теплового движения молекул, в результате чего возникает направленное движение вещества, сопровождаемое понижением его термодинамической температуры.

В результате бесконечных попыток создать вечный двигатель были сформулированы так называемые первое и второе начала термодинамики, которые являются следствиями закона сохранения энергии:

Первое начало термодинамики гласит: изменение внутренней энергии термодинамической системы при переходе ее из одного состояния в другое равно сумме работы внешних сил над системой и количества теплоты, переданного системе, и не зависит от способа, которым осуществляется этот переход, т. е. Q = ΔU + A. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Второе начало термодинамики утверждает: невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему. Что также означает, что в замкнутой системе энтропия при любом реальном процессе либо возрастает, либо остается неизменной (т. е. ΔS ≥ 0). Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Несмотря на то, что наука давно и окончательно пришла к выводу о невозможности создания вечного двигателя, существует множество энтузиастов, которые продолжают разрабатывать различные проекты такого рода. Чтобы убедиться в этом, достаточно создать запрос на Youtube.com на тему «вечный двигатель».

altenergiya.ru

Закон сохранения энергии - основа основ

В своей повседневной деятельности человек использует самую разную энергию: тепловую, механическую, ядерную, электромагнитную, и т.д. Однако пока будем рассматривать только одну ее форму – механическую. Тем более что с точки зрения истории развития физики, она начиналась с изучения механического движения, сил и работы. На одном из этапов становления науки был открыт закон сохранения энергии.

При рассмотрении механических явлений используют понятия кинетической и потенциальной энергии. Экспериментально установлено, что энергия не исчезает бесследно, из одного вида она превращается в другой. Можно считать, что сказанное в самом общем виде формулирует закон сохранения механической энергии.

Сначала надо отметить, что в сумме потенциальная и кинетическая энергии тела называются механической энергией. Далее необходимо иметь в виду, что закон сохранения полной механической энергии справедлив при отсутствии внешнего воздействия и дополнительных потерь, вызванных, например, преодолением сил сопротивления. Если какое-то из этих требований нарушено, то при изменении энергии будут происходить ее потери.

Самый простой эксперимент, подтверждающий указанные граничные условия, каждый может провести самостоятельно. Поднимите мячик на высоту и отпустите его. Ударившись об пол, он подскочит и потом опять упадет на пол, и опять подскочит. Но с каждым разом высота его подъема будет меньше и меньше, пока мяч не замрет неподвижно на полу.

Что мы видим в этом опыте? Когда мяч неподвижен и находится на высоте, он обладает только потенциальной энергией. Когда начинается падение, у него появляется скорость, и значит, появляется кинетическая энергия. Но по мере падения высота, с которой началось движение, становится меньше и, соответственно, становится меньше его потенциальная энергия, т.е. она превращается в кинетическую. Если провести расчёты, то выяснится, что значения энергии равны, а это означает, что закон сохранения энергии при таких условиях выполняется.

Однако в подобном примере есть нарушения двух ранее установленных условий. Мяч движется в окружении воздуха и испытывает сопротивление с его стороны, пусть и небольшое. И энергия затрачивается на преодоление сопротивления. Кроме того, мяч сталкивается с полом и отскакивает, т.е. он испытывает внешнее воздействие, а это второе нарушение граничных условий, которые необходимы, чтобы закон сохранения энергии был справедлив.

В конце концов скачки мяча прекратятся, и он остановится. Вся имеющаяся первоначальная энергия окажется потраченной на преодоление сопротивления воздуха и внешнего воздействия. Однако кроме превращения энергии окажется выполненной работа по преодолению сил трения. Это приведёт к нагреванию самого тела. Зачастую величина нагрева не очень значительная, и ее можно определить только при измерении точными приборами, но подобное изменение температуры существует.

Кроме механической, есть и другие виды энергии – световая, электромагнитная, химическая. Однако для всех разновидностей энергии справедливо, что из одного вида возможен переход в другой, и что при таких превращениях суммарная энергия всех видов остаётся постоянной. Это является подтверждением всеобщего характера сохранения энергии.

Здесь надо учесть, что переход энергии может означать и её бесполезную потерю. При механических явлениях свидетельством этого будет нагрев окружающей среды или взаимодействующих поверхностей.

Таким образом, простейшее механическое явление позволило нам определить закон сохранения энергии и граничные условия, обеспечивающие его выполнение. Была установлено, что осуществляется преобразование энергии из имеющегося вида в любой другой, и выявлен всеобщий характер упомянутого закона.

fb.ru

Закон сохранения энергии - GrandKid

Закон сохранения энергии. Важнейшим достижением естествознания фарадеевского периода является установление закона сохранения энергии. Значение этого закона выходит далеко за рамки частного физического закона. Вместе с законом сохранения масс этот закон образует краеугольный камень научного материалистического мировоззрения, выражая факт неуничтожаемости материи и движения. Собственно философские предпосылки для такого утверждения уже имелись налицо. Они были и у античных философов, особенно атомистов, и у Декарта, и особенно конкретно и отчётливо у Ломоносова. Немецкая философия Гегеля внесла идею о превратимости и взаимной связи явлений. Но она представляла мир в извращённом виде и оказала плохую услугу новому закону. Идеалистическая воинствующая направленность немецкой философии против французского материализма, служившего до сих пор теоретической базой естествознания, надолго отбила вкус у естествоиспытателей к философии вообще.

И философский привкус первых работ Майера, Гельмгольца и Кольдинга мешал физикам-практикам разглядеть существо новых идей. Понадобилась гениальная переработка гегелевской диалектики с целью извлечения из неё «рационального зерна» Марксом и Энгельсом, чтобы создать подлинно научную методологию — метод диалектического материализма, о чём мы уже говорили выше. Но в данную эпоху новому, великому обобщению естествознания приходилось пробивать дорогу, преодолевая и установившиеся традиции механического мышления, и противодействие идеалистической реакции. И если новый принцип победил, то это случилось, конечно, прежде всего потому, что он был верен, но также и потому, что созрели материальные предпосылки для установления истины.

В чём же заключались эти материальные предпосылки? Почему не могли восторжествовать в XVIII в. гениальные идеи Ломоносова о теплоте как форме движения? Почему, несмотря на наличие паровых машин, опытов Румфорда, Дэви и Петрова, продолжала существовать ещё старая флюидная теория тепла? Почему, несмотря на почти общепринятость истины о невозможности перпетуум мобиле (см. Л. Карно, С. Карно, Клапейрон), всё же надлежащего обобщающего вывода не было сделано? И только в сороковых годах начало формироваться учение о сохранении и превращении энергии.

Причина заключалась в том, что мануфактурный период в Европе закончился, наступил период промышленного капитализма с его куплей-продажей «свободной» рабочей силы, с его новой технической основой.

Не случайно, что период установления закона сохранения энергии совпал с периодом создания марксистской политической экономии, сорвавшей маску с мистической тайны стоимости, «справедливой» заработной платы, «нормальной» прибыли. То, что было сделано Марксом в сфере общественных отношений, было сделано авторами закона сохранения энергии в сфере естествознания. Но Маркс выяснял общественный характер человеческого труда, его социальную функцию. Работа же как естественно-научная категория стала предметом внимания техников, физиологов и физиков. Смешение этих двух вещей нередко порождает путаницу.

Энгельс в своей известной статье «Мера движения. — Работа», справедливо указывает, что в английском языке существуют два термина для работы: «labor» (труд) и «work» (работа), первый из которых относится к сфере политической экономии, второй — к естествознанию. В русском-языке можно также точно отграничить употребления слов «труд» и «работа». Во всяком случае суть дела заключается в том, что новые производственные отношения поставили вопрос о сравнении и стоимости различных работ, об их эквиваленте. Этот факт ясен даже и для буржуазных историков, науки, как, например, Тэта. Но опять-таки, смешивая социальную функцию труда с физической работой, она затушёвывала хищнический, грабительский характер капиталистического присвоения, толкуя о какой-то-«естественной» мере и стоимости работы. В этом отношении техники и физиологи, занимающиеся опытами по сравнению мощностей живых и механических двигателей, выполняли определённый социальный заказ ( Любопытной иллюстрацией этого «социального заказа» могут служить слова Гельмгольца о поисках перпетуум мобиле в XVIII в. (автоматика) и слова Араго о роли паровой машины. Говоря о знаменитых автоматах XVIII в. (см. гл. X), Гельмгольц замечает:«Было бы непостижимо, что люди, по изобретательности не уступавшие наиболее выдающимся умам нашего столетия, посвятили столько времени и труда, положили бездну остроумия на устройства этих автоматов — для нас не более как детских игрушек, если бы они не верили в возможность истинного успеха». «… И если некоторые механики и не питали надежды вдунуть в свои создания души, одарённые нравственными совершенствами, то, вероятно, многие отказались бы от нравственных: совершенств своих слуг с тем, чтобы лишить их и недостатков, сообщить им исправность механизма, заменить бренность тела выносливостью стали и меди». А вот слова Араго о роли машины Уатта:«Уатт, господа, сотворил от шести до восьми миллионов работников, неутомимых, прилежных, между которыми не бывает ни стачек, ни бунтов и из которых каждый стоил в день только 5 сантимов».Так, ещё на «прекрасной заре» своего восхода капитализм мечтал получить, в свои руки силу, которая вообще бы уничтожила источник его беспокойства — рабочий класс. В эпоху империализма эти тенденции становятся ещё более острыми и неприкрытыми.Характерна, например, реакция на издание «электронного мозга», т. е. электронно-счетных машин, которые якобы признаны заменить умственный труд наподобие того, как обычные машины «заменили» физический труд. Создание заводов-автоматов, управляемых нажатием кнопки, как кажется, приводит к осуществлению «важной мечты» капиталистов. Но опыт истории учит, что развитие техники втягивает вее большие и большие массы людей в сферу общественного производства.). Но, разумеется, и технический прогресс, в первую очередь появление и развитие паровых двигателей, стимулировал такие опыты. Уатт производил эксперимент сравнения производительности лошадей и его машины. Эта производительность оценивалась количеством откачанной с определённой глубины воды за определённое время, т. е. той величиной, которую, в технике называют мощностью. Эти опыты послужили поводом к установлению единицы мощности — «лошадиная сила», которая наряду с килограммом, употребляемым в двух смыслах, представляет и сегодня камень преткновения для понимания учащихся. Таким образом, «мера движения — работа» с железной необходимостью вторгалась в естествознание и технику.

Мы знаем, что уже Галилей в свой термин «момент» или «импето» часто вкладывал смысл произведения силы на путь, что Лейбниц, предлагая свою меру движения — «живую силу», исходил из принципа эквивалентности движений, обладающих одинаковым значением ph. В дальнейшем Л. К а р н о в своём трактате о машинах устанавливает связь между живыми силами и механической работой и предлагает оценивать деятельность машины произведением поднятого груза на высоту. Это произведение К а р н о обозначил, как «действующий момент» (moment d’active). М о н ж называл работу «динамическим эффектом» (effet dinamique). Но уже в 1807 г. Ю н г в своих «Лекциях по натуральной философии» писал: «Почти во всех случаях, встречающихся в практической механике, работа, необходимая для воспроизведения движения, пропорциональна не моменту, а энергии произведенного работой движения». «Словом энергия следует обозначать произведение массы или веса тела на квадрат числа, выражающего скорость».

Наконец, в 1829 г. в трактате «Введение в техническую механику» П о н с е л е (1788—1867) окончательно удерживает по совету К о р и о л и с а термин «работа» и высказывает принцип сохранения энергии в механических процессах: удвоенная алгебраическая сумма работ равна сумме живых сил (mv2), работа или живая сила никогда не получается из ничего и не превращается в ничто, а только преобразуется.

Таким образом, практики нащупали правильную меру движения. Однако в теоретической механике ещё господствовала безнадёжная путаница понятий, связанная в первую очередь со словоупотреблением «сила». А когда термин «сила» стал с различными прилагательными (химическая сила, электрическая сила, жизненная сила и т. п.) применяться в самых разнообразных областях естествознания, то положение еще более осложнилось, и в лабиринте «сил» запутался даже такой мощный ум, как Фарадей. В теоретической механике, наряду с ньютоновским понятием силы и количества движения (импульс), имели хождение величины «живые силы» (mv2), «действие» (mvs или mv2t). В 1828 г. в «Трудах Ирландской академии» вышла знаменитая «Теория системы лучей» Гамильтона, значение которой выявилось только в двадцатых годах нашего века, а в 1834—1835 гг. в тех же «Трудах» появилась его работа «Об общем методе динамики», содержащая мощный принцип Гамильтона. В этих исследованиях устанавливается замечательная аналогия между движением световых волн в среде с переменным показателем преломления и движением частицы в силовом поле. Эта аналогия находит своё выражение в соответствии между принципом Ферма в геометрической оптике и принципом наименьшего действия Мопертюи в механике. Последний принцип был уточнён и обобщён Гамильтоном. Для описания движения Гамильтон вводит новые переменные и новые функции. Из этих последних особенно замечательна «силовая функция», с помощью которой выражаются силы, зависящие только от конфигурации взаимодействующих частиц. Функция Гамильтона для случая стационарных консервативных сил представляет не что иное, как полную энергию системы. То, что мы называем теперь потенциальной, энергией, у Гамильтона обозначается как «сумма сил напряжения», а кинетическая энергия — как «сумма живых сил».

Мы не будем здесь входить в обсуждение по существу замечательных исследований Гамильтона, повторяем, что их оценка и дальнейшее развитие наступили позже. Здесь они нас интересуют как определённый этапа в выработке математических понятий, необходимых для формулировки различных частных случаев принципа энергии. Понятие потенциальной энергии и тесно связанное с ним понятие потенциала (или обратной по знаку силовой функции) принадлежит к числу таких понятий. Но Гамильтон не был пионером в введении этой фундаментальной в математической физике величины. Мы говорили уже об Эйлере, Лагранже, Лапласе и Пуассоне. Здесь мы должны упомянуть о классической работе даровитого пекаря Грина (1793—1841) «Опыт приложения математического анализа в теории электричества и магнетизма», вышедшей в 1828 г. Грин ввёл «потенциальную функцию», установил для неё математические соотношения (формулы Грина, функция Грина) и применил к решению электростатических и магнетостатических задач. Хотя работы Гамильтона и Грина и не привлекли вначале должного внимания, однако новая функция, получившая название «потенциала», в сороковых годах вошла во всеобщее употребление благодаря Гауссу, сочинение которого «Общие теоремы, касающиеся притягательных и отталкивательных сил, действующих обратно пропорционально квадрату расстояния», вышло в 1839 г. в четвёртом томе «Результатов наблюдений магнитного общества», издаваемого Гауссом и Вебером.

Итак, математические абстракции, необходимые для формулирования принципа, к сороковым годам были выработаны, равно как и была завершена его формулировка в механике (теорема живых сил, консервативные силы).

Вернёмся, однако, к тем материальным и общественным предпосылкам, которые стимулировали возникновение нашего принципа. Развитие паротехники в первой трети XIX в. обеспечило дальнейшее победное шествие «его величества пара». Усовершенствование конструкций паровых машин обеспечивало повышение их коэффициента полезного действия и расширяло область их применения. Внедрение парового двигателя в транспорте имело огромное революционизирующее значение. Впервые мысль о применении «силы огня» для передвижения возникла в судоходстве. Мы упоминали уже о лодке Папина, разбитой судовладельцами Касселя. В 1736 г. Джо Г у л ь с взял патент на применение ньюкоменовской машины для движения судна (паровая лодка). Трагически покончил с собой, отчаявшись реализовать своё изобретение, Ф и ч. В его лодке паровая машина приводила в движение вёсла. Фультону пришлось затратить много сил, чтобы убедить людей в практической полезности парохода. Наполеон готовился форсировать Ламанш, когда к нему явился смелый изобретатель со своим проектом. Успех был более чем сомнительный. Наполеон счёл Фультона за шарлатана и выгнал его из кабинета. «Он уверял меня, что можно двигать суда с помощью кипятка», — объяснял свой гнев полководец.

Только в Америке в 1807 г. на реке Гудзон пошёл первый пароход Фультона «Клермонт». В Европе первый пароход пошёл в Шотландии по р. Клайде в 1812 г. Этот пароход был построен знакомым Фультона механиком Беллем. Вначале пароходы применялись только на реках, но затем они появились и на море. С 1838 г. установилось регулярное пароходное сообщение. Первые пароходы были колёсными. Но в 1839 г. шведский изобретатель Э р и к с о н предложил применить винт. Винтовые пароходы начали вытеснять колёсные с тех пор, как в 1843 г. винтовой фрегат «Прайнстон» победил в состязании на скорость знаменитый колёсный пароход «Грет Вестерн» (который был одним из первых пароходов, переплывших Атлантический океан).

Значительно сложнее оказалась задача применения пара в сухопутном транспорте. Тяжесть котла, топлива, воды, самой машины казались почти непреодолимым препятствием. Плохо было изучено трение, и хотя конно-железные дороги в английских копях применялись уже в XVIII в., однако мысль о возможности замены живого двигателя паровой колёсной машиной казалась весьма цесообразной.

Предполагалось, что трение колёс о рельсы будет настолько незначительным, что необходимого «зацепления», создающего движущий момент, не получится. В 1770 г. К ю н ь о сконструировал паровую повозку (рис. 222), которая, вопреки предсказаниям скептиков, пошла, но оказалась трудноуправляемой и налетела на стену.

В Америке энтузиастом паровых «самодвижущихся» экипажей был Оливер Э в а н с (1755—1814), который вполне был уверен в возможности применения машины высокого давления для транспорта. Такую машину он спроектировал в 1786 г., а в следующем году возбудил ходатайство о патенте на паровую повозку. Однако практически реализовать свои идеион смог только в 1801 г., когда ему удалось построить вездеходную землечерпательную машину «амфибию».

В 1805 г. Эванс выпустил «Руководство машиностроителя», в котором излагались его идеи и проекты, в частности идея жаротрубного котла. Но неудачи преследовали изобретателя, в 1819 г. сгорели его мастерские, вскоре за пожаром последовала смерть.

Существенно, что изобретателям паровозов приходилось бороться не только с сопротивлением приверженцев старины, но и с новаторами техники, идущими по другим путям. Уатт был противником паровых экипажей и паровозов; он считал опасным и недопустимым применение машин высокого давления. Его талантливому ученику и помощнику М е р д о х у пришлось строить свою паровую повозку тайком от учителя. Мердоху помогал тринадцатилетний Треветик, ставший убеждённым сторонником нового дела. Нелегко и небезопасно было строить самодвижущиеся экипажи. Взрывы котлов при тогдашнем уровне машиностроительной техники были нередким явлением. «Треветика надо повесить», — говорил Уатт, услыхав о такой аварии. Всё же Треветику удалось построить первый паровоз и доказать возможность его движения по гладкому рельсовому пути. Но заинтересовать промышленников в своём изобретении ему не удалось, и паровоз долго играл роль аттракциона.

Причина неуспеха талантливых изобретателей при всей их убеждённости и настойчивости заключалась не только в инертности общества, но и в крайнем несовершенстве их изобретений. Малопроизводительные котлы не обеспечивали достаточно мощной и непрерывной подачи пара в цилиндр. Сохранился ещё ненужный балансир, не решена была ещё задача непрерывного действия. Наконец, несмотря на опыты Треветика, считалось, что паровоз не в состоянии тянуть повозки с общим весом, превышающим его собственный вес, Предполагалось, что трение колёс паровоза о рельсы такое же, как трение вагонов о рельсы. Поэтому техническая мысль искала путей создания искусственного «упора». Так в 1811 г. Блекинсон взял патент на паровоз с зубчатыми колёсами, движущимися по зубчатой рейке. Этот паровоз был построен М у р р е е м.

Б р у н т о н снабдил паровоз специальными «ногами» — толкачами. Но инженер X е д л е й решил изучить вопрос экспериментально. Его опыты доказали, что трение самодвижущегося экипажа (ведущих колёс) значительно превосходит трение ведомых колес и что можно обеспечить тягу поезда, вес которого будет превышать вес самого паровоза. «Пыхтящий Билли» — паровоз Хедлея — был построен в 1813 г. И всё же при тогдашнем состоянии железнодорожных путей проблема парового транспорта ещё не была решена. Её, решение выпало на долю сына кочегара Джорджа Стефенсона (1781—1848).

Рано начав трудовую жизнь, Стефенсои в 17 лет был уже машинистом при паровой машине в Келлингвортских шахтах. Здесь он имел возможность изучить технику паровых машин, а в дальнейшем и работу железных дорог с применением паровозов. Он пришёл к выводу, что улучшение конструкции паровозов с одновременной реконструкцией рельсовых путей даст необычайный эффект. Ему удалось заинтересовать влиятельных людей и добиться разрешения для постройки железнодорожной линии Стоктон — Дарлингтон. Когда образовалась компания по строительству и эксплуатации этой линии (Пиз, Стефенсон), Стефенсон пророчески указал, что он предвидит в будущем широкое развитие железнодорожного транспорта, указав на его демократичность, на доступность всем слоям общества.

Линия была открыта 25 сентября 1825 г., и эта дата считается начальной в истории железнодорожного сообщения. Линия обслуживалась паровозом Стефенсона («Локомошен № 1»), но одновременно была и конная тяга для пассажирского движения.

Успех первого опыта поставил на очередь вопрос о строительстве новой линии широкого значения. В парламенте было возбуждено ходатайство о строительстве дороги Манчестер — Ливерпуль. Не случайно, что в первую очередь встал вопрос именно об этой трассе. Ливерпуль — это второй после Лондона порт, через который в страну поступала основная масса хлопка, а Манчестер — крупнейший центр хлопчатобумажной промышленности. Несмотря на то что город находился на судоходной реке Мерсей и был соединён с морем каналом, транспорт представлял серьёзное препятствие для его растущей промышленности и торговли. Манчестер был центром так называемого «фритредерства», т. е. движения торговой и промышленной буржуазии за свободу торговли, которому противостояла партия крупных землевладельцев-помещиков, чьи интересы защищали «тори» (консерваторы).

Вокруг нового проекта загорелась ожесточённая борьба. Помещики и лорды всячески сопротивлялись утверждению проекта. В результате новую линию пришлось проводить по крайне неудобным местам, непроходимой болотной топи, через холмы и т. д. Молодая отрасль техники, техника железнодорожного строительства, встретилась с серьёзными препятствиями. Надо было устраивать надёжное основание и насыпи на болотах, прорывать туннели через холмы. К этому прибавлялось ожесточённое противодействие землевладельцев, организовавших нападение на разведывательные и строительные партии. Да и у самих инициаторов строительства ещё не было доверия к паровой тяге и считалось, что тяга останется конной.

Стефенсон взялся изготовить локомотив, который сможет развивать скорость до 30 миль в час. В своём локомотиве он применил жаротрубные котлы, не зная, что аналогичное изобретение было сделано уже Сегеном. На знаменитом соревновании паровозов 1 октября 1829 г. победа осталась за стефенсоновской «Ракетой», которая могла развивать скорость до 35 миль в час. Вопрос о паровой тяге был решёц, и 15 сентября 1830 г. линия Манчестер — Ливерпуль была открыта.

Огромная прибыль, принесенная дорогой за первый год её существования, разрешила все сомнения. Те лорды, которые загоняли новую дорогу в непролазные топи, теперь соглашались пропустить трассу «через свою собственную спальню». Началась железнодорожная горячка. В 1832 г. была построена первая железная дорога во Франции (любопытно, что Араго был противником дорог), в 1835 г. — в Германии. Особенно интенсивно развернулось железнодорожное строительство в США.

В России первая заводская дорога с паровой тягой была построена крепостными Демидова, отцом и сыном Черепановыми, на Урале, в Нижнем Тагиле, протяжённостью в 400 саж. Она была проложена между месторождением медных рудников, находящихся у подошвы горы Высокой, и медеплавильным заводом, расположенным на реке Вые, с целью удешевления доставки сырья к месту производства.

Первый паровоз, построенный отцом Ефимом и сыном Мироном Черепановыми, потерпел неудачу. При его опробировании взорвался котёл. Но это не сломило упорства талантливых железнодорожных мастеров, и в 1834 г. был построен новый паровоз, пущенный в эксплуатацию на упомянутой выше железной дороге. Этот первый паровоз, выстроенный в России, назывался «сухопутный пароход» и «ходил по колёсопроводам», поднимая груз до 3,5 тонн, со скоростью около 15 километров в час. Вскоре Демидовы заказали Мирону Черепанову к постройке второй «сухопутный пароход» увеличенной мощности.

Таким образом, Черепановыми, этими высокоодарёнными русскими новаторами, впервые была построена в России не только железная дорога, но и её подвижной состав.

30 октября 1837 г. была торжественно открыта вторая железнодорожная линия Петербург—Царское село. Это расстояние поезд из 8 вагонов прошёл за тридцать пять минут.

Успехи паротехники и явились одной из основных материальных предпосылок для закона сохранения энергии. Не случайно, что в первой из напечатанных работ Майера фигурирует паровоз в качестве иллюстрации идеи превращения сил, а в его фундаментальной работе 1845 г. находим указание, что паровые машины 1828 г. потребляли топлива при одинаковой мощности в 17 раз меньше первых уаттовских машин.

Серьёзные успехи в физиологии, позволившие отказаться от воззрениям на таинственную «жизненную силу», и введение жизненных процессов в круг обычных естественных процессов явились второй существенной предпосылкой нового закона. Эти успехи стали возможными в результате развития химии и физики, и в первую очередь развития химии горения и калориметрии.

Ещё в начале XIX в., по словам К. А. Тимирязева, «физиология выступала… с сомнением насчёт приложимости к организмам двух основных законов Лавуазье — законов сохранения вещества и постоянства элементов. Совокупностью целого ряда исследований, в которых на первом месте следует поставить труды Сенбье, Соссюра, Бусенго и Либиха, и главным образом тех исследований, которые доказали, что самый важный свой элемент — углерод — растения черпают из воздуха, удалось поставить вне сомнения, что все свои элементы растения заимствуют из троякой среды, их окружающей, — почвы, воды и воздуха. Таким образом выяснилось, что организмы подчиняются основным законам Лавуазье, а также определилась и химическая характеристика растения — в нём вещество неорганическое, минеральное, превращается в органическое».

Это воззрение на организм как на своеобразную химическую лабораторию и подводило вплотную к вопросу о сохранении энергии. Химики уже определяли теплоту химических реакций, и в первую очередь реакцию горения. Уже. в 1840 г. петербургский академик Г е с с мог высказать важное положение касательно теплот, выделяющихся при химических реакциях. Это положение в современной точной формулировке можно выразить так: «Полное количество тепла, выделяющегося при переходе группы А веществ в группу В веществ, не зависит от способа этого перехода, т. е. от рода и числа промежуточных реакций, если только физическое состояние групп А и групп В во всех случаях перехода одно и то же».

Закон можно выразить символически так: QAB = UB — UA, где UAB — количество тепла, выделившегося (или поглотившегося) при переходе от группы веществ А к группе веществ В. Закон Гесса означал, что химики практически уже подошли к формулировке закона сохранения энергии. Вполне понятно, что физиологические исследования послужили толчком к открытию того же закона. «Явления траты и разрушения вещества в организме невольно наводят на размышления о том, что же выигрывает он от этой траты, и приводят нас к рассмотрению второй великой проблемы, поставленной и в значительной мере разрешённой физиологией в минувшем столетии, — к проблеме превращения энергии».

«Творцы этого физического учения, Майер и Гельмгольц, оба были физиологами и отъявленными врагами витализма; для них оно было особенно ценно тем, что не оставляло места для этой таинственной жизненной силы. Все проявления энергии в организме должны быть прослежены до какого-нибудь известного её физического или химического источника; ни одна единица механической работы, ни одна калория, так же как ни один атом вещества, не могут быть созданы этой таинственной силой. Мышечная работа, животная теплота происходят за счёт потенциальной энергии, заключённой органическом веществе, принятом в пищу» (Тимирязев).

Так обстоит дело со второй основной предпосылкой закона.

Наконец, те успехи, которые были достигнуты физиками в доказательстве единства и превратимости сил природы (превращение электричества в тепло и обратно, превращение электричества в магнетизм и обратно), явились третьей основной предпосылкой закона.

Первое место в развитии этой предпосылки бесспорно принадлежит Фарадею. «Старое и неизменное убеждение, что все силы природы зависят друг от друга, имея общее происхождение или, скорее, будучи различными проявлениями одной основной силы, часто заставляло меня думать о возможности доказать на опыте связь между тяжестью и электричеством и, таким образом, ввести первую в группу, цепь которой, включая магнетизм, химическую силу и теплоту, связывает вместе общими отношениями многие различные проявления силы». Такими словами Фарадей начинал серию исследований о связи тяготения с электричеством. Вполне понятно, что при наличии таких мощных предпосылок идея закона носилась в воздухе.

Очень важную роль в развитии учения о превратимоcти сил природы сыграли исследования Ленца, примыкающие в этом отношении к исследованиям Фарадея. Хотя Ленц, также как и Фарадей не формулировал прямо принципа превращения энергии, но его замечательные работы по электричеству имеют явную энергетическую направленность и существенным образом содействовали укреплению закона. Поэтому с полным правом Ленц занимает одно из первых мест в плеяде творцов и укрепителей закона сохранения энергии.

Эмиль Христианович Ленц родился 12 февраля 1804 г. в Дерпте, ныне Тарту. По окончании в 1820 году гимназии Ленц поступил в университет и в связи с тяжелыми семейными обстоятельствами, не расчитывая найти дорогу к светской карьере, стал готовиться к духовной. Однако склонность к естественным наукам победила, и ректор университета Паррот, заметив эту склонность, рекомендовал юношу Ленца на должность физика в кругосветную экспедицию Коцебу 1823 г.

Ленц блестяще оправдал данную ему рекомендацию. Им в содружестве с Парротом были сконструированы приборы: глубомер, для измерения глубинных температур, впоследствии вновь изобретенный В. Томсоном, и батометр — прибор для взятия проб воды, также заново переоткрытый Петтерсоном и Нансеном.

Во время экспедиции Ленц производит океанографические, астрономические, магнитные наблюдения и одновременно пополняет свои знания в области физико-математических наук.

Труды Ленца в экспедиции Коцебу получили высокую оценку. Так, адмирал С. О. Макаров в 1892 г. писал о его океанографических исследованиях: «Наблюдения Ленца не только первые в хронологическом отношении, но первые и в качественном, и я ставлю их выше своих наблюдений и выше наблюдений Челленджора».

Труды Ленца получили высокую оценку и у современников: профессора Петербургского университета Н. П. Щеглова, академиков Паррота, Фусса и Коллиже, по представлению которых 5 мая 1828 г. Ленц избирается адъюнктом по физике. Вскоре Ленц командируется в экспедицию на Кавказ и Крым и производит геофизические и астрономические наблюдения. Из экспедиции он возвращается 23 мая 1830 г. в Петербург, где его ожидает известие о заочном избрании в экстраординарные академики.

Двадцатишестилетний академик достойно ответил на оказанную ему честь. Продолжая заниматься обработкой результатов экспедиций, Ленц вскоре обращается к той области, в которой ему было суждено прославить и себя и русскую науку, — к электричеству.

Получив известие об открытиях Фарадея, Ленц немедленно принялся за тщательное обследование процесса электромагнитной индукции. 7 ноября 1832 года он представил академии доклад: «О законах действия магнита на спираль при внезапном его приближении или удалении и о наивыгоднейшем устройстве спирали для магнито-электрических цепей». В этой работе Ленц закладывает основы баллистического метода, измеряя отброс стрелки мультипликатора, обмотка которого соединена с обмоткой катушки в свою очередь обвивающей якорь магнита, при внезапном отрыве якоря от магнита. Хотя Ленц еще неправильно принимал отброс пропорциональным силе тока, а не количеству электричества, как это есть на самом деле, тем не менее в результате тщательных и продуманных измерений он приходит к важному выводу, о независимости э. д. с. индукции от материала и диаметра провода обмотки, а также о независимости её от диаметра катушки. Очень существенно, что в этой работе Ленц выступает сторонником закона Ома, значение которого, как мы уже указывали, далеко не было оценено современниками. Своими трудами Ленц в немалой степени содействовал укреплению и развитию основоположного в электротехнике закона. Об этом мы скажем далее, при рассмотрении истории развития учения об электричестве.

Через год после названного исследования появилась новая фундаментальная работа Ленца: «Об определении направления гальванических токов, вызванных электродинамической индукцией» (доложена в Академии 29 ноября 1833 г.). В этой работе Ленц, анализируя результаты индукционных и электродинамических опытов Фарадея, Ампера, Де ля Рива, Барлоу и своих собственных, приходит к знаменитому закону, известному под именем «Правила Ленца», которые он здесь формулирует следующим образом: «Если металлический проводник перемещается вблизи тока или магнита, то в нём возникает гальванический ток. Направление этого (возбужденного) тока таково, что покоящийся провод пришёл бы от него в движение прямо противоположное действительному перемещению. Предполагается, что провод может двигаться только в направлении действительного движения или в прямо противоположном направлении».

В 1838 г. Ленц свой закон формулирует следующим образом: «Каждый электромагнитный опыт может быть обращен таким образом, что он приведет к соответствующему магнитоэлектрическому опыту. Для этого нужно только сообщить проводнику гальванического тока каким-либо иным способом то движение, которое он совершит в случае электромагнитного опыта, и тогда в нём возникает ток направления, противоположного направлению тока в электромагнитном опыте».

Исследования Ленца дали Гельмгольцу возможность подтвердить на примере явления электромагнитной индукции (вывод Гельмгольца см. ниже) закон сохранения энергии. Гельмгольц в своем сочинении ссылается на четыре работы Ленца. Кроме уже упомянутых это были исследования о тепловых и химических действиях тока.

В 1838 г. Ленд совместно с Якоби исследует действие электромагнитных машин. Они устанавливают важный факт, что максимальное действие таких машин — двигателей пропорционально площади цинковых электродов. Тем самым, по существу, ими был открыт закон сохранения энергии для случая превращения химической энергии в механическую.

В декабре 1842 г. Ленц приступил к исследованию тепловых действий тока. Результаты исследований были опубликованы в поггендорфовских «Анналах» в 1844 г. Аппарат Ленца представлял собой опрокинутый кверху дном стакан, укрепленный на доске. Отверстие стакана закрывалось стеклянной пробкой, в которую были впаяны две проволочки, служащие для подводки тока к спиральной проволочке, помещенной внутри стакана. В дне стакана имелось отверстие, закрываемое пробкой с термометром. Исследования Ленца показали, что выделяемая теплота пропорциональна квадрату силы тока, сопротивлению проволоки и времени прохождения тока. Это известный ныне закон Джоуля-Ленца является ничем иным, как законом превращения электрического тока в тепло. Ленц показал при этом, что количество выделенного тепла определяется площадью цинковых электродов батареи, т. е. количеством растворённого цинка. Следовательно, и в этом случае Ленц закладывает основы энергетики, электрохимических реакций.

Очень существенно, что Ленцу принадлежит приоритет в открытии принципа обратимости электромагнитных генераторов. Этот принцип по существу уже содержится в его формулировке правила для определения направления индукционного тока. Но Ленц в 1838 г. практически обратил в двигатель магнитоэлектрическую машину Пикси, опередив таким образом на 22 года Пичинотти, и на 35 лет Фонтена, которым обычно приписывается этот приоритет.

Об основоположных работах Ленца по электричеству мы скажем в другом месте. Здесь важно отметить, что Ленц отчетливо указывал на важное энергетическое значение электричества еще в 1839 г. в своей речи на университетском акте. Указав, что основными энергетическими ресурсами являются силы живых существ и теплота, как солнечная (сюда же Ленц относит энергию воды и ветра), так и получаемая от топлива, Ленц обращает внимание на быстрое истощение топливных ресурсов: лесов и ископаемых. «Поэтому обязанностью сознательной и думающей современности является по возможности щадить капитал, на который наши потомки будут иметь то же право, что и мы сами, и, следовательно, обратить свои взоры на другие вспомогательные источники…» И Ленц указывает, что имеется «источник движущей силы — электричество или гальванизм, который действительно дает обоснованную надежду хотя бы частично заменить службу пара». Хотя этот источник также получается за счет горения цинка в элементах, но «металл, растворяющийся в гальваническом элементе, может быть возможно снова выделен без значительных затрат или же найти полезное применение в растворе».

«Если таким образом гальванизм является единственным источником, из которого мы можем черпать механическую силу, то связанные с этим опыты имеют слишком большое значение, для того, чтобы им не были принесены некоторые денежные жертвы и мы с радостью должны отметить, что Россия раньше всех других стран стала на эту возвышенную точку зрения».

Таким образом Ленц ясно представлял энергетическую сущность электрических явлений, но общее эмпирическое направление его творчества помешало ему увидеть в своих опытах великий принцип естествознания.

Обширная и многосторонняя деятельность Ленца: преподавательская, организационная, техническая, отнимала у него здоровье и силы. В 1864 году он получил годичный отпуск для лечения в Рим. Здесь он скоропостижно скончался 10 февраля н. с. 1865 года.

grandkid.ru

Закон сохранения энергии — Традиция

Материал из свободной русской энциклопедии «Традиция»

Закон сохранения энергии — основной закон природы, заключающийся в том, что энергия замкнутой системы сохраняется во времени. Говоря проще, энергия не может возникнуть из ничего и не может в никуда исчезнуть, она может только переходить из одной формы в другую.[1]

Закон сохранения энергии встречается во всех областях жизни, в различных разделах физики и проявляется в сохранении различных её форм. Например, в классической механике закон проявляется в сохранении механической энергии (суммы потенциальной и кинетической энергий). В термодинамике закон сохранения энергии называется первым началом термодинамики и говорит о сохранении энергии в сумме с тепловой энергией.

Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую закономерность в природе во всех явлениях, то правильнее называть его не законом, а принципом сохранения энергии.

Частный случай — Закон сохранения механической энергии — механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии сил типа трения (диссипативных сил) механическая энергия не возникает из ничего и не может никуда исчезнуть.

Ек1+Еп1=Ек2+Еп2

Закон сохранения энергии — это интегральный закон. Это значит, что он складывается из действия дифференциальных законов и является свойством их совокупного действия. Например, иногда говорят, что невозможность создать вечный двигатель обусловлена законом сохранения энергии. Но это не так. На самом деле, в каждом проекте вечного двигателя срабатывает один из дифференциальных законов и именно он делает двигатель неработоспособным. Закон сохранения энергии просто обобщает этот факт.

Сократ о законе сохранения энергии[править]

"Ничего не возникает из ничего и не исчезает в никуда".

Ломоносов о законе сохранения энергии[править]

"Ежели где-то что-то убыло, то где-то что-то прибыть должно непременно".

Эйнштейн о релятивистском законе сохранения энергии[править]

"Дорелятивистская физика знала два фундаментальных закона сохранения, а именно: закон сохранения энергии и закон сохранения массы; оба эти фундаментальных закона считались совершенно независимыми друг от друга. Теория относительности слила их в один".

Эйнштейн А. Собрание научных трудов. том 1. М. 1965 г. стр. 553.

Согласно теореме Нётер, закон сохранения механической энергии является следствием однородности времени.[2]

traditio.wiki

описание и примеры :: SYL.ru

Потенциальная энергия - это, скорее, абстрактная величина, ведь любой предмет, который имеет некоторую высоту над поверхностью Земли, уже будет обладать определенным количеством потенциальной энергии. Она рассчитывается путем умножения скорости свободного падения на высоту над Землей, а также на массу. Если же тело двигается, можно говорить о наличии кинетической энергии.

Формула и описание закона

Результат сложения кинетической и потенциальной энергии в закрытой от внешнего воздействия системе, части которой взаимодействуют благодаря силам упругости и тяготения, не изменяется – так звучит закон сохранения энергии в классической механике. Формула данного закона выглядит так: Ек1+Еп1=Ек2+Еп2. Здесь Ек1 является кинетической энергией определенного физического тела в конкретный момент времени, а Еп1 – потенциальной. То же самое верно и для Ек2 и Еп2, но уже в следующий временной промежуток. Но этот закон верен только в том случае, если система, в которой он действует, является замкнутой (или консервативной). Это говорит о том, что значение полной механической энергии не изменяется, когда на систему действуют лишь консервативные силы. Когда в действие вступают неконсервативные силы, часть энергии изменяется, принимая другие формы. Такие системы получили название диссипативных. Закон сохранения энергии работает, когда силы извне никак не действуют на тело.

Пример проявления закона

Одним из типичных примеров, иллюстрирующих описанный закон, служит проведение опыта с шариком из стали, который падает на плиту из этого же вещества или на стеклянную, отскакивая от нее примерно на ту же высоту, где он находился до момента падения. Данный эффект достигается за счет того, что когда предмет движется, энергия преобразуется несколько раз. Первоначально значение потенциальной энергии начинает стремиться к нулю, в то время как кинетическая увеличивается, но после столкновения она становится потенциальной энергией упругой деформации шара.

Это продолжается до момента полной остановки предмета, в который он начинает свое движение вверх за счет сил упругой деформации как плиты, так и упавшего предмета. Но при этом в дело вступает потенциальная энергия тяготения. Так как шарик при этом понимается примерно на ту же высоту, с которой он и упал, кинетическая энергия в нем одна и та же. Кроме этого, сумма всех энергий, действующих на движущийся предмет, остается одинаковой во время всего описанного процесса, подтверждая закон сохранения полной механической энергии.

Упругая деформация – что это?

Для того чтобы полностью понять приведенный пример, стоит более подробно разобраться с тем, что такое потенциальная энергия упругого тела – это понятие означает обладание упругостью, позволяющей при деформации всех частей данной системы вернуться в состояние покоя, совершая некоторую работу над телами, с которыми соприкасается физический объект. На работу сил упругости не влияет форма траектории движения, так как работа, совершаемая за счет них, зависит лишь от положения тела в начале и в конце движения.

Когда действуют внешние силы

Но закон сохранения не распространяется на реальные процессы, в которых участвует сила трения. В пример можно привести падающий на землю предмет. Во время столкновения кинетическая энергия и сила сопротивления возрастают. Этот процесс не вписывается в рамки механики, так как из-за возрастающего сопротивления повышается температура тела. Из вышесказанного следует вывод о том, что закон сохранения энергии в механике имеет серьезные ограничения.

Термодинамика

Первый закон термодинамики гласит: разность между количеством теплоты, накапливаемой благодаря работе, совершаемой над внешними объектами, равна изменению внутренней энергии данной неконсервативной термодинамической системы.

Но это утверждение чаще всего формулируется в другом виде: количество теплоты, полученное термодинамической системой, тратится на работу, совершаемую над объектами, находящимися вне системы, а также на изменение количества энергии внутри системы. Согласно данному закону, она не может исчезнуть, превращаясь из одной формы в другую. Из этого следует вывод о том, что создание машины, не потребляющей энергии (так называемого вечного двигателя), невозможно, так как система будет нуждаться в энергии извне. Но многие все же настойчиво пытались создать ее, не учитывая закон сохранения энергии.

Пример проявления закона сохранения в термодинамике

Опыты показывают, что термодинамические процессы невозможно обратить вспять. Примером тому может служить соприкосновение тел, имеющих различную температуру, при котором более нагретое будет отдавать тепло, а второе - принимать его. Обратный же процесс невозможен в принципе. Другим примером является переход газа из одной части сосуда в другую после открытия между ними перегородки, при условии что вторая часть пуста. Вещество в данном случае никогда не начнет движение в обратном направлении самопроизвольно. Из вышесказанного следует, что любая термодинамическая система стремится к состоянию покоя, при котором ее отдельные части находятся в равновесии и имеют одинаковую температуру и давление.

Гидродинамика

Применение закона сохранения в гидродинамических процессах выражается в принципе, описанном Бернулли. Он звучит так: сумма давления как кинестетической, так и потенциальной энергии на единицу объема одна и та же в любой отдельно взятой точке потока жидкости или газа. Это значит, что для измерения скорости потока достаточно измерить давление в двух точках. Делается это, как правило, манометром. Но закон Бернулли справедлив только в том случае, если рассматриваемая жидкость имеет вязкость, которая равна нулю. Для того чтобы описать течение реальных жидкостей, используется интеграл Бернулли, предполагающий добавление слагаемых, которые учитывают сопротивление.

Электродинамика

Во время электризации двух тел количество электронов в них остается неизменным, из-за чего положительный заряд одного тела равен по модулю отрицательному заряду другого. Таким образом, закон сохранения электрического заряда говорит о том, что в электрически изолированной системе сумма зарядов ее тел не изменяется. Это утверждение верно и тогда, когда заряженные частицы испытывают превращения. Таким образом, когда сталкиваются 2 нейтрально заряженные частицы, сумма их зарядов все равно остается равной нулю, так как вместе с отрицательно заряженной частицей появляется и положительно заряженная.

Заключение

Закон сохранения механической энергии, импульса и момента – фундаментальные физические законы, связанные с однородностью времени и его изотропностью. Они не ограничены рамками механики и применимы как к процессам, происходящим в космическом пространстве, так и к квантовым явлениям. Законы сохранения позволяют получать данные о различных механических процессах без их изучения при помощи уравнений движения. Если какой-то процесс в теории игнорирует данные принципы, то проводить опыты в таком случае бессмысленно, так как они будут нерезультативными.

www.syl.ru

Закон сохранения энергии | Физика

В общем случае тело обладает одновременно как кинетической, так и потенциальной энергией. Их сумму называют полной механической энергией:

   E = Eк + Eп      (15.1)

Это понятие было введено в 1847 г. 26-летним немецким ученым Г. Гельмгольцем.

Что происходит с полной механической энергией по мере движения тела? Чтобы выяснить это, рассмотрим простое явление.

Бросим вертикально вверх мяч. Придав мячу скорость, мы тем самым сообщим ему некоторую кинетическую энергию. По мере движения мяча вверх его движение будет замедляться притяжением Земли и скорость, а вместе с ней и кинетическая энергия мяча будут становиться все меньше и меньше. Потенциальная же энергия мяча вместе с высотой h будет при этом возрастать. В высшей точке траектории (на максимальной высоте) потенциальная энергия мяча достигнет своего наибольшего значения, а кинетическая энергия окажется равной нулю. После этого мяч начнет падать вниз, постепенно набирая скорость. Кинетическая энергия при этом начнет увеличиваться, а потенциальная энергия (из-за уменьшения высоты) — убывать. В момент удара о землю кинетическая энергия мяча достигнет максимального значения, а потенциальная энергия обратится в нуль.

Итак, когда кинетическая энергия тела уменьшается, потенциальная энергия возрастает, и наоборот, когда кинетическая энергия тела увеличивается, его потенциальная энергия убывает. Изучение свободного падения тела (в отсутствие сопротивления воздуха) показывает, что всякое уменьшение одного из этих видов энергии сопровождается равным увеличением другого вида энергии. Полная же механическая энергия тела при этом сохраняется. В этом состоит закон сохранения механической энергии:

Полная механическая энергия тела, на которое не действуют силы трения и сопротивления, в процессе его движения остается неизменной.

Если обозначить начальную и конечную энергии тела через E и E', то закон сохранения энергии можно выразить в виде следующего равенства:

   E' = E.        (15.2)

Предположим, что свободно движущееся тело в начальный момент времени находилось на высоте h0 и имело при этом скорость v0. Тогда его полная механическая энергия в этот момент времени была равнаЕсли спустя некоторое время рассматриваемое тело окажется на высоте h, имея скорость v (рис. 28), то его полная механическая энергия станет равнойСогласно закону сохранения энергии, оба эти значения энергии должны совпадать. ПоэтомуЕсли начальные значения h0 и v0 известны, то это уравнение позволяет найти скорость тела v на высоте h или, наоборот, высоту h, на которой тело будет иметь заданную скорость v. Масса тела при этом никакой роли играть не будет, так как в уравнении (15.5) она сокращается.Следует помнить, что полная механическая энергия сохраняется лишь тогда, когда отсутствуют силы трения и сопротивления. Если же эти силы присутствуют, то их действие приводит к уменьшению механической энергии.

1. Что называют полной механической энергией? 2. Сформулируйте закон сохранения механической энергии. 3. С какой энергией — кинетической или потенциальной — совпадает полная механическая энергия свободно падающего тела в момент удара о землю? 4. С какой энергией совпадает полная механическая энергия брошенного вертикально вверх мяча в момент, когда он оказывается в высшей точке своего полета? 5. Что происходит с полной механической энергией тела при наличии сил трения и сопротивления?

phscs.ru