Способы пуска асинхронного трехфазного двигателя от однофазной сети. Запуск двигателя трехфазного двигателя


Трехфазный двигатель в однофазной сети. Схема подключения трехфазного двигателя

Бывают в жизни ситуации, когда нужно включить какое-то промышленное оборудование в обычную домашнюю сеть электропитания. Тут же возникает проблема с числом проводов. У машин, предназначенных для эксплуатации на предприятиях, выводов, как правило, три, а бывает и четыре. Что с ними делать, куда их подключать? Те, кто пытался испробовать различные варианты, убедились, что моторы просто так крутиться не хотят. Возможно ли вообще однофазное подключение трехфазного двигателя? Да, добиться вращения можно. К сожалению, в этом случае неизбежно падение мощности почти вдвое, но в некоторых ситуациях это – единственный выход.трехфазный двигатель в однофазной сети

Для того чтобы понять, как подключить трехфазный двигатель к обычной розетке, следует разобраться, как соотносятся напряжения в промышленной сети. Общеизвестны величины напряжений – 220 и 380 Вольт. Раньше еще было 127 В, но в пятидесятые годы от этого параметра отказались в пользу более высокого. Откуда взялись эти «волшебные цифры»? Почему не 100, или 200, или 300? Вроде бы круглые цифры считать легче.

Большая часть промышленного электрооборудования рассчитана на подключение к трехфазной сети переменного тока. Напряжение каждой из фаз по отношению к нейтральному проводу составляет 220 Вольт, совсем как в домашней розетке. Откуда же берутся 380 В? Это очень просто, достаточно рассмотреть равнобедренный треугольник с углами в 60, 30 и 30 градусов, который представляет собой векторная диаграмма напряжений. Длина самой длинной стороны будет равна длине бедра, умноженной на cos 30°. После нехитрых подсчетов можно убедиться, что 220 х cos 30°= 380.однофазное подключение трехфазного двигателя

Устройство трехфазного двигателя

Не все типы промышленных двигателей могут работать от одной фазы. Самые распространенные из них – «рабочие лошадки», составляющие большинство электромашин на любом предприятии – асинхронные машины мощностью в 1 – 1,5 кВА. Как работает такой трехфазный двигатель в трехфазной сети, для которой он предназначен?

Изобретателем этого революционного устройства стал русский ученый Михаил Осипович Доливо-Добровольский. Этот выдающийся электротехник был сторонником теории трехфазной питающей сети, которая в наше время стала главенствующей. Асинхронный двигатель трехфазный работает по принципу индукции токов от обмоток статора на замкнутые проводники ротора. В результате их протекания по короткозамкнутым обмоткам в каждой из них возникает магнитное поле, вступающее во взаимодействие с силовыми линиями статора. Так получается вращающий момент, приводящий к круговому движению оси двигателя.

Обмотки расположены под углом 120°, таким образом, вращающееся поле, создаваемое каждой из фаз, последовательно толкает каждую намагничиваемую сторону ротора.как подключить трехфазный двигатель

Треугольник или звезда?

Трехфазный двигатель в трехфазной сети может включаться двумя способами – с участием нейтрального провода или без него. Первый способ называется «звезда», в этом случае каждая из обмоток находится под фазным напряжением (между фазой и нулем), равным в наших условиях 220 В. Схема подключения трехфазного двигателя «треугольником» предполагает последовательное соединение трех обмоток и подачу линейного (380 В) напряжения на узлы коммутации. Во втором случае двигатель будет выдавать большую примерно в полтора раза мощность.

Как включить мотор в обратном направлении?

Управление трехфазным двигателем может предполагать необходимость изменения направления вращения на противоположное, то есть реверс. Чтобы этого добиться, нужно просто поменять местами два провода из трех.

Для удобства изменения схемы в клеммной коробке двигателя предусмотрены перемычки, выполненные, как правило, из меди. Для включения «звездой» нежно соединить три выходных провода обмоток вместе. «Треугольник» получается немного сложнее, но и с ним справится любой электрик средней квалификации.схема подключения трехфазного двигателя

Фазосдвигающие емкости

Итак, порой возникает вопрос о том, как подключить трехфазный двигатель в обычную домашнюю розетку. Если просто попробовать подсоединить к вилке два провода, он вращаться не станет. Для того чтобы дело пошло, нужно сымитировать фазу, сдвинув подаваемое напряжение на какой-то угол (желательно 120°). Добиться этого эффекта можно, если применить фазосдвигающий элемент. Теоретически это может быть и индуктивность, и даже сопротивление, но чаще всего трехфазный двигатель в однофазной сети включается с использованием электрических емкостей (конденсаторов), обозначаемых на схемах латинской буквой С.трехфазный двигатель в трехфазной сети

Что касается применений дросселей, то оно затруднено по причине сложности определения их значения (если оно не указано на корпусе прибора). Для замера величины L требуется специальный прибор или собранная для этого схема. К тому же выбор доступных дросселей, как правило, ограничен. Впрочем, экспериментально любой фазосдвигающий элемент подобрать можно, но это дело хлопотное.асинхронный двигатель трехфазный

Что происходит при включении двигателя? На одну из точек соединения подается ноль, на другую – фаза, а на третью - некое напряжение, сдвинутое на некоторый угол относительно фазы. Понятно и неспециалисту, что работа двигателя не будет полноценной в отношении механической мощности на валу, но в некоторых случаях достаточно самого факта вращения. Однако уже при запуске могут возникать некоторые проблемы, например, отсутствие начального момента, способного сдвинуть ротор с места. Что делать в этом случае?

Пусковой конденсатор

В момент пуска валу требуются дополнительные усилия для преодоления сил инерции и трения покоя. Чтобы увеличить момент вращения, следует установить дополнительный конденсатор, подключаемый к схеме только в момент старта, а затем отключающийся. Для этих целей лучшим вариантом является применение замыкающей кнопки без фиксации положения. Схема подключения трехфазного двигателя со стартовым конденсатором приведена ниже, она проста и понятна. В момент подачи напряжения следует нажать на кнопку «Пуск», и пусковой конденсатор создаст дополнительной сдвиг фазы. После того как двигатель раскрутится до нужных оборотов, кнопку можно (и даже нужно) отпустить, и в схеме останется только рабочая емкость. схема трехфазного двигателя

Расчет величины емкостей

Итак, мы выяснили, что для того, чтобы включить трехфазный двигатель в однофазной сети, требуется дополнительная схема подключения, в которую, помимо пусковой кнопки, входят два конденсатора. Их величину нужно знать, иначе работать система не будет. Для начала определим величину электрической емкости, необходимую для того, чтобы заставить ротор тронуться с места. При параллельном включении она представляет собой сумму:

С = С ст + Ср, где:

С ст – стартовая дополнительная отключаемая после разбега емкость;

С р – рабочий конденсатор, обеспечивающий вращение.

Еще нам потребуется величина номинального тока I н (она указана на табличке, прикрепленной к двигателю на заводе-изготовителе). Этот параметр также можно определить с помощью нехитрой формулы:

I н = P / (3 х U), где:

U – напряжение, при подключении «звездой» - 220 В, а если «треугольник», то 380 В;

P – мощность трехфазного двигателя, ее иногда в случае утери таблички определяют на глаз.

Итак, зависимости требуемой рабочей мощности вычисляются по формулам:

С р = Ср = 2800 I н / U – для «звезды»;

С р = 4800 I н / U – для «треугольника»;

Пусковой конденсатор должен быть больше рабочего в 2-3 раза. Единица измерения – микрофарады.

Есть и совсем уж простой способ вычисления емкости: C = P /10, но эта формула скорее дает порядок цифры, чем ее значение. Впрочем, повозиться в любом случае придется.

Почему нужна подгонка

Метод расчета, приведенный выше, является приблизительным. Во-первых, номинальное значение, указанное на корпусе электрической емкости, может существенно отличаться от фактического. Во-вторых, бумажные конденсаторы (вообще говоря, вещь недешевая) часто используются бывшие в употреблении, и они, как всякие прочие предметы, подвержены старению, что приводит к еще большему отклонению от указанного параметра. В-третьих, ток, который будет потребляться двигателем, зависит от величины механической нагрузки на валу, а потому оценить его можно только экспериментально. Как это сделать?

Здесь потребуется немного терпения. В результате может получиться довольно объемный набор конденсаторов, соединенных параллельно и последовательно. Главное – после окончания работы все хорошенько закрепить, чтобы не отваливались припаянные концы от вибраций, исходящих от мотора. А потом не лишним будет еще раз проанализировать результат и, возможно, упростить конструкцию.

Составление батареи емкостей

Если в распоряжении у мастера нет специальных электролитических клещей, позволяющий замерять ток без размыкания цепей, то следует подключить амперметр последовательно к каждому проводу, который входит в трехфазный двигатель. В однофазной сети будет протекать суммарное значение, а подбором конденсаторов следует стремиться к наиболее равномерной загрузке обмоток. При этом следует помнить о том, что при последовательном подключении общая емкость уменьшается по закону:

1/С = 1/С1 + 1/С2… и так далее, а при параллельном – наоборот, складывается.

Также необходимо не забывать и о таком важном параметре, как напряжение, на которое рассчитан конденсатор. Оно должно быть не менее номинального значения сети, а лучше с запасом.мощность трехфазного двигателя

Разрядный резистор

Схема трехфазного двигателя, включенного между одной фазой и нейтральным проводом, иногда дополняется сопротивлением. Оно служит для того, чтобы на стартовом конденсаторе не накапливался заряд, остающийся после того, как машина уже выключена. Эта энергия может вызвать электрический удар, не опасный, но крайне неприятный. Для того чтобы обезопасить себя, следует параллельно с пусковой емкостью соединить резистор (у электриков это называется «зашунтировать»). Величина его сопротивления большая – от половины мегома до мегома, а по размерам он невелик, поэтому довольно и полуваттной мощности. Впрочем, если пользователь не боится быть «ущипнутым», то без этой детали вполне можно и обойтись.

Использование электролитов

Как уже отмечалось, пленочные или бумажные электрические емкости дорогие, и прибрести их не так просто, как хотелось бы. Можно произвести однофазное подключение трехфазного двигателя с использованием недорогих и доступных электролитических конденсаторов. При этом совсем уж дешевыми они тоже не будут, так как должны выдерживать 300 Вольт постоянного тока. Для безопасности их следует зашунтировать полупроводниковыми диодами (Д 245 или Д 248, например), но нелишним будет помнить о том, что при пробитии этих приборов переменное напряжение попадет на электролит, и он сперва сильно нагреется, а потом взорвется, громко и эффектно. Поэтому без крайней необходимости лучше все же использовать конденсаторы бумажного типа, работающие под напряжением хоть постоянным, хоть переменным. Некоторые мастера вполне допускают применение электролитов в пусковых цепях. В силу кратковременного воздействия на них переменного напряжения, они могут и не успеть взорваться. Лучше не экспериментировать.

Если нет конденсаторов

Где обычные граждане, не имеющие доступа к пользующимся спросом электрическим и электронным деталям, их приобретают? На барахолках и «блошиных рынках». Там они лежат, заботливо выпаянные чьими-то (обычно пожилыми) руками из старых стиральных машин, телевизоров и прочей вышедшей из обихода и строя бытовой и промышленной техники. Просят за эти изделия советского производства немало: продавцы знают, что если деталь нужна, то ее купят, а если нет – и даром не возьмут. Бывает, что как раз самого необходимого (в данном случае конденсатора) как раз и нет. И что же делать? Не беда! Сойдут и резисторы, только нужны мощные, желательно керамические и остеклованные. Конечно, идеальное сопротивление (активное) фазу не сдвигает, но в этом мире ничего нет идеального, и в нашем случае это хорошо. Каждое физическое тело обладает собственной индуктивностью, электрической мощностью и резистивностью, будь оно крошечной пылинкой или огромной горой. Включение трехфазного двигателя в розетку становится возможным, если на вышеприведенных схемах заменить конденсатор сопротивлением, номинал которого вычисляется по формуле:

R = (0,86 x U) / kI, где:

kI - величина тока при трехфазном подключении, А;

U – наши верные 220 Вольт.

Какие двигатели подойдут?

Перед тем как приобретать за немалые деньги мотор, который рачительный хозяин собирается использовать в качестве привода для точильного круга, циркулярной пилы, сверлильного станка или другого какого-либо полезного домашнего устройства, не помешает подумать о его применимости для этих целей. Не каждый трехфазный двигатель в однофазной сети вообще сможет работать. Например, серию МА (у него короткозамкнутый ротор с двойной клеткой) следует исключить, дабы не пришлось тащить домой немалый и бесполезный вес. Вообще, лучше всего сначала поэкспериментировать или пригласить опытного человека, электромеханика, например, и посоветоваться с ним перед покупкой. Вполне подойдет асинхронный двигатель трехфазный серии УАД, АПН, АО2, АО и, конечно же, А. Эти индексы указаны на заводских табличках.

fb.ru

Подключение трехфазного двигателя

Подключение трехфазного двигателя к трехфазной сети

Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

Схемы подключения

Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

Подключение трехфазного двигателя к трехфазной сети

Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.

Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

Подключение трехфазного двигателя к трехфазной сети

В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

Использование схемы «звезда-треугольник»

Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

Подключение трехфазного двигателя к трехфазной сети

Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей, устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

Трехфазный двигатель с магнитным пускателем

Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

Подключение трехфазного двигателя к трехфазной сети

Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.

Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

Подключение трехфазного двигателя к однофазной сети

Довольно часто возникает необходимость в нестандартном подключении какого-либо электроприбора, применительно к конкретным условиям. Среди возможных вариантов следует выделить подключение трехфазного двигателя к однофазной сети, широко применяемое в бытовых условиях. Данная схема вполне оправдывает себя, несмотря на некоторое снижение мощности подключаемого оборудования.

Подключение трехфазного двигателя к однофазной сети через конденсатор

Подключить трехфазный двигатель к сети с напряжением 220 вольт довольно просто. В стандартной ситуации, в каждой фазе имеется собственная синусоида. Между ними существует фазовый сдвиг, составляющий 120 градусов. За счет этого обеспечивается плавное вращение в статоре электромагнитного поля.

Подключение трехфазного двигателя к однофазной сети

Каждая волна обладает амплитудой 220 вольт, что и дает возможность подключения трехфазного двигателя к обычной сети. Получение трех синусоид из одной фазы происходит с помощью обычного конденсатора, при условии соединения обмоток двигателя треугольником. Объединенные в единое кольцо, они позволяют получать сдвиг по фазе в 45 и 90 градусов, вполне достаточный для не слишком активной работы вала.

Применение конденсатора позволяет достичь мощности двигателя при одной фазе примерно 50-60% от этого же показателя для трех фаз. Однако данная схема подходит не ко всем электродвигателям, поэтому следует выбирать наиболее подходящую модель, например, серии АПН, АО, А, АО2 и другие.

Одним из условий использования конденсатора является необходимость изменения его емкости в соответствии с количеством оборотов. Практическое выполнение этого условия представляет серьезную проблему, поэтому управление двигателем выполняется в двухступенчатом варианте. Во время запуска подключается сразу два конденсатора, один из которых отключается после разгона. Остается только рабочий, продолжающий функционировать.

Подключение трехфазного двигателя к однофазной сети

Как подобрать конденсатор для трехфазного двигателя

Пусковой конденсатор должен примерно в 2-2,5 раза превышать емкость рабочего конденсатора. Расчетное напряжение этих устройств обычно в 1,5 раза превышает напряжение сети. Для сетей 220 вольт наилучшим вариантом будут конденсаторы МБПГ, МБГО, МБГЧ, рабочее напряжение которых составляет 500 вольт и более. Если конденсаторы включаются лишь на короткое время, возможно применение в схеме электролитических устройств, таких как КЭ-2, К50-3, ЭГЦ-М с минимальным напряжением 450 вольт.

Между собой конденсаторы соединяются последовательно, через минусовые выводы. Далее в схему добавляется резистор, сопротивлением 200-300 Ом, убирающий оставшийся электрический заряд с конденсаторов.

Расчёт конденсатора для трёхфазного двигателя

Нормальная работа трехфазного электродвигателя с пуском через конденсатор зависит от ряда условий. Одним из них является изменение емкости устройства в соответствии с числом оборотов двигателя. Это достигается за счет двухступенчатого управления, состоящего из двух конденсаторов – пускового и рабочего.

Подключение трехфазного двигателя к однофазной сети

Во время пуска происходит замыкание контактов, после чего нажимается кнопка разгона. После того как набрано достаточное количество оборотов, кнопку следует отпустить. Рассчитать емкость рабочего конденсатора можно по следующей формуле: Ср = 4800х I/U, где Ср является емкостью устройства в мкФ, I – сила тока, потребляемого двигателем в амперах, U – напряжение электрической сети в вольтах. Данная формула подходит при соединении обмоток двигателя методом треугольника. Если же обмотки двигателя соединены звездой, применяется формула Ср = 2800х I/U.

Таким образом, подключение трехфазного двигателя к однофазной сети имеет свои особенности. Например, емкость пускового и рабочего конденсатора должна соответствовать мощности подключаемого двигателя.

Конструкция трехфазного электродвигателя представляет собой электрическую машину, для нормальной работы которой необходимы трехфазные сети переменного тока. Основными частями такого устройства являются статор и ротор. Статор оборудован тремя обмотками, сдвинутыми между собой на 120 градусов. Когда в обмотках появляется трехфазное напряжение, на их полюсах происходит образование магнитных потоков. За счет этих потоков, ротор двигателя начинает вращаться.

Соединение звездой и треугольником обмоток электродвигателя

В промышленном производстве и в быту практикуется широкое применение трехфазных асинхронных двигателей. Они могут быть односкоростными, когда производится соединение звездой и треугольником обмоток электродвигателя или многоскоростными, с возможностью переключения с одной схемы на другую.

Соединение обмоток звездой и треугольником

У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника.

Соединение звездой и треугольником обмоток электродвигателя

При подключении обмоток по схема звезда, их концы соединяются в одной точке в нулевом узле. Поэтому, получается еще один дополнительный нулевой вывод. Другие концы обмоток соединяются с фазами сети 380 В.

Соединение треугольником заключается в последовательном соединении обмоток. Конец первой обмотки соединяется с начальным концом второй обмотки и так далее. В конечном итоге, конец третьей обмотки, соединится с началом первой обмотки. Подача трехфазного напряжения осуществляется в каждый узел соединения. Подключение по схеме треугольник отличается отсутствием нулевого провода.

Соединение звездой и треугольником обмоток электродвигателя

Оба вида соединений получили примерно одинаковое распространение и не имеют между собой значительных отличительных особенностей.

Существует и комбинированное подключение, когда используются оба варианта. Такой способ применяется достаточно часто, его целью является плавный запуск электродвигателя, которого не всегда можно добиться при обычных подключениях. В момент непосредственного пуска, обмотки находятся в положении звезда. Далее, используется реле, которое обеспечивает переключение в положение треугольника. За счет этого происходит уменьшение пускового тока. Комбинированная схема, чаще всего, применяется во время пуска электродвигателей, обладающих большой мощностью. Для таких двигателей требуется и значительно больший пусковой ток, превышающий номинальное значение примерно в семь раз.

Соединение звездой и треугольником обмоток электродвигателя

Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда. Такие подключения используются для двигателей с двумя и более регулируемыми скоростями.

Запуск трехфазного электродвигателя с переключением со звезды на треугольник

Данный способ применяется для того, чтобы снизить пусковой ток, который может примерно в 5-7 раз превышать номинальный ток электродвигателя. Агрегаты со слишком большой мощностью имеют такой пусковой ток, при котором легко перегорают предохранители, отключаются автоматы и, целом, значительно понижается напряжение. При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются магнитные пускатели и контакторы. Поэтому, применяются разные способы, с целью уменьшения пускового тока.

Общим для всех способов является необходимость снижения напряжения в обмотках статора на время непосредственного пуска. Чтобы уменьшить пусковой ток, цепь статора на время пуска может дополняться дросселем, реостатом или автоматическим трансформатором.

Соединение звездой и треугольником обмоток электродвигателя

Наибольшее распространение получило переключение обмотки из звезды в положение треугольника. В положении звезды напряжение становится в 1,73 раза меньше, чем номинальное, поэтому и ток будет меньше, чем при полном напряжении. Во время пуска частота вращения электродвигателя увеличивается, происходит снижение тока и обмотки переключаются в положение треугольника.

Такое переключение допускается в электродвигателях, имеющих облегченный режим пуска, так как происходит снижение пускового момента, примерно в два раза. Данным способом переключаются те двигатели, которые конструктивно могут соединяться в треугольник. У них должны быть обмотки, способные работать при линейном напряжении сети.

Когда нужно переключаться с треугольника в звезду

Когда необходимо выполнить соединение звездой и треугольником обмоток электродвигателя, следует помнить о возможности переключения с одного вида на другой. Основным вариантом является схема переключения звезда треугольник. Однако, при необходимости, возможен и обратный вариант.

Всем известно, что у электродвигателей, загруженных не полностью, происходит снижение коэффициента мощности. Поэтому, такие двигатели желательно заменять устройствами с меньшей мощностью. Однако, при невозможности замены и большом запасе мощности, производится переключение треугольник-звезда. Ток в цепи статора не должен превышать номинала, иначе произойдет перегрев электродвигателя.

pkdemo.ru

Способы пуска асинхронного трехфазного двигателя от однофазной сети ~ Электропривод

Как запускать трехфазный асинхронный двигатель от однофазной сети?

Самый простой способ запуска трехфазного двигателя в качестве однофазного, основывается на подключении его третьей обмотки через фазосдвигающее устройство. В качестве такого устройство может выступать активное сопротивление, индуктивность или конденсатор.

 

Прежде, чем подключать трехфазный двигатель в однофазную сеть, необходимо убедиться, что номинальное напряжение его обмоток соответствуют номинальному напряжению сети. Асинхронный трехфазный двигатель имеет три статорных обмотки. Соответственно в клемной коробке должно быть выведено 6 клемм для подключения питания. Если открыть клеммную коробку, то мы увидим борно двигателя. На борно, выведены 3 обмотки двигателя. Их концы подключены к клеммам. На эти клеммы и подключается питание двигателя.

Борно

Каждая обмотка имеет начало и конец. Начала обмоток маркируют как С1, С2, С3. Концы обмоток промаркированы соответственно С4, С5, С6. На крышке клемной коробки мы увидим схему включения двигателя в сеть при разных напряжениях питания. Согласно этой схемы мы и должны подключить обмотки. Т..е. если двигатель допускает использование напряжений 380/220, то для его подключения к однофазной сети 220В, необходимо переключить обмотки в схему «треугольник».

Соединение в треугольник

Если же его схема подключения допускает 220/127 В, то к однофазной сети 220 В, его необходимо подключать по схеме «звезда», как показано на рисунке.

Соединение в звездуСхема пуска

Схема с пусковым активным сопротивлением

На рисунке показана схемы однофазного включения трехфазного двигателя с пусковым активным сопротивлением. Такая схема используется только в двигателях малой мощности, так как в резисторе теряетя большое количество энергии в виде тепла.

Схемы конденсаторного пуска асинхронного двигателя

Наибольшее распространение получили схемы с конденсаторами. Для изменения направления вращения двигателя необходимо применять переключатель. В идеале для нормальной работы такого двигателя необходимо, чтобы емкость конденсатора изменялась в зависимости от числа оборотов. Но такое условие выполнить довольно трудно, поэтому обычно применяют схему двухступенчатого управления асинхронным электродвигателем. Для работы механизма, приводимого в движение таким двигателем, используют два конденсатора. Один подключается только при запуске, а после окончания пуска его отключают и оставляют только один конденсатор. При этом происходит заметное снижение его полезной мощности на валу до 50…60% от номинальной мощности при включении в трехфазную сеть. Такой пуск двигателя получил название конденсаторного пуска.

Конденсаторный пуск

При применении пусковых конденсаторов имеется возможность увеличить пусковой момент до величины Мп/Мн=1,6-2. Однако, при этом значительно увеличивается емкость пускового конденсатора, из за чего вырастают его размеры и стоимость всего фазосдвигающего устройства. Для достижения максимального пускового момента, величину емкости необходимо выбирать из соотношения, Xc=Zk, т. е. емкостное сопротивление равно сопротивлению короткого замыкания одной фазы статора. По причине высокой стоимости и габаритов всего фазосдвигающего устройства конденсаторный пуск применяется лишь при необходимости большого пускового момента. В конце пускового периода пусковой обмотки необходимо отключить, в противном случае пусковая обмотка перегреется и сгорит. В качестве пускового устройства можно применять индуктивность— дроссель.

Пуск трехфазного асинхронного двигателя от однофазной сети, через частотный преобразователь

Частотный преобразователь-асинхронный двигатель

Для пуска и управления трехфазным асинхронным двигателем от однофазной сети, можно применять преобразователь частоты с питанием от однофазной сети. Структурная схема такого преобразователя представлена на рисунке. Пуск трехфазного асинхронного двигателя от однофазной сети с помощью преобразователя частоты является одним из самых перспективных. Поэтому именно он наиболее часто используется в новых разработках систем управления регулируемыми электроприводами. Принцип его лежит в том, что, меняя частоту и напряжение питания двигателя, можно в соответствии с формулой, изменять его частоту вращения.

Сам преобразователь состоит состоят из двух модулей, которые обычно заключены в один корпус:— модуль управления, который управляет функционированием устройства;— силовой модуль, который питает двигатель электроэнергией.

Применение преобразователя частоты для пуска трехфазного асинхронного двигателя. позволяет значительно снизить пусковой ток, так как электродвигатель имеет жесткую зависимость между током и вращающим моментом. Причем значения пускового тока и момента можно регулировать в достаточно больших пределах. Кроме того с помощью частотного преобразователя можно регулировать обороты двигателя и самого механизма, уменьшая при этом значительную часть потерь в механизме.

Недостатки применения частотного преобразователя для пуска трехфазного асинхронного двигателя от однофазной сети: достаточно высокая стоимость самого преобразователя и периферийных устройств к нему. Появление несинусоидальных помех в сети и снижение показателей качества сети.

eprivod.com

Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети

электроника для дома

Как известно, для запуска трехфазного электродвигателя (ЭД) с короткозамкнутым ротором от однофазной сети наиболее часто в качестве фазосдвигающего элемента применяют конденсатор. При этом емкость пускового конденсатора должна быть в несколько раз больше емкости рабочей конденсатора. Для ЭД чаще всего применяемых в домашнем хозяйства (0,5...3 кВт), стоимость пусковых конденсаторов соизмерима со стоимость к электродвигателя. Поэтому желательно избежать применения дорогостоящих пусковых конденсаторов, работающих лишь кратковременно. В тожe время применение рабочих, постоянно включенных фазосдвигающих конденсоторов можно считать целесообразным, так как они позволяют загрузить двигатель на75...85% его мощности при 3-фазном включении (безконденсаторов его мощность снижается примерно на 50%).

 

Бесконденсаторный пуск трехфазных электродвигателей

Вращающий момент, вполне достаточный для запуска указанных ЭД от однофазной сети 220 В/50 Гц, можно получить за счет сдвига токов по фазе в фазных обмотках ЭД, применив для этого двунаправленные электронные ключи, включение которых осуществляется в определенное время.

Исходя из этого, для пуска 3-фазных ЭД от однофазной сети автором были разработаны и отлажены две простые схемы. Обе схемы опробованы на ЭД мощностью 0,5...2,2 кВт и показали очень хорошие результаты (время пуска не намного больше, чем в трехфазном режиме). В схемах применяются симисторы, управляемые импульсами разной полярности, и симметричный динистор, который формирует управляющие сигналы в течение каждого полупериода питающего напряжения.

Первая схема (рис.1) предназначена для пуска ЭД с номинальной частотой вращения, равной или меньше 1500 об/мин, обмотки которых соединены в треугольник. За основу этой схемы была взята схема [1], которая упрощена до предела. В этой схеме электронный ключ (симистор VS1) обеспечивает сдвиг тока в обмотке «С» на некоторый угол (50...70°), что обеспечивает достаточный вращающий момент.

Фазосдвигающим устройством является RC-цепочка. Изменяя сопротивление R2, получают на конденсаторе С напряжение, сдвинутое относительно питающего напряжения на некоторый угол. В качестве ключевого элемента в схеме применен симметричный динистор VS2. В момент, когда напряжение на конденсаторе достигнет напряжения переключения динистора, он подключит заряженный конденсатор к управляющему выводу симистора VS1 i включит этот двунаправленный силовой ключ.

Вторая схема (рис.2) предназначена для пускс ЭД с номинальной частотой вращения равной 3000 об/мин, а также для электродвигателей, работающих на механизмы с большим моментом сопротивле ния при пуске. В этих случаях требуется значительно больший пусковой момент. Поэтому была применена схема соединения обмоток ЭД «разомкнутая звезда ([2], рис. 14,в), которая обеспечивает максимальный пусковой момент. В указанной схеме фазосдвигающие конденсаторы заменены двумя электронными ключами Один ключ включен последовательно с обмоткой фазы «А» и создает в ней «индуктивный» (отстающий)

Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети

сдвиг тока, второй - включен параллельно обмотке фазы «В» и создает в ней «емкостной» (опережающий) сдвиг тока. Здесь учитывается то, что сами обмотки ЭД смещены в пространстве на 120 электрических градусов одна относительно другой.

Наладка заключается в подборе оптимального угла сдвига токов в фазных обмотках, при котором происходит надежный запуск ЭД. Это можно сделать без применения специальных приборов. Выполняется она следующим образом.

Подача напряжения на ЭД осуществляется пускателем нажимного «ручного» типа ПНВС-10, через средний полюс которого подключается фазосдвигающая цепочка. Контакты среднего полюса замкнуты только при нажатой кнопке «Пуск».

Нажав кнопку «Пуск», путем вращения движка подстроечного  сопротивления R2 подбирают необходимый пусковой момент. Так поступают при наладке схемы, показанной на рис.2.

При наладке схемы рис.1 из-за прохождения больших пусковых токов некоторое время (до разворота) ЭД сильно гудит и вибрирует. В этом случае лучше изменять величину R2 ступенями при снятом напряжении, а затем, путем кратковременной подачи напряжения, проверять, как происходит запуск ЭД. Если при этом угол сдвига напряжения далек от оптимального, то ЭД гудит и вибрирует очень сильно. По мере приближения к оптимальному углу двигатель «пытается» вращаться в ту или другую сторону, а при оптимальном запускается достаточно хорошо.

Автор производил отладку схемы, показанной на рис.1, на ЭД 0,75 кВт 1500 об/мин и 2,2 кВт 1500 об/мин, а схемы, показанной на рис.2, на ЭД 2,2 кВт 3000 об/мин.

При этом опытным путем установлено, что подобрать значения R и С фазовращающей цепочки, соответствующие оптимальному углу, можно предварительно. Для этого нужно последовательно с ключом (симистором) соединить лампу накаливания 60 Вт и включить их в сеть ~220 В. Изменяя величину R, надо установить напряжение на лампе 170 В (для схемы рис.1) и 100 В (для схемы рис.2). Эти напряжения замерялись стрелочным прибором магнитоэлектрической системы, хотя форма напряжения на нагрузке не синусоидальная.

Необходимо отметить, что добиться оптимальных углов сдвига токов можно при различных сочетаниях значений R и С фазосдвигающей цепочки, т.е. изменив номинал емкости конденсатора, придется подобрать и соответствующее ему значение сопротивления.

Детали

Эксперименты проводились с симисторами ТС-2-10 и ТС-2-25 без радиаторов. В этой схеме они работали очень хорошо. Можно применить и другие симисторы с двухполярным управлением на соответствующие рабочие токи и класса напряжения не ниже 7. При использовании импортных симисторов в пластмассовом корпусе их следует установить на радиаторы.

Симметричный динистор DB3 можно заменить отечественным КР1125. У него немного меньше напряжение переключения. Возможно, это и лучше, но этот динистор очень сложно найти в продаже.

tmp5A24-4

Конденсаторы С любые неполярные, рассчитанные на рабочее напряжение не менее 50 В (лучше - 100 В). Можно применить также два полярных конденсатора, включенных последовательно-встречно (в схеме рис.2 их номинал должен быть 3,3 мкФ каждый).

Внешний вид электропривода измельчителя травы с описанной схемой запуска и ЭД 2,2 кВт 3000 об/мин показан на фото 1.

В. В. Бурлоко, г. Мориуполь

Литература

1.    // Сигнал. - 1999. - №4.

2.    С.П. Фурсов Использование трехфазных

электродвигателей в быту. — Кишинев: Картя

молдовенскэ, 1976.

radiopolyus.ru

Подключение трехфазного двигателя к трехфазной сети

Содержание:
  1. Основные схемы подключения
  2. Использование схемы «звезда-треугольник»
  3. Трехфазный двигатель с магнитным пускателем
  4. Видео

Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.

Схемы подключения

Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.

Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.

Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.

В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.

Использование схемы «звезда-треугольник»

Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.

Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей, устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.

Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.

Трехфазный двигатель с магнитным пускателем

Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.

Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

electric-220.ru

Способы запуска трехфазных асинхронных двигателей

Доброго времени суток, уважаемые читатели блога nasos-pump.ru

Двигатели трехфазные Двигатели трехфазные

Двигатели трехфазные

В рубрике «Общее» рассмотрим способы запуска трехфазных асинхронных двигателей с коротко замкнутым ротором. В настоящее время используются различные способы запуска асинхронных двигателей. При запуске двигателя должны удовлетворяться основные требования. Запуск должен происходить без применения сложных пусковых устройств. Пусковой момент должен быть достаточно большим, а пусковые токи как можно меньше. Современные электродвигатели являются энерго-эффективными двигателями и имеют более высокие пусковые токи, что заставляет уделять большее внимание их способам запуска. При подаче на двигатель напряжения питания возникает скачок тока, который называют пусковым током.

Пусковой ток обычно превышает номинальный в 5 – 7 раз, но действие его кратковременное. После того как двигатель вышел на номинальные обороты, ток падает до минимального. В соответствии с местными нормами и правилами, для снижения пусковых токов, и используются разные способы запуска асинхронных двигателей с коротко замкнутым ротором. Вместе с этим необходимо уделять внимание и стабилизации напряжения сетевого питания. Говоря о способах запуска, которые уменьшают пусковой ток, следует отметить, что период запуска не должен быть слишком долгим. Слишком продолжительные периоды запуска могут вызвать перегрев обмоток.

 Прямой запуск

 Самый простой и наиболее часто применяемый способ запуска асинхронных двигателей – это прямой пуск. Прямой пуск означает, что электродвигатель запускается прямым подключением к сетевому напряжению питания. Прямой пуск применяется при стабильном питании двигателя, жестко связанного с приводом, например насоса. На (Рис.1) приведена схема прямого пуска асинхронного двигателя. 

Прямой пускПрямой пуск

Прямой пуск

Подключение двигателя в электрическую сеть происходит при помощи контактора (пускателя). Реле перегрузки необходимо для защиты двигателя в процессе эксплуатации от перегрузки по току. Двигатели малой и средней мощности обычно проектируют так, чтобы при прямом подключении обмоток статора к сетевому питанию пусковые токи, возникающие при запуске, не создавали чрезмерных электродинамических усилий и превышений температуры на двигатель, с точки зрения механической и термической прочности. Переходной процесс в момент запуска характеризуется очень быстрым затуханием свободного тока, что позволяет пренебречь этим током и учитывать только установившееся значение тока переходного процесса. На графике (Рис. 1) приведена характеристика пускового тока при прямом запуске асинхронного двигателя с коротко замкнутым ротором.

Прямой запуск от сети питания является самым простым, дешёвым и наиболее часто применяемым способом запуска. При таком запуске происходит наименьшее повышение температуры в обмотках электродвигателя во время включения по сравнению со всеми остальными способами запуска. Если нет жестких ограничений по току, то такой метод запуска является наиболее предпочтительным. В разных странах действуют различные правила и нормы по ограничению максимального пускового тока. В таких случаях, необходимо использовать другие способы запуска.

Для небольших электродвигателей пусковой момент будет составлять от 150% до 300% от номинального момента, а пусковой ток будет составлять от 300% до 700% от номинального значения или даже выше.

 Запуск «звезда – треугольник»

 Запуск переключением «звезда – треугольник» используется для трёхфазных индукционных электродвигателей и применяется для снижения пускового тока. Следует отметить, что запуск переключением «звезда – треугольник» возможен только в тех двигателей, у которых  выведены начала и концы всех трех обмоток. Пульт для запуска «звезда – треугольник» состоит и следующих комплектующих, трех контакторов (пускателей), реле перегрузки по току и реле времени, управляющего переключением пускателей. Чтобы можно было использовать этот способ запуска, обмотки статора электродвигателя, соединенные по схеме «треугольник», должны быть рассчитаны на работу в номинальном режиме. Обычно электродвигатели рассчитаны на напряжение 400 В при соединении по схеме «треугольник» (∆) или на 690 В при соединении по схеме «звезда» (Y). Такая унифицированная схема соединения может быть также использована для пуска электродвигателя при более низком напряжении. Схема запуска переключением «звезда – треугольник» показана на (Рис. 2)

Пуск двигателя звезда треугольникПуск двигателя звезда треугольник

Пуск звезда треугольник

В момент пуска электропитание к обмоткам статора подключено по схеме «звезда» (Y) Замкнуты контакторы К1 и К3. По истечении определённого периода времени, зависящего от мощности двигателя и времени разгона, происходит переключение на режим запуска «треугольник» (∆). При этом контакты пускателя K3 размыкаются, а контакты пускателя K2 замыкаются. Управляет переключением контактов пускателей K3 и K2 реле времени. На реле выставляется время, в течение которого происходит разгон двигателя. В режиме запуска «звезда – треугольник» напряжение, подаваемое на фазы обмотки статора, уменьшается в корень из трех раз, что приводит к уменьшению фазных токов тоже в корень из трех раз, а линейных токов в 3 раза. Соединение по схеме «звезда – треугольник» дает более низкий пусковой ток, составляющий всего одну треть тока при прямом запуске. Запуск «звезда – треугольник» особенно хорошо подходят для инерционных систем, когда происходит «подхватывание» нагрузки после того, как произошел разгон двигателя.

Запуск «звезда – треугольник» также понижает и пусковой момент, приблизительно на треть. Данный метод можно использовать только для индукционных электродвигателей, которые имеют подключение к напряжению питания по схеме «треугольник». Если переключение «звезда – треугольник» происходит при недостаточном разгоне, то это может вызвать сверхток, который достигает почти такого же значения, что и ток при «прямом» запуске. За время переключения из режима «звезда» в «треугольник» двигатель очень быстро теряет скорость вращения, для ее восстановления необходим мощный импульс тока. Скачок тока может стать ещё больше, так как на время переключения двигатель остается без сетевого напряжения.

 Запуск через автотрансформатор

Данный способ запуска осуществляется при помощи автотрансформатора, последовательно соединённого с электродвигателем во время запуска. Автотрансформатор понижает подаваемое на электродвигатель напряжение (приблизительно на 50–80% от номинального напряжения), чтобы произвести запуск при более низком напряжении. В зависимости от заданных параметров напряжение снижается в один или два этапа. Понижение напряжения, подаваемого на электродвигатель одновременно, приведёт к уменьшению пускового тока и вращающего пускового момента. Если в определённый момент времени к электродвигателю не подаётся питание, он не потеряет скорость вращения, как в случае с запуском «звезда – треугольник». Время переключения от пониженного напряжения к полному напряжению можно корректировать. На (Рис. 3) приведена характеристика пускового тока при запуске асинхронного двигателя с коротко замкнутым ротором при помощи автотрансформатора.

Диаграмма пуска через автотрансформатор токаДиаграмма пуска через автотрансформатор тока

Пуск через автотрансформатор тока

Помимо уменьшения пускового момента, способ запуска через автотрансформатор имеет и недостаток. Как только электродвигатель начинает работать, он переключается на сетевое напряжение, что вызывает скачок тока. Вращающий момент зависит от напряжения подаваемого на двигатель. Значение пускового момента пропорциональны квадрату напряжения.

Плавный пуск 

В устройстве «плавный пуск» используются те же IGBT транзисторы, что и в частотных преобразователях. Данные транзисторы через цепи управления, понижают начальное напряжение, поступающее на электродвигатель, что приводит к уменьшению пускового момента в электродвигателе. В процессе запуска «плавный пуск» постепенно повышает напряжение электродвигателя, что позволяет электродвигателю разогнаться до номинальной скорости вращения, не образуя большого момента и пиков тока. На (Рис. 4) приведена характеристика пускового тока при запуске асинхронного двигателя с коротко замкнутым ротором с помощью устройства «плавный пуск». Плавный запуск может использоваться также для управления торможением электродвигателя. Устройство «плавный пуск» дешевле преобразователя частоты. Использование устройства «плавного пуска» для асинхронных двигателей значительно увеличивают срок службы электродвигателя, а с ним и насоса находящегося на валу этого двигателя.

Диаграмма для плавного пуска двигателяДиаграмма для плавного пуска двигателя

Диаграмма для плавного пуска двигателя

У «плавного пуска» существуют те же проблемы, что и у частотных преобразователей: они создают наводки (помехи) в систему электроснабжения. Данный способ также обеспечивает подачу пониженного напряжения к электродвигателю во время запуска. При плавном запуске электродвигатель включается при пониженном напряжении, которое затем увеличивается до напряжения сетевого питания. Напряжение в плавном пускателе уменьшается за счет фазового сдвига. Данный способ пуска не вызывает образования скачков тока. Время запуска и пусковой ток можно задавать.

 Запуск при помощи частотного преобразователя

Частотные преобразователи предназначены не только для запуска, но и управления электродвигателем. Инвертор позволяет снизить пусковой ток, так как электродвигатель имеет жесткую зависимость между током и вращающим моментом. На (Рис. 5) приведена характеристика пускового тока при запуске асинхронного двигателя с помощью частотного преобразователя.

Диаграмма пуска двигаеля с инверторомДиаграмма пуска двигаеля с инвертором

Пуск двигателя с преобразователем частоты

Преобразователи частоты остаются все еще дорогими устройствами, и также как и плавный пуск, создают дополнительные помехи в сеть электропитания.

 Заключение

 Задача любого из способов запуска электродвигателя заключается в том, чтобы согласовать характеристики вращающего момента электродвигателя с характеристиками механической нагрузки, при этом необходимо, чтобы пиковые токи не превышали допустимых значений. Существуют различные способы запуска асинхронных двигателей, каждый их которых имеет свои плюсы и минусы. И в заключении приведена небольшая таблица, где в краткой форме указаны преимущества и недостатки наиболее распространённых способов запуска асинхронных электродвигателей.

Таблица 1

 

Способы запуска

Преимущества

Недостатки

Прямой запуск

Простой и экономичный. Безопасный запуск Самый большой пусковой момент Высокий пусковой ток

Запуск «звезда – треугольник»

Уменьшение пускового тока в три раза. Скачки тока при переключении «звезда – треугольник». Не подходит, если нагрузка без инерционная. Пониженный пусковой момент.

Запуск через автотрансформатор

Уменьшение пускового тока на U2. Скачки тока при переходе от пониженного напряжения к номинальному напряжению. Пониженный пусковой момент.

Плавный запуск

Отсутствуют скачки тока. Небольшой гидравлический удар при запуске насоса. Уменьшение пускового тока на требуемую величину, обычно в 2-3 раза. Пониженный пусковой момент.

Запуск при помощи частотного преобразователя

Отсутствуют скачки тока. Небольшой гидравлический удар при запуске насоса. Уменьшение пускового тока, обычно, до номинального. Напряжение питания на двигатель можно подавать постоянно. Пониженный пусковой момент. Высокая стоимость.

Спасибо за оказанное внимание.

P.S. Понравился пост?  Порекомендуйте его в социальных сетях своим друзьям и знакомым.

Еще похожие посты по данной теме:

nasos-pump.ru

Подключение трехфазного двигателя к однофазной сети

схема подключения трехфазного двигателя В разных любительских электромеханических станках и устройствах в большинстве случаев используются трехфазные асинхронные двигатели с короткозамкнутым ротором. Увы, трехфазная сеть в обиходу — явление очень редкое, потому для их питания от обыкновенной электрической сети любители используют фазосдвигающий конденсатор, чтоне разрешает в полном объеме воплотить мощность и пусковые свойства мотора.

Асинхронные трехфазные электродвигатели, а конкретно именно их, в следствии широкого распространения, нередко приходится применять, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку.

Подключение электродвигателя "треугольник" (для 220 вольт)

Подключение "треугольник" (для 220 вольт)

Подключение электродвигателя "звезда" (для 380 вольт)

Подключение "звезда" (для 380 вольт)

распределительная коробка трехфазного двигателя

Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме звезда

 При включении трехфазного мотора к трехфазной сети по его обмоткам в различный момент времени по очереди начинает идти ток, создающий крутящееся магнитное поле, которое ведетвзаимодействие с ротором, принуждая его крутиться. При подключении мотора в однофазовую сеть, крутящий момент, способный двинуть ротор, не создается.

В случае если вы можете подсоединить движок на стороне к трехфазной сети то опредилить мощьность не тяжело. В разрыв одной из фаз ставим амперметр. Запускаем. Показания амперметра умнажаем на фазовое напряжение.

В хорошей сети оно 380. Получаем мощьность P=I*U. Отнимаем % 10-12 на КПД. Получаете фактически верный результат. 

Для измерения оборотов есть мех-ские приборы. Хотя на слух также возможно определить. 

 Посреди различных методов включения трехфазных электродвигателей в однофазную сеть наиболее обычный - включение третьего контакта через фазосдвигающий конденсатор.

Подключение трехфазного двигателя к однофазной сети через конденсатор

Подключение трехфазного двигателя к однофазной сети

 Частота вращения трехфазного мотора, работающего от однофазовой сети, остается практически той же, как и при его подключении в трехфазную сеть. Увы, этого невозможно заявить о мощности, потери которой достигают значимых величин. Четкие значения потери силы находятся в зависимости от схемы включения, условий работы мотора, величины емкости фазосдвигающего конденсатора. Приблизительно, трехфазный движок в однофазовой сети утрачивает в пределах 30-50% собственной силы. 

 Не многие трехфазные электродвигатели готовы хорошо действовать в однофазовых сетях, но большая часть из них справляются с данной задачей полностью удовлетворительно - в случае если не считать потери мощности. В главном для работы в однофазовых сетях используются асинхронные движки с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

 Асинхронные трехфазные движки рассчитаны на 2 номинальных напряжения сети - 220/127, 380/220 и так далее Более всераспространены электродвигатели с рабочим напряжением обмоток 380/220В (380В - для "звезды", 220  - для "треугольника"). Наибольшее напряжение для "звезды", наименьшее - для "треугольника". В паспорте и на табличке движков не считая прочих характеристик указывается рабочее напряжение обмоток, схема их соединения и вероятность ее изменения. 

табличка (шылдик) трехфазного электродвигателя

Таблички трехфазных электродвигателей

 Обозначение на табличке А гласит о том, что обмотки мотора имеют все шансы быть подключены как "треугольником" (на 220В), так и "звездой" (на 380В). При подключении трехфазного мотора в однофазовую сеть лучше применять схему "треугольник", так как в данном случае движок растеряет меньше силы, нежели при включении "звездой".

 Табличка Б информирует, что обмотки мотора подсоединены по схеме "звезда", и в разветвительной коробке не учтена вероятность переключить их на "треугольник" (имеется не более чем 3 вывода). В данном случае остается либо смириться с большой утратой мощности, подключив движок по схеме "звезда", либо, внедрившись в обмотку электродвигателя, попробовать вывести отсутствующие концы, чтоб соединить обмотки по схеме "треугольник".

В случае если рабочее напряжение мотора составляет 220/127В, то к однофазной сети на 220В движок возможно подключить лишь по схеме "звезда". При включении 220В по схеме "треугольник", двигатель сгорит.

Начала и концы обмоток (различные варианты)

 Наверное, главная сложность включения трехфазного мотора в однофазовую сеть состоит в том, чтоб разобраться в электропроводах, выходящих в распределительную коробку либо, при неимении последней, просто выведенных наружу мотора. 

 Самый обычный вариант, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме "треугольник". В данном случае необходимо просто подсоединить токоподводящие электропровода и рабочий и пусковой конденсаторы к клеммам мотора согласно схеме подключения.

 В случае если в двигателе обмотки соединены "звездой", и имеется вероятность поменять ее на "треугольник", то такой случай также нельзя отнести к трудоемким. Необходимо просто поменять схему включения обмоток на "треугольник", использовав для этого перемычки.

Определение начал и концов обмоток. Дело обстоит труднее, в случае если в распределительную коробку выведено 6 проводов без указания про их принадлежности к конкретной обмотке и обозначения начал и концов. В данном случае дело сводится к решению 2-ух задач  (Хотя до того как этим заниматься, необходимо попробовать поискать в сети некоторую документацию к электродвигателю. В ней быть может описано к чему относятся электропровода различных расцветок. ):

определению пар проводов, имеющих отношение к одной обмотке;

нахождению начала и конца обмоток.

 1-ая задачка решается "прозваниванием" всех проводов тестером (замером сопротивления). Когда прибора нет, возможно решить её при помощи лампочки от фонарика и батареек, подсоединяя имеющиеся электропровода в цепь поочередно с лампочкой. В случае если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Этим методом определяются 3 пары проводов (A, B и C на рисунке ниже) имеющих отношение к 3 обмоткам.

определения пар обмоток трехфазного двигателя

Определение пар проводов относящихся к одной обмотке

 Вторая задача, нужно определить начала и концы обмоток, здесь будет несколько сложнее и будет необходимо наличие батарейки и стрелочного вольтметра. Цифровой для этой задачи не подойдет из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1и 2.

определения начала и конца обмоток трехфазного двигателя

Нахождение начала и конца обмоток

К концам одной обмотки (к примеру, A) подключается батарейка, к концам иной (к примеру, B) - стрелочный вольтметр. Сейчас, когда порвать контакт проводов А с батарейкой, стрелка вольтметра качнется в какую-нибудь сторону. Потом нужно подключить вольтметр к обмотке С и сделать такую же операцию с разрывом контактов батарейки. По мере надобности меняя полярность обмотки С (меняя местами концы С1 и С2) необходимо добиться того, чтоб стрелка вольтметра качнулась в такую же сторону, как и в случае с обмоткой В. Точно так же проверяется и обмотка А - с батарейкой, подсоединенной к обмотке C либо B.

 В конечном итоге всех манипуляций должно выйти следующее: при разрыве контактов батарейки с хоть какой из обмоток на 2-х других должен появляться электрический потенциал одинаковой полярности (стрелка устройства качается в одну сторону). Сейчас остается пометить выводы 1-го пучка как начала (А1, В1, С1), а выводы другого - как концы (А2, В2, С2) и соединить их по нужной схеме - "треугольник" либо "звезда" (когда напряжение мотора 220/127В).

Извлечение отсутствующих концов. Наверное, самый непростой вариант - когда движок имеет слияние обмоток по схеме "звезда", и нет способности переключить ее на "треугольник" (в распределительную коробку выведено не более чем 3 электропровода - начала обмоток С1, С2, С3) .

 В данном случае для включения мотора по схеме "треугольник" нужно вывести в коробку отсутствующие концы обмоток С4, С5, С6.

Схемы включения трехфазного мотора в однофазную сеть

Включение по схеме "треугольник". В случае домашней сети, исходя из убеждений получения большей выходной мощности более подходящим считается однофазное включение трехфазных двигателей по схеме "треугольник". При всем этом их мощность имеет возможность достигать 70% от номинальной. 2 контакта в разветвительной коробке подсоединяются непосредственно к электропроводам однофазной сети (220В), а 3-ий - через рабочий конденсатор Ср к хоть какому из 2-ух первых контактов либо электропроводам сети.

Обеспечивание запуска. Запуск трехфазного мотора без нагрузки возможно производить и от рабочего конденсатора (подробнее ниже), но в случае если эл-двигатель имеет какую-то нагрузку, он либо не запустится, либо станет набирать обороты чрезвычайно медлительно. Тогда уже для быстрого запуска нужен вспомогательный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы врубаются лишь на время запуска мотора (2-3 сек, покуда обороты не достигнут приблизительно 70% от номинальных), потом пусковой конденсатор необходимо отключить и разрядить.

Комфортен пуск трехфазного мотора при помощи особенного выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными - пока же не будет нажата кнопка "стоп".

кнопка пуск для запуска электродвигателя с пусковым конденсатором

Выключатель для запуска электродвигателей

Реверс. Направление вращения двигателя зависит от того, к какому контакту ("фазе") подсоединена третья фазная обмотка.

Направлением вращения возможно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному переключателю, соединенному двумя своими контактами с первой и 2-ой обмотками. Зависимо от положения переключателя движок станет крутиться в одну либо другую сторону.

 На рисунке ниже представлена схема с пусковым и рабочим конденсатором и клавишей реверса, дозволяющая производить комфортное управление трехфазным двигателем. 

наглядная схема подключения трехфазного двигателя принцыпиальная схема подключения трехфазного двигателя

Схема подключения трехфазного двигателя к однофазной сети, с реверсом и кнопкой для подключения пускового конденсатора

Подключение по схеме "звезда". Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Конденсаторы. Нужная емкость рабочих конденсаторов для работы трехфазного мотора в однофазной сети находится в зависимости от схемы включения обмоток мотора и прочих характеристик. Для соединения "звездой" емкость рассчитывается по формуле:

 Cр = 2800•I/U

 Для соединения "треугольником":

 Cр = 4800•I/U

 Где Ср - емкость рабочего конденсатора в мкФ, I - ток в А, U - напряжение сети в В. Ток рассчитывается по формуле:

 I = P/(1.73•U•n•cosф)

 Где Р - мощность электродвигателя кВт; n - КПД двигателя; cosф - коэффициент мощности, 1.73 - коэффициент, определяющий соответствие меж линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке мотора. Традиционно их значение располагается в спектре 0,8-0,9.

 На практике значение емкости рабочего конденсатора при подсоединении "треугольником" возможно счесть по облегченной формуле C = 70•Pн, где Pн - номинальная мощность электродвигателя в кВт. Согласно данной формуле на каждые 100 Вт мощности электродвигателя нужно около 7 мкФ емкости рабочего конденсатора.

 Корректность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. В случае если её значение оказывается больше, нежели потребуется при этих условиях работы, движок станет перенагреваться. Ежели емкость оказалась менее требуемой, выходная мощность электродвигателя станет очень низкой. Имеет резон подыскивать конденсатор для трехфазного мотора, начиная с небольшой емкости и равномерно повышая её значение до рационального. В случае если есть возможность, гораздо лучше выбрать емкость измерением тока в электропроводах присоединенных к сети и к рабочему конденсатору, к примеру токоизмерительными клещами. Значение тока должно быть более близким. Замеры следует производить при том режиме, в каком движок будет действовать.

 При определении пусковой емкости исходят, сначала, из требований создания нужного пускового момента. Не перепутывать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

 В случае если по условиям работы запуск электродвигателя случается без нагрузки, то пусковая емкость традиционно принимается одинаковой рабочей, другими словами пусковой конденсатор не нужен. В данном случае схема подключения упрощается и удешевляется. Для такового упрощения и основное удешевления схемы, возможно организовать вероятность отключения нагрузки, к примеру, сделав возможность быстро и комфортно изменять положение мотора для падения ременной передачи, либо сделав для ременной передачи прижимающей ролик, к примеру, как у ременного сцепления мотоблоков.

двигатель с ременной передачей под нагрузкой

Запуск под нагрузкой требует присутствия доборной емкости (Сп) подключаемой временно пуска двигателя. Повышение отключаемой емкости приводит к возрастанию пускового момента, и при неком конкретном ее значении момент достигает собственного наибольшего значения. Дальнейшее повышение емкости приводит к обратному эффекту: пусковой момент начинает убавляться. 

 Отталкиваясь от условия пуска двигателя под нагрузкой ближайшей к номинальной, пусковая емкость обязана быть в 2-3 раза более рабочей, то есть, в случае если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора обязана быть 80-160 мкФ, что обеспечит пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Хотя в случае если двигатель имеет маленькую нагрузку при запуске, емкость пускового конденсатора быть может меньше либо ее может и небыть вообще.

 Пусковые конденсаторы действуют недолговременное время (всего несколько секунд за весь период подключения). Это дает возможность использовать при запуске двигателя более дешевые пусковые электролитические конденсаторы, специально созданные для данной цели.

 Заметим, что у двигателя присоединенного к однофазной сети через конденсатор, работающего в отсутствии нагрузки, по обмотке, питаемой через конденсатор, следует ток на 20-30% превосходящий номинальный. Потому, в случае если движок используется в недогруженном режиме, то емкость рабочего конденсатора надлежит минимизировать. Но тогда уже, в случае если движок запускался без пускового конденсатора, последний имеет возможность потребоваться.

 Гораздо лучше применять не 1 великий конденсатор, а несколько гораздо меньше, частично из-за способности подбора хорошей емкости, подсоединяя добавочные либо отключая ненадобные, последние применяют в качестве пусковых. Нужное число микрофарад набирается параллельным соединением нескольких конденсаторов, отталкиваясь от того, что суммарная емкость при параллельном соединении подсчитывается по формуле:

 Cобщ = C1   C1   ...   Сn.

паралельное соединение конденсаторов для трехфазного двигателя

Параллельное соединение конденсаторов

Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности :

обмотки электродвигателя 220/380 В соединяем треугольником, а конденсатор С1 включаем, как обычно, параллельно одной из них. Конденсатору будет "помогать" дроссель L1, включенный параллельно другой обмотке.

трехфазный двигатель с дроселем и конденсаторами

 В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

рабочии конденсаторы для трехфазного двигателя Быстрое подключение маломощного трехфазного электродвигателя

Определение начала и конца фазных обмоток асинхронного электродвигателя

elektt.blogspot.com