Устройство автомобильного газового амортизатора


Автомобильные амортизаторы, принцип работы, как установить газовые амортизаторы.

Роль амортизаторов в автомобиле достаточно велика. Их задача не только обеспечивать комфортное времяпрепровождение за рулем, но и максимальную устойчивость на дороге. Следовательно, от их качества зависит уровень управляемости транспортного средства. Структура подвески подразумевает наличие пружины, которая осуществляет нейтрализацию толчков и ударов. Также, смягчение происходит за счет шин. Но без рассматриваемых устройств, добиться должного результата невозможно. Они контролируют пружинный механизм, принимая на себя часть колебательной энергии.

Виды автомобильных амортизаторов

Наиболее распространенные амортизаторы состоят из двух цилиндров.

Гидравлические двухтрубные механизмы являются классическими устройствами, так как разработаны они давно и используются достаточно долгое время.

Речь пойдет о газовых амортизаторах, строение которых подразумевает наличие одной трубы. Но отличие не только в этом.

Здесь, для устранения колебательных движений используется газообразное вещество.

Использование газовых амортизаторов

Так как структура газовых амортизаторов сильно отличается от масляных, то исключается протечка, что является большим плюсом.

В масляном амортизаторе в результате потери непроницаемости поршня, вытекшее масло может стать причиной его порчи.

Также, при возрастании температуры, полезные свойства масла утрачиваются, что ведет к понижению КПД.

Использование газовых амортизаторов ведет к понижению комфортности езды из-за увеличения жесткости подвески автомобиля.

Это связано с их жесткостью.

Если повысить давление газа, то реакция на нагрузку становиться более резкой.

Из-за плотности газа, движение штока затрудняется.

В связи с этим их использование распространено в мире автоспорта, либо автомобилистов, которые закрывают на это глаза.

Большинство важных систем автомобиля устанавливаются с предельной внимательностью, монтаж амортизаторов не исключение.

Если все сделать в соответствии с правилами, срок службы можно продлить до четырех лет.

Не маловажную роль в долговечности играет периодический осмотр автомобиля.

Качество вождения будет способствовать сохранению амортизаторов в работоспособном состоянии больший срок.

Амортизаторы заменяются, если ухудшается функционал автомобиля.

В это входит сокращение тормозного пути, снижение скорости при осуществлении маневра, которая обеспечивала бы безопасность.

Также, если приходится снижать скорость при эксплуатации автомобиля в дождливую погоду.

Профессионалы, рекомендуют осуществлять проверку каждые 20 000 км пробега.

Замена газовых амортизаторов, общие положения

Замена амортизаторов по отдельности не рекомендуется.

Это будет способствовать нарушению координации автомобиля, из-за разности давления, да и вообще принципа действия.

Таким образом, снижаются основные функции.

Чтобы избежать возможные последствия, следует ознакомиться с технической документацией на автомобиль, где должна иметься информация по замене амортизаторов.

Автомобиль устанавливается на смотровой яме или вывешивается на подъемнике, только после этих мероприятий приступаем к замене амортизаторов.

Проведя осмотр, незначительно откручивается центральная гайка на штоке.

Производить процесс снятия рекомендуется по отдельности, т. е. одно амортизирующее устройство или одна стойка.

Связано это с возможным повреждением шарниров подвески или тормозных труб.

Разобрав стойку, осуществляется очистка резервуара от чужеродных элементов.

Предварительно, до установки, проводиться контрольная проверка на наличие масла или антифриза в резервуаре, их там быть не должно.

Также, необходимо осмотреть дополнительные детали, которые устанавливаются обратно.

Проверяется их целостность, при необходимости, заменяются.

Если устанавливая сварной патрон, чувствуется препятствие, то здесь велика вероятность изменения формы резервуара.

Здесь целесообразнее увеличение его отверстия, для проведения сборки. Гайка штока закручивается до конца, только после становления автомобиля на колеса.

Поставив автомобиль, следует осуществить манипуляции, которые приведут к раскачиванию его по вертикальной оси.

Далее при помощи ключа со встроенным динамометром проводится затягивание шарниров и втулок.

Завершив монтаж, осуществляется проверка системы.

Для этого автомобиль спереди или сзади приподнимается.

После того как поднимаемая часть самостоятельно опустилась, устанавливается длина отрезка между бампером и полом.

После, также с одной из сторон, осуществляется надавливание и соответственно, замер того же отрезка.

Разница между установленными данными не должна быть больше 1,5 см. В обратном случае необходимо предпринимать меры по выявлению причины, которые приводят к возникновению трения.

Для того чтобы не возникло проблем при установке, осуществляется предварительная проверка комплектующих подвески.

Здесь выбираются детали, которые максимально задействованы в работе, вследствие чего подвергаются большему износу.

Из-за образования газовой подушки возникают посторонние звуки. Для того чтобы их не было осуществляется прокачка.

Прокачка амортизаторов перед установкой

На пять секунд устройство переворачивается штоком вниз;

Осуществляется сжатие и снова пятисекундное ожидание;

После, он переворачивается, в сжатом положении, в рабочее. После чего необходимо подождать тот же период времени;

Нужно чтобы шток немного поднялся, при этом его придерживают рукой;

Процесс повторяется несколько раз.

Прокачав амортизатор, его положение должно быть вертикальным, вплоть до установки.

Рекомендуется осуществлять замену масла для охлаждения, после каждой смены деталей системы амортизации.

Это связано с возникновением конденсата.

В зимний период времени, из-за подобных образований, возможен выход из строя системы, так как влага, кристаллизуясь, препятствует должной работоспособности.

В качестве замены, перспективнее использовать те, которые выпущены одним и тем же производителем.

Хотя существуют взаимозаменяемые амортизаторы, но другой марки.

Кто-то из не подходящего амортизатора пытается сделать что-то похожее на родное устройство.

В целях экономии они подгоняются по размеру.

Осуществляется это не самым разумным способом. Устройство укорачивается или удлиняется.

Конечно, это отразится на качестве данных изделий, но главное, ставиться под угрозу безопасность эксплуатации.

prosedan.ru

Газовые амортизаторы – принцип работы, плюсы и минусы, прокачка + видео

Все существующие виды устройств, гасящих колебания, подразделяются на масляные и газовые амортизаторы. Эти колебания возникают от действия подвески во время движения автомобиля, и объект внимания нашей статьи призван компенсировать их. В противном случае автомобиль будет сильно раскачиваться во всех направлениях, даже при небольшой скорости. Нарушается равновесие машины, и становится невозможно передвигаться с большой скоростью.

Принцип работы газового амортизатора и значение его прокачки

Принцип работы газового амортизатора основан на использовании газа в качестве действующего вещества. Газ с трудом проходит через маленькое отверстие между камерами, и шток замедляет свое возвратно-поступательное движение. В отличие от масляного, устройство газового амортизатора включает в свою конструкцию газ, закачиваемый под высоким давлением. Именно с помощью газа, помещенного в цилиндр, компенсируются колебания кузова.

Преимуществом газового агрегата является более высокое давление газа по сравнению с маслом, что обеспечивает ему дополнительную жесткость. Таким образом, происходит обеспечение наиболее надежного и устойчивого сцепления с покрытием дороги при передвижении на высокой скорости. С целью значительного увеличения срока службы необходима прокачка газовых амортизаторов перед установкой.

В результате прокачки ресурс этих агрегатов возрастает приблизительно на 40 %, они становятся способны выдерживать гораздо больший вес, чем масляные амортизаторы. Эта операция должна выполняться в строго вертикальном положении, при этом шток должен быть направлен вверх до того момента, пока он не будет установлен на свое место.

Следует обратить особое внимание, что амортизатор газовый двухтрубный, который не был прокачан, может привести к выходу из строя его поршневой системы. Причиной этому служит воздух, остающийся внутри гильзы.

Какие еще газовые амортизаторы могут быть в автомобиле?

Необходимо учитывать, что прокачка должна проводиться не менее двух или трех раз, некоторые виды амортизаторов требуют до 8 повторов. Таким образом, клапанный механизм предохраняется от заклинивания и других неисправностей. В настоящее время они используются не только в системе подвески автомобиля, но и в механизмах открывания различных частей кузова.

Например, амортизатор капота газовый не предназначен для больших нагрузок, поэтому его конструкция имеет отличия от обычных моделей. Он не должен быть слишком коротким, а в зимнее время следует избегать резких рывков. Теми же свойствами должен обладать газовый амортизатор крышки багажника. Здесь все зависит от того, какова интенсивность его эксплуатации. Данная конструкция как раз и предполагает частое использование багажного отделения. При условии его правильной эксплуатации это вполне долговечный механизм.

Как прокачать газовый амортизатор – полезные советы

Следует отметить и отрицательные свойства газовых амортизаторов, которые могут иметь решающее значение при выборе. Основным недостатком считается высокая цена, которая может превышать стоимость масляных вариантов в несколько раз. В случае выхода из строя газовая конструкция практически не подлежит ремонту и требует полной замены.

При движении по плохой и неровной дороге жесткость газового амортизатора может существенно повлиять на комфорт водителя и пассажиров. Кроме того, не все машины с мягкой подвеской, рассчитанные на масляный вариант, могут выдержать жесткие условия новой подвески, вплоть до получения серьезных повреждений.

Поэтому при выборе этих деталей следует, в первую очередь, учитывать реальные условия эксплуатации автомобиля. В противном случае вместо комфортной и безопасной езды может сложиться аварийная ситуация, с тяжелыми последствиями (как для машины, так и для водителя), которая повлечет за собой значительные материальные затраты. Несмотря на все это, если вы решились на это приобретение, описываем порядок действий, как прокачать газовый амортизатор.

    1. Амортизатор устанавливаем вертикально штоком вниз, то есть вверх ногами от его естественного будущего положения в автомобиле. Спокойно, без резких движений сжимаем его до упора и держим в таком положении 2-3 секунды.
    2. Не меняя состояния амортизатора, переворачиваем его теперь уже вверх штоком и держим еще 3-6 секунд. Плавно отпускаем шток до полного распрямления.
    3. Теперь амортизатор переворачиваем опять вниз головой, держим его 3 секунды и опять повторяем операции 1 и 2. Всего это следует сделать до 8 раз, но не менее 5. Добиться при этом нужно того, чтобы ход штока был плавным, без рывков и проскоков. После получения такого результата амортизатор лучше установить сразу в автомобиль либо хранить его исключительно вертикально до самой установки.

carnovato.ru

Как устроены амортизаторы

Амортизатор — устройство, превращающее механическую энергию в тепловую. Служит для гашения колебаний (демпфирования) и поглощения толчков и ударов, действующих на корпус (раму). Амортизаторы применяются совместно с упругими элементами пружинами или рессорами, торсионами, подушками и т. п.

Главной задачей амортизаторов является удержание колеса в постоянном контакте с дорогой во избежание потери контроля над автомобилем. Т.е. колесо должно как можно мягче и четче обогнуть препятствие и так же четко и быстро вернуться на дорогу, обеспечивая необходимое сцепление. При этом сам вес автомобиля держат в основном пружины или рессоры.

Не следует путать амортизатор и газовую пружину. Последние также часто встречаются в автотехнике и быту, но имеют другое назначение. Справедливости ради надо отметить, что чистых амортизаторов почти не встречается, они всегда подпружинены избыточным давлением газа в бустере. Чистые газовые пружины (без дополнительного сопротивления движению), наоборот, встречаются довольно часто.

Принцип действия амортизаторов

Все амортизаторы работают по принципу преобразования кинетической энергии в тепловую. Конкретный вид такого преобразования определяется типом амортизатора: гидравлический, фрикционный, релаксационный.

Классификация амортизаторов

Односторонний амортизатор

У амортизатора такого типа сопротивление при ходе, соответствующем сжатию подвески, незначительно, а основное поглощение энергии происходит при отбое. Благодаря этому они обеспечивают несколько более плавный ход, однако с ростом неровностей дороги и скорости подвеска не успевает занять исходное положение до следующего срабатывания. это приводит к «пробоям» и заставляет водителя снизить скорость. С появлением около 1930-го года амортизаторов двойного действия одноходовая конструкция постепенно вышла из употребления.

Двусторонний амортизатор

Амортизатор, который действует (работает) в двух направлениях, то есть амортизатор поглощает энергию при движении штока в обе стороны, передавая, однако, при этом и некоторую часть усилия толчков на кузов при прямом ходе. Такая конструкция амортизатора эффективнее, чем амортизатор односторонний, в том смысле, что может быть построена с учётом необходимого компромисса между плавностью хода и стабильностью автомобиля на дороге. Для скоростных автомобилей характерны более «жёсткие» настройки, для комфортабельных пассажирских — более «мягкие», где бОльшая часть работы амортизатора приходится на отбой.

На автотранспорте, как правило, эффективность «рабочего хода» амортизатора (сжатие, наезд колесом на препятствие) делают меньше, чем эффективность отбоя (обратного движения). В этом случае (при сжатии) амортизатор меньше передаёт толчки от неровностей на кузов, и (при растяжении) «придерживает» колесо от ударов его пружиной о дно выбоин дороги.

Фрикционные амортизаторы

Фрикционные (механические) амортизаторы в простейшем случае представляют из себя трущуюся пару с фиксированным усилием сжатия. Возможна конструкция с сопротивлением, пропорциональным перемещению, с оперативно регулируемым усилием и т.д. Очевидным свойством фрикционных амортизаторов является независимость их сопротивления от скорости перемещения рычага. Поэтому они в прямом смысле слова являются демпферами, так как выполняют только одну из указанных в определении амортизатора функций — гашение колебаний. Достоинства — простота и относительная ремонтопригодность, пониженные требования к механической обработке деталей, условиям эксплуатации, стойкость к мелким повреждениям. Принципиальные недостатки — неустранимый износ трущихся поверхностей и наличие некоторого усилия страгивания, избавиться от которого без усложнения механики невозможно. Как результат — на автомобилях данный тип амортизаторов давно не применяется, сохраняясь лишь на отдельных образцах военной техники. Также в лёгких и/или низкоскоростных транспортных средствах (мопеды, тракторы и т. п.) роль фрикционного гасителя колебаний может выполнять трение между деталями подвески.

Гидравлические амортизаторы

Гидравлические амортизаторы построены по принципу протекания жидкости через систему отверстий и производства гидравлического сопротивления (как на сжатие, так и на отбой).

Конструкция гидравлических амортизаторов всех производителей идентична, за исключением небольших нюансов (например, систем регулировки жесткости). Во всех вариантах конструкции основным рабочим элементом является гидравлическая жидкость (масло, оно же обеспечивает смазку). Газ не является демпфирующим элементом и предназначен для создания т.н. «компенсационного объема», т.к. жидкость практически не сжимаема. При отсутствии компенсационного объема внутри цилиндра резкое перемещение поршня вызывало бы удар в «прочную стену» масла, которое ввиду высокой инерции еще не начало течь через отверстия клапанов.

Сила сопротивления гидравлического амортизатора зависит от скорости перемещения штока. Жесткость зависит от начальной настройки перепускных клапанов (для амортизаторов массового предназначения начальную настройку задает производитель на заводе однократно на все время эксплуатации; в амортизаторах спортивного назначения жесткость может регулировать пользователь), изначальной вязкости жидкости (масла) и температуры окружающей среды, которая влияет на вязкость масла.

Для всех гидравлических амортизаторов актуальна задача увода тепла. Гидравлические двухтрубные амортизаторы хуже отводят тепло, в сравнении с однотрубными амортизаторами высокого давления, т.к. «генератор тепла» (цилиндр) по центру закрыт сверху вторым соосным цилиндром, который наполнен компенсационным газом и маслом. Чем выше вязкость жидкости или меньше перепускные отверстия поршня, тем выше жесткость амортизатора и больше выделяется температуры при его работе.

При значительном морозе масло, находящееся внутри амортизатора, может загустеть, что сделает амортизатор более жестким. Характеристики могут меняться до нескольких десятков процентов.

Поскольку все современные гидравлические амортизаторы — газомаслянные, газ и масло могут смешиваться в процессе работы. Причина в том, что жидкость проходит через «узкости» (зазоры в клапанах, каналы, сверления) с очень большими скоростями и при пониженных давлениях, в результате чего возникает кавитация (образование пузырьков разрежения) и рост температуры. Кавитация не только разрушает детали амортизатора, но и резко снижает эффективность демпфирования, т.к. образовавшаяся пена, в отличие от масла, хорошо сжимаема.

Расположение амортизатора

Наиболее выгодное, с точки зрения работы, расположение амортизатора – как можно ближе к колесу, точно перпендикулярно плоскости подвески. Установка амортизатора под углом (как это часто бывает) снижает его демпфирующую эффективность. Отклонение от перпендикуляра подвески на +/– 50 градусов снижает эффективность амортизатора до 68%.

Часто можно встретить амортизаторы с надетой на них пружиной (обычно на однотрубных стойках). Так добавляется дополнительный упругий элемент, а порой он и вовсе заменяет основную пружину. Такие конструкции часто имеют возможность регулировки клиренса автомобиля. Подкручивая особую винтовую гайку на корпусе амортизатора, поддерживающую пружину снизу, можно поднять или опустить автомобиль, соответственно поджав либо отпустив пружину.

Конструкция амортизаторов

Гидравлические рычажные амортизаторы

Применялись в автомобилестроении до 50х-60х годов. Были весьма эффективны и практически вечны (единственная изнашивающаяся деталь такого амортизатора — резиновые сальники на оси рычага, которые со временем начинают подтекать — легко заменяется, после чего амортизатор может проработать ещё несколько десятилетий), но дороги в производстве. На фото ниже — рычажный гидравлический амортизатор в передней подвеске ГАЗ М-21И (совмещён с верхним рычагом подвески).

Гидравлические двухтрубные амортизаторы

В 50-х годах получили распространение трубчатые амортизаторы, так называемого «авиационного типа», которые постепенно вытеснили рычажные. Двухтрубный амортизатор состоит из двух соосных (одна в одной) труб, внешняя из которых является корпусом, внутренняя заполнена рабочей жидкостью и в ней перемещается поршень с клапанами. Пространство между трубами заполнено запасом жидкости для охлаждения и компенсации утечек, а также воздухом — для компенсации изменения объёма (температурное расширение жидкости и вход-выход штока; рисунок А).

Такую же конструкцию имеют двухтрубные гидравлические амортизаторы с газовым подпором низкого давления («гидропневматические», рисунок В). Основное отличие в том, что вместо воздуха под атмосферным давлением находится инертный газ (чаще азот) под некоторым давлением (т.н. «газовый подпор», от 4 до 20 атм и более, в зависимости от назначения). Значение давления газа может быть различным для разных условий эксплуатации автомобиля. Чем больше диаметр амортизатора, тем меньшее давление газового подпора необходимо. Оно также может различаться для передних и задних амортизаторов.

Газ под давлением уменьшает проблему аэрации (вспенивания) масла, но не решает ее целиком. Также газовый подпор способствует поддержанию автомобиля, выполняя роль дополнительного демпфера. Возможность менять давление подпора делает такие амортизаторы более гибкими в настройке, чем обычные гидравлические.

Двухтрубные амортизаторы применяются в «гражданском» автомобилестроении с низкими нагрузками (под обычные хорошие дороги). В автоспорте не применяются, т.к. не соответствуют требованиям снижения неподрессоренных масс, стабильности, надежности и рабочего ресурса в условиях проведения спортивных мероприятий. Исключением является дрифтинг, где могут применяться двухтрубные амортизаторы с повышенным давлением компенсационного газа (около 6-8 атмосфер), т.к. соревнования проходят только на очень ровном дорожном покрытии и невысоких скоростях.

Преимущество газовых амортизаторов реально можно заметить только при эксплуатации в тяжелых условиях — на плохих дорогах, высоких скоростях, в жаркую погоду. При обычной «гражданской» эксплуатации распознать тип амортизатора по его поведению почти невозможно.

При сжатии амортизатора шток (1) складывается, и масляные потоки, находящиеся между донным (7) клапаном и поршнем (2) в рабочем цилиндре (5), без сопротивления проходят выше поршня. Одновременно масло, замещаемое штоком, вынуждено течь через донный клапан во внешнюю трубу-резервуар (6), заполненный воздухом (1 бар) или азотом (4-8 бар). Сопротивление, с которым сталкивается масло при прохождении через отверстия донного клапана, производит демпфирование сжатия.

При отбое шток выдвигается, и масло, находящееся выше поршня, вынуждено течь через поршень. Сопротивление, с которым оно сталкивается, создает демпфирование отбоя. Одновременно, немного масла перетекает из резервуара (6) через донный клапан в нижнюю часть рабочего цилиндра, чтобы компенсировать освободившийся объем штока.

Достоинства двухтрубных амортизаторов:

Недостатки двухтрубных амортизаторов:

Однотрубные гидравлические амортизаторы с газовым подпором высокого давления

Однотрубный амортизатор представляют из себя трубу, заполненную рабочей жидкостью, в которой перемещается поршень с клапанами (т.н. схема De Carbon). Для компенсации изменения объёма рабочей жидкости (температурные и вход-выход штока) «дно» цилиндра заполнено газом, отделённым от рабочей жидкости плавающим поршнем-перегородкой. Давление газа, как правило около 18-30 атмосфер (для улучшения характеристик рабочей жидкости при нагреве и устранения вероятности возникновения кавитации).

Однотрубные амортизаторы не имеют нижнего клапана сжатия, как двухтрубные. Это означает, что всю работу по управлению сопротивлением и при сжатии, и при отбое берет на себя поршень. В тех же габаритах, что и двухтрубные амортизаторы, внутренний диаметр рабочей колбы и диаметр поршня будет больше, что означает больший объем масла, более стабильные характеристики и лучшую теплоотдачу.

Однотрубные амортизаторы при сжатии, в отличие от двухтрубных, не имеют резервуара для излишков масла, замещаемых поршнем (2). Это решено за счет изменения вместимости масла в рабочем цилиндре (5). Цилиндр не полностью заполнен маслом — в нижней его части находится азот под давлением 20-30 бар (G). Газ и масло разделены плавающим поршнем (8). Когда шток утапливается, плавающий поршень также двигается вниз. Увеличивается давление и в газовой, и в масляной секции. Масло, находящееся ниже рабочего поршня (2), вынуждено проходить через него выше. Сопротивление, возникающее при этом, создает демпфирование сжатия.

При отбое, когда шток выдвигается, масло, находящееся выше рабочего поршня, вынуждено течь через него ниже. Сопротивление, возникающее при этом, создает демпфирование отбоя. В то же время, часть штока выходит за пределы рабочего цилиндра и освободившееся место занимает расширяющийся в нижней части газ. Разделительный плавающий поршень перемещается вверх.

Достоинства однотрубных амортизаторов:

Недостатки однотрубных амортизаторов:

Однотрубные амортизаторы с выносной компенсационной камерой

Своего рода эволюцией однотрубных амортизаторов являются «однотрубники» с выносной компенсационной камерой. В них камера с газовым подпором вынесена за пределы самого амортизатора в отдельный резервуар. Такая конструкция позволяет:

Однотрубный амортизатор перевернутой конструкции

У некоторых производителей встречаются однотрубные амортизаторы, которые выглядят, как обычные амортизаторы, но с очень толстым «штоком», диаметр которого почти равен диаметру корпуса. Это амортизаторы такой же однотрубной конструкции, как и представленные выше (рис. C). Отличие заключается в том, что хромированным «штоком» таких амортизаторов на самом деле является корпус амортизатора (красная часть на рис. C), а видимым «корпусом» является корпус стойки, обеспечивающий и функцию пыльника. Реальный шток этих амортизаторов такой же тонкий, как и у традиционных однотрубных амртизаторов. Фактически, это такой же амортизатор, только перевернутый вверх ногами, а нижние и верхние крепежные элементы остались на своих местах.

Обычно, приводятся определенные преимущества такой конструкции, хотя на самом деле, она продиктована необходимостью: в подвеске типа МакФерсон, амортизатор является направляющей и испытывает нагрузки не только вдоль оси штока, как у классических амортизаторов, но и боковые. Поэтому, двухтрубные амортизаторы для подвески МакФерсон имеют более толстые штока. Но использовать толстый шток в амортизаторе однотрубной конструкции нет возможности — вытесняемому таким штоком маслу некуда деться, объем компенсационной камеры недостаточен. Поэтому, чтобы обеспечить необходимую жесткость однотрубного амортизатора с тонким штоком для боковых нагрузок, применяется перевернутый тип, в котором реальный корпус амортизатора движется относительно корпуса стойки, а реальный шток закреплен в нижней части и неподвижен.

Релаксационные амортизаторы

Релаксационные амортизаторы — перспективное направление развития гидравлических телескопических амортизаторов, построенное на основе эффекта сжатия (релаксации) жидкости в саморегулирующихся конструкциях. В той или иной степени этот эффект присущ всем гидравлическим амортизаторам. В релаксационных амортизаторах максимум эффекта сопротивления приходится на конец хода сжатия. В наибольшей степени релаксационный эффект проявляется на малых ходах и высокой частоте колебаний подвески. Амортизаторы релаксационного типа позволяют получить переменную характеристику сопротивления в зависимости от величины перемещения штока, что обеспечивает интенсивное гашение колебаний при малых ходах подвески (дорога с небольшими неровностями) и традиционную характеристику при больших ходах.

Типовые дефекты гидравлических амортизаторов

Дефекты в основном сводятся в две группы:

Трогаясь после длительной стоянки на сильном морозе, неразумно «преодолевать» участки разбитой дороги на повышенной скорости: загустевшее масло не способно продавливаться через каналы, сверления, и амортизатор оказывается «заблокирован». Необходимо постепенно прогревать амортизаторы на небольших неровностях.

Известны случаи, когда автолюбители покупали на рынке фальсифицированные амортизаторы, заправленные вместо масла водой! Замерзнув, она разрывает амортизатор.

Обычный двухтрубный амортизатор немного коварен. При небольшом подтекании жидкости его работа ухудшается не сразу — и водитель привыкает к меняющемуся (хотя и не в лучшую сторону) поведению автомобиля. В конце концов тот становится просто небезопасным — об этом нужно помнить.

Газовый амортизатор высокого давления об утечке жидкости заявляет быстро: под давлением газа разделительный поршень начинает приближаться к рабочему — вскоре вы услышите стуки от их соударения. Отказавшую газовую стойку выдает и появившийся крен автомобиля в ее сторону, так как при утечке жидкости газ расширяется, а его давление падает.

Первоисточники

Page 2

Фирма Nissan в системах полного привода всегда шла своим инженерным путём, создавая интересные и достаточно сложные конструкции. При этом Nissan практически не использовал постоянный 4WD в прошлом и совсем не использует его сейчас, сконцентрировавшись на дешёвом 4WD on-demand на базе электромагнитных муфт. Таким образом, кроме «тяжелых» вариантов part-time, 4WD от Nissan в основном предназначен для повышения управляемости на скользких покрытиях и слабо подходит для улучшения проходимости. Хотя бы потому, что электромагнитную муфту, на которых построены все современные конструкции Nissan, очень просто перегреть, а при отказе ABS она и вовсе откажется работать.

Full-Time

Единственная массовая схема «честного» 4WD реализуется всего на нескольких исходно-переднеприводных моделях (Rasheen, Liberty, R’nessa, часть Avenir’ов). Здесь имеются все три дифференциала (межосевой блокируется вискомуфтой), а момент равномерно распределяется между осями. Данный принцип аналогичен тойотовской стандартной схеме второго поколения (STD II).

V-Flex (он же — Coupling Assy-Hydraulic)

На большинстве исходно-переднеприводных моделей ранее традиционно устанавливалась схема подключаемого заднего привода (иногда употребляется термин «Full Auto Full Time», но по аналогии с тойотовской, ее проще называть V-Flex).

Межосевой дифференциал в ней отсутствует, момент отбирается напрямую от корпуса переднего межколесного дифференциала и направляется к выходу раздаточной коробки, где установлена вискомуфта. Муфта соединяет выходной вал раздатки и карданный вал только при значительной пробуксовке передних колес. В остальное время машина остается переднеприводной (по другим данным, муфта Nissan скорее «отключаемая», чем «подключаемая»).

На моделях TEANA (J31), LAFESTA (B30), WINGROAD/AD (Y11), PRAIRIE (M12), AVENIR (W11), PRESAGE (U30, U31), BASSARA (JU30), PRIMERA (P12), EXPERT (VW11), SERENA (C24, C25) муфта имеет собственную конструкцию, отличную от обычных вискомуфт (см. ниже) и установлена на корпусе заднего дифференциала, т.е. уже за карданным валом. Это отличие никак не влияет на общие свойства конструкции.

При заклинивании вискомуфты такая машина становится постоянно-жестко-полноприводной, что может привести к поломке трансмиссии на твердых покрытиях.

Впоследствии V-Flex был практически полностью вытеснен схемой ATC.

Конструкция вискомуфты Coupling Assy-Hydraulic

Корректнее называть эту муфту «вязкостной» (viscous coupling Nissan), однако при переводе на русский оба термина корректны.

Ведущий вал муфты имеет на своем конце диск с наклонной рабочей поверхностью. При возникновении разности скоростей вращения ведущего и ведомого валов, поршневые насосы (плунжеры) по всему периметру наклонной шайбы приходят в движение и нагнетают давление в рабочий контур вязкостной муфты, при этом обратные клапана сжимают фрикционный пакет в нижней части муфты, что и приводит к передаче момента от ведущего вала к ведомому.

Муфты имеет центробежные клапаны, которые открываются на больших оборотах вала и снижают давление в рабочем контуре муфты. Чем выше обороты, больше открыты клапаны и тем больше падение давления. Тем самым блокировка муфты на высоких скоростях ослабляется и характер машины становится более переднеприводным. С какого-то момента при росте скорости муфта фактически «отпускает» заднюю ось.

При минимальных скоростях вращения давление в рабочем контуре муфты ниже минимально возможного для блокировки фрикционов, поэтому муфту можно даже прокрутить от руки.

Симптомы заклинившей вискомуфты Coupling Assy-Hydraulic

Вид на автомобиль со стороны. Автомобиль испытывает большое сопротивление движению в повороте, независимо от покрытия дороги. Видео замедлено для наглядного выделения пробуксовки заднего внутреннего колеса.

На втором видео отчетливо видно, что заднее колесо пытается крутиться быстрее, чем при обычном движении. Происходит это потому, что в повороте все 4 колеса автомобиля проходят разное расстояние и имеют разные угловые скорости вращения. При жесткой блокировке «дальнее» внешнее колесо, проходящее бОльший путь, «тащит» за собой внутреннее колесо, заставляя его крутиться быстрее, что создает очень большие ударные нагрузки на все элементы трансмиссии.

ATC

Наиболее распространенная сейчас система ATC (Active Torque Control) для исходно-переднеприводных моделей (Serena, Presage U31, Primera P12, другая часть Avenir’ов, свежий Wingroad, свежий Sunny) аналогична такой же тойотовской. В обычном состоянии привод осуществляется только на передние колеса, задний мост подключается электромеханической муфтой, установленной на корпусе редуктора. Подключение автоматически осуществляет электронный блок управления в зависимости от условий движения (в основном, ориентируясь на пробуксовку передних колес), при этом муфта позволяет более-менее плавно изменять подаваемый назад момент.

Та же схема применена и на X-Trail (All-Mode 4×4 и All-Mode 4×4-i), причем здесь управление подключением сделано более прозрачным для водителя — режим «2WD» вообще отключает задний привод, в режиме «Auto» подключением и распределением момента управляет автоматика, в режиме «Lock» момент стабильно распределяется между передними и задними колесами в соотношении «57:43». Версия All-Mode 4×4 управляет перераспределением момента только между осями, а версия All-Mode 4×4-i умеет взаимодействовать с системой ESP и в широких пределах перебрасывать момент между отдельными колесами за счет электронных блокировок колес (в том числе блокировать межосевую муфту превентивно, например, при резком нажатии на педаль газа или по командам блока электронной устойчивости). Также в версии «-i» межосевая муфта более устойчива к перегреву и может работать с небольшим постоянным преднатягом (около 10%).

All Mode 4×4-i with TORQUE VECTORING

Существует версия привода All-Mode 4×4-i, названная Nissan All Mode 4×4-i with TORQUE VECTORING (с управлением моментом) и сильно отличающаяся конструктивно (практически идентичную системе VTM-4). Такой привод ставится по меньшей мере на Nissan Juke и имеет не одну, а две электромагнитные муфты, по одной на каждое из задних колес, что позволяет машине «подруливать тягой» в поворотах (изменять момент, передаваемый на каждое из задних колес). В этой схеме отсутствует межосевой дифференциал, а момент перекидывается с постоянной ведущей передней оси на заднюю обычным редуктором.

Каждое из колес задней оси получает момент через свою электромагнитную муфту, что позволяет эффективно бороться с диагональным вывешиванием, имитировать режим дифференциалов повышенного трения, превентивно «зажимать» привод при разгоне, выполнять активное подруливание задней осью в повороте. Однако, т.к. вариатор абсолютно не способен переносить сколько-нибудь значимую нагрузку сколько-нибудь значимое время, толку от этой схемы у Nissan, в отличие от VTM-4, немного.

TOD

Фирменная система управления полным приводом (как исходно-переднеприводных, так и исходно-заднеприводных машин) часто называется ATTESA (Advanced Total Traction Engineering System for All), но Ниссан использует это имя слишком произвольно, так что для характеристики конкретного типа привода его применять бесполезно. Поэтому мы придерживаемся более известных наименований.

Схема ATTESA E-TS (Electronic Torque Split) (фактически, «Torque-on-Demand» — в данном случае, автоматически подключаемый передний мост) является основной для исходно-заднеприводных моделей. Межосевой дифференциал отсутствует, постоянный привод — задний. Момент на передние колеса отбирается при пробуксовке задних колес посредством гидромеханической муфты с электронным управлением. При этом его величина может плавно изменяться в пределах от нуля до почти 50% общего усилия.

На некоторых моделях имеется возможность кнопкой принудительно включить режим «4WD» (режим максимальной блокировки муфты) — разумеется, до достижения автомобилем определенной скорости.

Подобная схема, отличающаяся от TOD наличием понижающей передачи, используется и на некоторых средних джипах (например, Terrano/Regulus R50).

Считающийся порой чем-то исключительным, полный привод Nissan GT-R представляет собой тот же самый TOD, дополненный в одной из версий этой модели задним дифференциалом «Active LSD», блокирующимся аналогичными гидромеханическими муфтами.

Хотя подобная система устанавливается не для достижения высокой проходимости, но GT-R — одна из тех машин, которая в самом деле может «выехать на одной паре колес». Плюсы — блокировка имеет приличный коэффициент, срабатывает быстро и «когда надо».

GT-R R35

GT-R R35 имеет два карданных вала (один в системе 4WD, второй обеспечивает разнесение двигателя и трансмиссии). Углепластиковый карданный вал передает крутящий момент от двигателя на преселективную КПП с двумя пакетами «мокрых» фрикционов. Далее тяга через самоблокирующийся дифференциал подается к задним колесам. Внутри КПП установлен также отбор мощности через многодисковую электромагнитную муфту, аналогично 4WD ATTESA E-TS.

В нормальных условиях муфта разомкнута, и Nissan GT-R — заднеприводный. Но при пробуксовке задних колес, в поворотах и при разгоне электроника частично или полностью замыкает муфту и часть тяги подается через двойной стальной карданный вал и «свободный» передний дифференциал к передним колесам. Продолжительность и степень блокировки муфты устанавливается на основе анализа поперечных и продольных ускорений, угла поворота руля, пробуксовки колес, а также основного новшества — дополнительного yaw-сенсора (определяет разницу между фактическим моментом, поворачивающим автомобиль вокруг вертикальной оси, и его желаемой величиной, заданной углом поворота руля).

e-4WD

Весьма изощренная система подключаемого полного привода применена на свежих моделях особо малого класса (March K12). Здесь в режиме «4WD» блоку управления разрешается автоматически включать электродвигатель, который через муфту сцепления и понижающий редуктор начинает вращать задние колеса.

Nissan LSD

Изложенное ниже действительно для всех дифференциалов повышенного трения Datsun/Nissan.

Nissan использует LSD типа Salisbury, состоящий из сборки фрикционных дисков и колец, которые несут функциональную нагрузку по распределению мощности между колесами.

Терминология

Некоторые детали из LSD отсутствуют в стандартном дифференциале.

Корпус (Case) состоит из двух частей скрепленных болтами — крышки и основной части, внутри которой есть четыре большие проточки, параллельные линии оси. Крышка крепится болтами к зубчатому венцу ведущей шестерни.

Шестерня полуоси (Side Gears) — в LSD слегка отличается от стандартной. Во-первых, по центру проточена «звездочка», в которую вставляется конец оси, а во-вторых, есть 6 проточек по наружному диаметру для установки фрикционнных дисков и колец.

Прижимные кольца (Pressure Rings) — два больших кольца, которые устанавливаются в корпусе дифференциала.

Сателлит (Pinion Gear) — почти не отличается от стандартного. Устанавливается на оси со специальным профилем (установка на сечение B-B на рисунке ниже) , входит в зацепление с шестернями полуосей.

Ось сателлитов (Pinion Shaft) — как сказано выше, на оси крепятся сателлиты (сечение B-B), но кроме этого, средняя часть имеет плоскости (сечение C-C), и единственное отличие от стандартной — это наличие V-образного профиля на концах (сечение A-A). Этот профиль нужен для установки прижимных колец.

Фрикционные диски (Friction Disks) — имеют отверстие с 6 вырезами для крепления на шестерне полуоси. Изготавливаются из стали и имеют различную толщину, 1.5-1.6 мм.

Фрикционные кольца (Friction Plates) — выглядят как диски, только имеют 4 выступа на внешней стороне. Эти выступы входят в пазы на корпусе дифференциала. По толщине идентичны фрикционным дискам.

Пружинные диски и кольца (Spring Disks and Spring Plates). Некоторые LSD (например, Н233В) имеют их, а некоторые нет (С200). Они такие же, как фрикционные диски и кольца. Единственное отличие — те плоские, а эти слегка вогнутые. Техническое название — пружина Бельвиля (Belleville spring). Основное назначение сделать работу LSD более эффективной. Когда эта система установлена, то сборка состоит из пары диск-кольцо на каждой стороне.

Рисунок показывает, как соединены фрикционные кольца, диски, придавливающие диски и шестерни полуосей.

Вид компонентов в собранном виде в разрезе (без соблюдения масштаба):

Порядок сборки:

Принцип действия

Основа — взаимодействие дисков и колец. Диск крепится к шестерне полуоси, а кольцо на корпусе дифференциала. Если шестерня полуоси крутится со скоростью иной, чем скорость корпуса дифференциала (он прикреплен к зубчатому венцу ведущей шестерни), то возникает вращение дисков между кольцами. Принцип трения в связке диск-кольцо-масло и положен в основу действия LSD. Причем сопротивление скольжению пропорционально приложенной силе, чем больше сила тем больше сопротивление.

Одним словом, в обычном режиме передача силы происходит по схеме ведущая шестерня — зубчатый венец, прикрепленный к корпусу дифференциала, и фрикционные кольца, которые тоже соединены с корпусом. Прижимные кольца вращаются вместе корпусом дифференциала и передают вращение на оси сателлитов, те в свою очередь на сателлиты, а сателлиты на шестерни полуосей.

Соответственно, при потере сцепления одного колеса с дорогой возникает разница скоростей между дисками и кольцами. Давление прижимает фрикционные диски к кольцам, и как следствие увеличивается сопротивление скольжению. Если в вашем LSD нет пружин Бельвиля (Belleville spring plates and disks), то срабатывание будет происходить внезапно, а применение этого механизма делает блокировку более плавной.

Для проверки работы дифференциала достаточно вывесить задний мост и попробовать прокрутить одну ось, придерживая другую. Сначала два человека вращают оба колеса в одном направлении, а затем один из них придерживает свое колесо.

Разблокирующее давление (Breakaway Pressure) определяется крутящим моментом, необходимым для того, чтобы диски и кольца начали скользить. На практике это момент, который образуется во время пробуксовки колес. Если приложите крутящий момент на одну ось, а другую ось заблокируете на месте, то эта ось не будет крутиться до достижения определенного давления.

Настройка такого дифференциала проводится только на спортивных машинах и зависит от ряда причин, от колес до подвески. Настройка осуществляется специальными проставками, причем их толщина меняется на десятые доли миллиметра. Так же имеет значение толщина фрикционных дисков и колец. В обычной машине используются стандартные диски и кольца.

Первоисточники

Page 3

Давайте рассмотрим полный привод автомобилей Subaru, который многие называют «самым настоящим, продвинутым и правильным».

Механические коробки нас, по традиции, интересуют мало. Тем более с ними все довольно прозрачно — со второй половины 90-х все субару на механике имеют честный полный привод с тремя дифференциалами (межосевой блокируется закрытой вискомуфтой). Из отрицательных сторон стоит упомянуть слишком усложненную конструкцию, полученную совмещением продольно установленного двигателя и исходно-переднего привода. А также отказ Subaru от дальнейшего массового использования такой несомненно полезной вещи, как понижающая передача. На единичных «спортивных» версиях Impreza STi встречается и продвинутая МКПП с «электронноуправляемым» межосевым дифференциалом (DCCD), где водитель может на ходу изменять степень его блокировки.

1 — входной вал, 2 — механизм понижающей передачи, 2 — ведущая шестерня 3-й передачи, 4- ведущая шестерня 4-й передачи, 5 — ведущая шестерня 5-й передачи, 6 — корпус раздаточной коробки, 7 — ведомая шестерня раздаточной коробки, 8 — хвостовик, 9 — ведущая шестерня раздаточной коробки, 10 — межосевой дифференциал, 11 — вязкостная муфта, 12 — передний выходной вал, 13 — вторичный вал коробки передач, 14 — ведомая шестерня 3-й передачи, 15 — ведомая шестерня 2-й передачи, 16 — ведомая шестерня 1-й передачи, 17 — вспомогательная шестерня 1-й передачи, 18 — передний межколесный дифференциал.

Но не будем отвлекаться. В автоматических трансмиссиях ныне эксплуатируемых Subaru используется два основных типа 4WD.

Active AWD / Active Torque Split AWD

Постоянный передний привод, без межосевого дифференциала, подключение задних колес гидромеханической муфтой с электронным управлением.

1 — демпфер блокировки гидротрансформатора, 2 — муфта гидротрансформатора, 3 — входной вал, 4 — вал привода масляного насоса, 5 — корпус муфты гидротрансформатора, 6 — масляный насос, 7 — корпус масляного насоса, 8 — корпус КПП, 9 — датчик частоты вращения турбинного колеса, 10 — муфта 4-й передачи, 11 — муфта заднего хода, 12 — тормоз 2-4, 13 — передний планетарный ряд, 14 — муфта 1-й передачи, 15 — задний планетарный ряд, 16 — тормоз 1-й передачи и заднего хода, 17 — выходной вал КПП, 18 — шестерня режима «P», 19 — ведущая шестерня переднего привода, 20 — датчик частоты вращения заднего выходного вала, 21 — задний выходной вал, 22 — хвостовик, 23 — муфта A-AWD, 24 — ведомая шестерня переднего привода, 25 — обгонная муфта, 26 — блок клапанов, 27 — поддон, 28 — передний выходной вал, 29 — гипоидная передача, 30 — насосное колесо, 31 — статор, 32 — турбина.

Этот вариант издавна устанавливается на подавляющее большинство Subaru (с АКПП типа TZ1) и широко известен еще по Legacy образца 89 года. По сути, этот полный привод такой же «честный», как и свежий тойотовский Active Torque Control — те же самые подключаемые задние колеса и тот же самый принцип TOD (Torque on Demand). Межосевого дифференциала нет, а задний привод включается гидромеханической муфтой (пакет фрикционов) в раздаточной коробке.

Субаровская схема имеет некоторые преимущества в рабочем алгоритме перед другими типами подключаемого 4WD (особенно простейшими, вроде примитивного V-Flex). Пусть и небольшой, но момент при работе A-AWD передается назад постоянно (если только система не отключена принудительно), а не только при пробуксовке передних колес — это полезнее и эффективнее. Благодаря гидромеханике перераспределять усилие можно немного точнее, нежели в электромеханическом ATC. Кроме того, A-AWD конструктивно долговечнее. У машин с вискомуфтой подключения задних колес существует опасность резкого самопроизвольного «появления» заднего привода в повороте с последующим неуправляемым «полетом», но у A-AWD такая вероятность хоть и не исключена полностью, но значительно снижена. Однако с возрастом, по мере износа, предсказуемость и плавность подключения задних колес существенно уменьшается.

Алгоритм работы системы сохраняется прежним в течение всего времени выпуска, лишь немного корректируясь.

Следует обратить внимание, что все паспортные распределения моментов даются только в статике — при ускорениях/замедлениях развесовка по осям меняется, поэтому реальные моменты на осях получаются другими (иногда «очень другими»), точно также как и при разном коэффициенте сцепления колес с дорогой.

МодельМодификации
Imprezaкроме 2.0T WRX
ForesterSF5A52..53 2.0T, SF5B53 2.0T, SF5C53 2.0T (P#,V#,H#,I#), SF5A56 2.0, SF5B56..57 2.0, SF5C56..57 2.0, SF5A55 2.0T (T/tb до 09.98), SF9B58 2.5, SF9C58 2.5
LegacyBE5 2.0, BE9 2.5, BH5 2.0, BH9 2.5 (P#,C#,M#,K#)

VTD AWD

Постоянный полный привод, с межосевым дифференциалом, блокировка гидромеханической муфтой с электронным управлением.

1 — демпфер блокировки гидротрансформатора, 2 — муфта гидротрансформатора, 3 — входной вал, 4 — вал привода масляного насоса, 5 — корпус муфты гидротрансформатора, 6 — масляный насос, 7 — корпус масляного насоса, 8 — корпус КПП, 9 — датчик частоты вращения турбинного колеса, 10 — муфта 4-й передачи, 11 — муфта заднего хода, 12 — тормоз 2-4, 13 — передний планетарный ряд, 14 — муфта 1-й передачи, 15 — задний планетарный ряд, 16 — тормоз 1-й передачи и заднего хода, 17 — промежуточный вал, 18 — шестерня режима «P», 19 — ведущая шестерня переднего привода, 20 — датчик частоты вращения заднего выходного вала, 21 — задний выходной вал, 22 — хвостовик, 23 — межосевой дифференциал, 24 — муфта блокировки межосевого дифференциала, 25 — ведомая шестерня переднего привода, 26 — обгонная муфта, 27 — блок клапанов, 28 — поддон, 29 — передний выходной вал, 30 — гипоидная передача, 31 — насосное колесо, 32 — статор, 33 — турбина.

Схема VTD (Variable Torque Distribution) применяется на менее массовых версиях с автоматическими коробками типа TV1 (и TZ102Y, в случае Impreza WRX GF8) — как правило, наиболее мощных в гамме. Здесь с «честностью» все в порядке — полный привод действительно постоянный, с несимметричным межосевым дифференциалом (45:55), блокирующимся гидромеханической муфтой с электронным управлением. Кстати, по такому же принципу работал еще с середины 80-х годов тойотовский 4WD на коробках A241H и A540H, но сейчас, увы, он остался только на исходно-заднеприводных моделях (полный привод типа FullTime-H или i-Four).

К VTD Subaru обычно прилагает достаточно продвинутую систему VDC (Vehicle Dynamic Control), по-нашему — систему курсовой устойчивости или стабилизации. При старте ее составная часть, TCS (Traction Control System), подтормаживает буксующее колесо и слегка придушивает двигатель (во-первых, углом опережения зажигания, во-вторых, даже отключением части форсунок). На ходу работает классическая динамическая стабилизация. Ну и благодаря возможности произвольно тормозить любое из колес, VDC эмулирует (имитирует) блокировку межколесного дифференциала. Конечно, это здорово, но не стоит серьезно полагаться на возможности такой системы — пока что ни у одного из автопроизводителей не получилось даже приблизить «электронную блокировку» к традиционной механике по надежности и, главное, эффективности.

МодельМодификации
ImprezaGF8C58..GF8F58 2.0T (WRX), GGAA58T..GGAB58T 2.0T (WRX)
ForesterSF5B55 2.0T (T/tb с 09.98), SF5C53 (U#,J# — S/tb с 01.2000)
LegacyBE5 2.0T, BH5 2.0T, BH9 2.5 (A#,D#,F#,3#), BHE 3.0

«V-Flex»

Постоянный передний привод, без межосевого дифференциала, подключение задних колес вискомуфтой.

On-demand 4WD

Вероятно, стоит упомянуть и про 4WD, применяемый на малых моделях с вариаторными коробками (вроде Vivio и Pleo). Здесь схема еще проще — постоянный передний привод и «подключаемый» вискомуфтой при пробуксовке передних колес задний мост.

Мы уже говорили, что в английском языке под понятие LSD попадают все самоблокирующиеся дифференциалы, однако в нашей традиции так обычно называют систему с вискомуфтой. Но Subaru использовала на своих машинах целую гамму LSD-дифференциалов разных конструкций…

Вязкостный LSD старого образца

Подобные дифференциалы знакомы нам в основном по первой Legacy BC/BF. Конструкция у них непривычная — в шестерни полуосей вставляются не хвостовики гранат, а промежуточные шлицевые валы, на которые затем уже насаживаются внутренние гранаты «старого» образца. Такая схема используется до сих пор в передних редукторах некоторых субар, но задние редукторы этого типа были заменены на новые в 1993-95гг.

В LSD-дифференциале правая и левая полусевые шестерни «соединяются» через вискомуфту — правый шлицевой вал проходит сквозь чашку и зацепляется со ступицей муфты (сателлиты дифференциала установлены консольно). Корпус муфты представляет одно целое с шестерней левой полуоси. В полости, заполненной силиконовой жидкостью и воздухом, на шлицах ступицы и корпуса стоят диски — внешние удерживаются на месте распорными кольцами, внутренние способны слегка перемещаться вдоль оси (для возможности получения «хамп-эффекта»). Муфта срабатывает непосредственно на разницу в частоте вращения между правой и левой полуосями.

Во время прямолинейного движения правое и левое колеса вращаются с одинаковой скоростью, чашка дифференциала и полуосевые шестерни перемещаются вместе и момент поровну делится между полуосями. При возникновении разницы в частоте вращения колес, корпус и ступица с закрепленными на них дисками перемещаются друг относительно друга, что вызывает появление силы трения в силиконовой жидкости. Благодаря этому в теории (только в теории) должно происходить перераспределение крутящего момента между колесами.

Нормальное движениеПробуксовка левого колеса

Вязкостный LSD нового образца

Современный дифференциал устроен гораздо проще. Гранаты «нового» образца вставлены непосредственно в полуосевые шестерни, сателлиты стоят на привычных осях, а пакет дисков установлен между корпусом дифференциала и шестереней левой полуоси. Такая вискомуфта «реагирует» на разность частоты вращения чашки дифференциала и левой полуоси, в остальном принцип работы сохраняется.

Область применения (на моделях внутренего рынка):

Рабочая жидкость — трансмиссионное масло класса API GL-5, вязкость по SAE 75W-90, емкость ~0.8 / 1.1 л.

Нормальное движениеПробуксовка левого колеса

Фрикционный LSD

Следующий по очереди появления — фрикционный механический дифференциал, применяемый на большей части версий Impreza STi с середины 90-ых. Принцип его действия еще проще — полуосевые шестерни имеют минимальный осевой люфт, между ними и корпусом дифференциала установлен набор шайб. При появлении разницы в частоте вращения между колесами дифференциал срабатывает как любой свободный. Сателлиты начинают вращаться, при этом возникает нагрузка на шестерни полуосей, осевая составляющая которой поджимает пакет шайб и дифференциал частично блокируется.

Область применения (на моделях внутренего рынка): Impreza STi.

Рабочая жидкость — трансмиссионное масло для LSD-дифференциалов, это единственный из дифференциалов Subaru, в который заливается специальное масло (в оригинале «Subaru LSD oil»), поскольку фрикционные диски и шестерни работают в общем картере.

Кулачковый LSD (SURETRAC)

Фрикционный дифференциал кулачкового типа впервые был применен Subaru в 1996 году на турбо-импрезах, затем он появился и на версиях Forester STi. Принцип его действия большинству хорошо знаком еще по нашим классическим грузовикам, «шишигам» и «уазикам».Жесткой связи между ведущей шестерней дифференциала и полуосями здесь фактически нет, разность в угловой скорости вращения обеспечивается проскальзыванием одной полуоси относительно другой. Сепаратор вращается вместе с корпусом дифференциала, закрепленные на сепараторе шпонки (или «сухари») могут перемещаться в поперечном направлении. Выступы и впадины кулачковых валов вместе со шпонками образуют передачу вращения, наподобие цепной.

1 — сепаратор, 2 — направляющие кулачки, 3 — упорный подшипник, 4 — корпус дифференциала, 5 — шайба, 6 — ступица.

Если сопротивление на колесах одинаково, то шпонки не проскальзывают и обе полуоси вращаются с одинаковой скоростью. Если сопротивление на одном колесе будет ощутимо больше, то шпонки начинают скользить вдоль впадин и выступов соответствующего кулачка, все же за счет трения пытаясь его провернуть в сторону вращения сепаратора. В отличие от дифференциала планетарного типа, скорость вращения второй полуси при этом не увеличивается (то есть, если одно колесо будет стоять неподвижно, второе не будет крутиться в два раза быстрее, чем корпус дифференциала).

Область применения (на моделях внутренего рынка):

Рабочая жидкость — обычное трансмиссионное масло класса API GL-5, вязкость по SAE 75W-90, емкость ~0.8 л.

Евгений Е., Москва

carguts.ru

Газовый амортизатор - что это такое?

Одним из важных элементов автомобильного механизма, главной функцией которого есть гашение резких колебаний, появляющихся в процессе движения, является газовый (масляный) амортизатор. Подобные колебания — это следствие воздействия подвески (или других подвижных частей) на кузов автомобиля, которые появляются при перемещении транспортного средства.

Если бы в конструкции машины отсутствовал амортизатор, то равномерное передвижение стало б крайне проблематичной задачей и при малейшем увеличении скорости, кузов начинал бы раскачиваться, тем самым нарушая общее равновесие автомобиля. Как видите, обойтись без такого элемента ходовой системы нельзя, а более подробно о принципах и условиях его работы, Вы сможете узнать дочитав до конца эту статью.

1. Газовый амортизатор: принцип работы и значение прокачки

Чтобы дать определение термину «газовый амортизатор», не надо придумывать сложных терминов, ведь можно сказать просто: это устройство, которое для гашения колебаний использует газ, тоесть именно он выступает в качестве действующего вещества. В отличии от масляного амортизатора, в конструкцию газового, под высоким давлением закачивается газ, а ему крайне трудно проходить через маленькое отверстие между камерами цилиндра, в следствии чего шток замедляет свое возвратно-поступательное движение, тем самым компенсируя колебания кузова.

Конструкция амортизатора предусматривает наличие цилиндра, внутри которого, в данном случае, находятся камеры с маслом и газом, а также поршня, который систематически поднимается и опускается. Сопротивление движению поршня оказывает давление, создающееся сжимающейся камерой, наполненной газом (так как он плохо подвергается деформации), за счет чего и достигается плавность и размеренность, приводящая к сглаживанию толчков.

Главным преимуществом газового устройства есть более высокое давление, нежили в масляной установке, что выражается в дополнительной жесткости. Благодаря этому фактору, достигается повышенный уровень надежности и устойчивости сцепления с дорожным покрытием, особенно при движении на высоких скоростях.

Что бы повысить срок службы газового амортизатора, перед установкой его следует прокачать, в результате чего ресурс таких агрегатов увеличивается на 40% и, по сравнению с масляными собратьями, появляется возможность выдерживать более серьезные нагрузки. Однако, приступать к выполнению подобной операции стоит только в том случае, когда Вы точно знаете, что и как нужно делать. Например, все действия необходимо выполнять в строго вертикальном положении (штоком вниз), при чем в таком положении он должен находится пока не окажется на своем месте. Также, не стоит забывать, что прокачка проводится не менее 2-3 раз, а некоторые виды амортизаторов, требуют до 8 повторов. Такие действия положительно сказываются на клапанном механизме, предохраняя его от заклинивания и прочих неисправностей. Отсутствие прокачки может иметь отрицательное влияние на работу поршневой системы амортизатора и если, например, двухтрубное газовое устройство перестало работать, а перед установкой его никто не прокачивал, то вполне возможно, что причиной этому стал воздух оставшийся внутри гильзы.

2. Какие еще газовые амортизаторы используются в автомобиле и как правильно их подобрать?

В наше время, газовые амортизаторы широко используются не только в системе подвески транспортного средства, но и в разных механизмах открывания частей его кузова. Конечно, они не столь приспособлены к нагрузкам, как «подвесные», но это им и не нужно, ведь задача перед ними стоит совершенно другая. Так, к примеру, газовый амортизатор капота не способен выдерживать серьезные нагрузки, поэтому его конструкция отличается от конструкции обычных моделей: он не должен быть очень коротким, ведь если для проверки уровня масла в моторе или тормозной жидкости, достаточно будет высоты крышки открытого капота, то для доступа ко всем внутренним частям двигателя, этого будет недостаточно и короткий шток только помешает. Исходя из этого при покупке газового амортизатора капота, стоит быть предусмотрительными и учесть все возможные условия его эксплуатации.

В случае, когда необходимо выбрать амортизатор для багажного отделения, в первую очередь, нужно руководствоваться степенью интенсивности его использования. Если багажник используется часто, то лучшего варианта, чем газовые амортизаторы Вы не найдете. Не смотря на то, что это довольно дорогая конструкция, при правильном применении, она отличается сравнительной долговечностью и легкостью в эксплуатации. Однако, при выборе стоит учитывать не только частоту пользования, но и вес крышки багажника, а для этого не лишним будет заглянуть в техническую документацию транспортного средства. Кроме того, на качество длительного использования амортизаторов багажника (и капота, кстати тоже) влияет температурный режим окружающей среды. Зимой, в холодную или морозную погоду, стоит избегать их резкого открывания, так как это быстро уничтожит амортизаторы (в основном, такое утверждение касается масляных и масляно-газовых механизмов, а чисто газовые, в этом плане, обладают некой стойкостью). Необходимость плавного открывания обусловлена повышением вязкости рабочего вещества, соответственно, что бы амортизаторы выполняли свою работу правильно, придется им в этом немного помогать.

Выбирая амортизационное устройство задней двери, подбирать стоит механизм, имеющий большую выталкивающую силу, нежели у аналогичных деталей багажника и капота, поэтому перед их покупкой, стоит внимательно изучить инструкцию, а еще лучше обратиться за консультацией к специалисту.

Газовые амортизаторы, при всех своих преимуществах, имеют также ряд недостатков, которые могут сыграть решающую роль в ситуации выбора. Основным из них считается высокая стоимость, которая часто превышает цену масляных устройств в несколько раз, но если учитывать соотношение «цены-качества», то, в принципе, с этим минусом можно мириться. Второй распространенной проблемой таких деталей есть ограниченность в ремонтных действиях, тоесть если газовая конструкция вышла из строя, то скорее всего ее придется менять полностью, так как при поломке одного амортизатора, настоятельно рекомендуется заменить и его пару.

3. Как прокачать газовый амортизатор – полезные советы

Перед установкой на автомобиль любого нового амортизатора, его следует привести в рабочее состояние. Причиной данной необходимости есть тот факт, что при хранении и транспортировке, из внутреннего цилиндра, в наружный может перетечь рабочая жидкость, а во внутренний из него попадет газ подпора. В таких случаях, при работе амортизатора, Вы сможете услышать характерный стук, сопровождающий разрушение дроссельных клапанов. Следовательно, для избежания поломки деталей поршневого механизма амортизаторов, их в обязательном порядке, перед установкой нужно прокачать. Также следует иметь ввиду, что в некоторых устройствах присутствуют сливные механизмы, использующиеся для удаления из системы масла, но в основном это касается масляных амортизаторов.

Если Вы решились самостоятельно прокачать газовый амортизатор, мы предоставим Вам подробное руководство необходимых действий:

- установите деталь в вертикальное положение, штоком в низ (переверните его вверх, относительно будущего положения в машине) и без резких движений сожмите до упора, удерживая так 2-3 секунды;

- не меняя положения амортизатора, переверните его штоком вверх и зафиксируйте уже в таком положении на 3-6 секунд;

- по истечению указанного времени, оставив амортизатор в том же вертикальном положении, плавно отпускайте шток до полного его распрямления (до конца хода);

- теперь опять переверните амортизатор (штоком вниз) и удерживайте его в таком положении 2-3 секунды, после чего следует повторить операции, указанные в пунктах 1 и 2, не менее 5 раз (лучше 8). В результате таких действий, ход штока должен стать плавным, без лишних рывков и проскоков, только в этом случае можно утверждать, что прокачка выполнена правильно. Также, по «дерганью» и движению рывками, Вы сможете заметить, использовалась данная деталь или длительное время находилась в нерабочем, лежачем положении.

Обратите внимание! В некоторых амортизаторах, при полностью разжатом состоянии, клапанный механизм способен попадать в компенсационную полость, которая предназначается для расширения амортизационной жидкости в ходе разогрева. После завершения прокачки, амортизатор удерживают в рабочем положении вертикально, штоком вверх, непосредственно до самой установки на автомобиль. Наклонять или переворачивать устройство до этого момента категорически не рекомендуется.

Многие автолюбители проводят установку, сразу же после покупки, без надлежащей подготовки в виде прокачивания, в таких случаях срок службы амортизаторов сокращается от 3 до 5 раз, но и это время они не могут полноценно выполнять свои функции (тоесть работают неправильно), что в свою очередь, приводит к быстрому изнашиванию всех частей системы амортизации и полному выходу ее из строя.

Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.

Была ли эта статья полезна?

auto.today

Устройство и конструкция стойки автомобиля

Какой бы не был дорогой и современный автомобиль удобство и комфорт передвижения в первую очередь зависят от работы подвески на нем. Особенно остро это ощущается на отечественных дорогах. Не секрет, что самой важной частью подвески отвечающей за комфорт является амортизатор. Поэтому правильно подобранные амортизаторы это залог комфортной поездки на вашем авто. Рассмотрим устройство и функции, которые выполняют амортизаторы, а так же какие их разновидности на сегодняшний день существуют.

Амортизатор является неотъемлемой деталью любого автомобиля

Общее устройство амортизатора

Конструктивно амортизатор состоит из нескольких основных узлов независимо от вида и конструкции. Основным элементом амортизатора любого легкового авто служит рабочий цилиндр собранный в корпусе с ушками для соединения. В нем размещается гидравлическая жидкость (смесь жидкости и газа либо только газа). А так же в данном цилиндре располагается поршень, который присоединен к штоку. На поршне имеются специальные перепускные клапаны сжатия и отдачи, уплотнительные кольца. Они позволяют при сжатии жидкости в цилиндре за счет перемещения поршня, прокачивать ее в свободную полость цилиндра.

Как правило, амортизатор крепиться к кузову автомобиля при помощи штока, а к подвеске цилиндром. Для этого на их концах имеется специальный крепеж — опоры. Для защиты внутренней полости цилиндра, и непосредственно штока, сверху на амортизаторах устанавливается защитный кожух или пыльник. А для того что бы жидкость не выплескивалась из цилиндра наружу, в верхней его части установлена специальная манжета с направляющей втулкой. Данные элементы входят в состав, как самого простого гидравлического амортизатора, так и в более сложных конструкциях. Кроме них устройство амортизатора может отличаться еще рядом дополнительных деталей.

Виды амортизаторов и их устройство

Как уже говорилось свыше, в зависимости от конструкции устройство амортизаторов может сильно отличатся. Рассмотрим основные классы амортизаторов и их конструкционные отличия. В первую очередь амортизаторы различают по архитектуре на одно- и двухтрубные.

Двухтрубные амортизаторы

Схематическое устройство двухтрубного амортизатора

Начнем именно с них, так как до недавнего времени такая конструкция амортизаторов преобладала на рынке. Данный амортизатор кроме цилиндра (колбы), поршня и штока, имеет еще один цилиндр, в котором и спрятана колба с жидкостью и поршнем. При работе поршень сжимает жидкость, и та через клапан снизу перетекает во внешний цилиндр. Там создается дополнительное сжатие воздуха за счет поступающей жидкости. Это при сжатии амортизатора, а при работе на отбой (когда поршень поднимается в колбе), за счет открытия клапанов на самом поршне жидкость из внешнего цилиндра снова поступает в колбу.

Такая конструкция амортизатора, не смотря на простоту, имеет ряд существенных недостатков. Во-первых, перетекание рабочей жидкости происходит из одной емкости в другую по разным клапанам при высоком давлении воздуха в верхней части амортизатора. Это вызывает так называемое явление аэрации, когда частично жидкость смешивается с воздухом, что существенно снижает ее свойства. Кроме этого за счет применения двойного корпуса такие амортизаторы хуже охлаждаются, что опять же негативно сказывается на их работоспособности и эффективности. Такие амортизаторы не могут устанавливаться штоком вниз, так как это приведет к неправильной их работе.

Однотрубные амортизаторы

Схематическое устройство однотрубного амортизатора

В однотрубных амортизаторах внешнего цилиндра нет, и весь процесс перетекания жидкости происходит благодаря встроенным клапанам непосредственно на поршне (так называемая система De Carbon). Если кроме жидкости в амортизаторе имеется газ, то он так же находится в верхней части корпуса амортизатора отделенный от жидкости дополнительным свободно плавающим поршнем. Учитывая тот факт, что такой вид амортизаторов не имеет нижних клапанов сжатия, то поршень представляет собой сложную конструкцию с встроенными клапанами сжатия и клапанами отбоя. Иногда наряду с клапанами протачиваются специальные канавки и отверстия. Такие амортизаторы за счет лучшего охлаждения более эффективно удерживают автомобиль на дороге. Кроме этого за счет использования лишь одного цилиндра, при одинаковых габаритах однотрубный амортизатор имеет больший объем по отношению к двухтрубному, а это так же значительный плюс. А за счет того, что газ отделен от масла поршнем, такие амортизаторы могут устанавливаться штоком как вверх так и вниз. Это позволяет заметно снизить неподрессоренные массы автомобиля.

Но имеется и ряд недостатков. Первый и наиболее главный – уязвимость таких амортизаторов к механическим повреждениям. Достаточно лишь одной вмятины на корпусе, что бы возникла необходимость менять амортизатор. Так же за счет высокой скорости теплообмена однотрубные амортизаторы подвержены влиянию внешней температуры на их характеристики. При высокой температуре давление газа за счет нагрева растет и следовательно подвеска работает жестче, при отрицательных температурах все наоборот. Однако производители для устранения таких негативных явлений зачастую выносят дополнительную газовую и гидравлическую камеру за пределы цилиндра амортизатора. Это позволяет не только исключить сильную подверженность работы в зависимости от температуры, но и увеличить объем газа и масла в амортизаторе, не меняя его размеров. И так же заметно увеличить рабочий ход штока.

Но и это не все. Некоторые производители для специфических настроек амортизаторов используют в каналах по которым движется масло из дополнительных камеры в цилиндр амортизатора, специальные клапана сжатия, аналогичные по конструкции клапанам в двухтрубных амортизаторах. Это позволяет в разы повысить эффективность работы амортизаторов, а так же делает доступным широкий спектр настроек для таких амортизаторов. Число настроек (режимов работы) может варьироваться от одного до 10. При этом меняются не только жесткость, но и множество других параметров: длина хода штока, скорость перемещения поршня и т.д.

Гидравлические амортизаторы

Кроме конструктивных архитектурных особенностей амортизаторы могут различаться и по наполнению – типу рабочей жидкости. До недавнего времени наиболее распространенными были амортизаторы гидравлические, где в качестве наполнителя использовалось специальное масло. Однако в последнее время многие ведущие производители переходят к выпуску газо-гидравлических амортизаторов. В них кроме жидкости имеется и закачанный под высоким давлением газ (от 4 до 20 атм). Реже встречаются амортизаторы, где внутри закачан исключительно газ. Давление газа внутри таких амортизаторов может достигать 60 атм.

Устройство газо-гидравлических амортизаторов

Учитывая широкое и повсеместное применение данного типа амортизаторов, стоит рассмотреть их основные конструктивные особенности. Конструкция таких амортизаторов практически идентична обычным гидравлическим. За исключением того, что на газо-гидравлических имеются специальные прокладки и манжеты которые способны удерживать газ внутри амортизатора при высоком давлении. Зачастую вместо воздуха в таких амортизаторах используются инертные газы, самым распространенным является азот. Следует знать, что чем больше диаметр амортизатора, тем под меньшим давлением находится в нем газ и соответственно наоборот. Кроме этого в зависимости от того какой это амортизатор передний или задний давление так же может отличаться.

Особенности конструкции амортизаторных стоек

Внешний вид амортизаторной стойки применяемой для легковых автомобилей

Кстати некоторые амортизаторы могут устанавливаться отдельно от пружин, как к примеру, на классике ВАЗ. А некоторые устанавливаются вместе с пружиной. Такая конструкция называется амортизаторной стойкой. Она представляет собой амортизатор внутри и пружину снаружи соединенные между собой специальным креплением. И в таком виде стойка устанавливается на автомобиль. В зависимости от модели авто, пружина на амортизаторной стойке может играть как дополнительную, так и основную роль. Кроме этого очень часто устройство стойки амортизатора предусматривает специальную гайку при помощи которой можно легко изменить высоту стойки и следовательно изменить клиренс автомобиля.

Различие в устройстве амортизаторов по варианту крепления

Возможные варианты крепления амортизаторов к подвеске и кузову автомобиля

В зависимости от модели автомобиля амортизаторы в составе подвески могут крепиться по разным вариантам. Наиболее распространенными вариантами крепления являются проушина-проушина, проушина-штырь, штырь-штырь. Кроме этих вариаций крепления так же существуют еще и такие схемы креплений: штырь-поперечина, вставной амортизатор.

Роль устройства амортизаторов в подвеске автомобиля

Амортизатор предназначен в первую очередь для гашения вертикальных колебаний кузова автомобиля при движении по неровной поверхности дороги. Но эта формулировка для обычного автомобилиста не значит ровным счетом ничего. Ведь то, что амортизатор гасит колебания хорошо, но зачем же их тогда сделали такое множество видов и конструкций если цель одна. Для этого, следует четко понимать, в каких случаях могут возникнуть вертикальные колебания кузова. Это ведь не только движение по ямам и ухабам, но и маневрирование особенно на высокой скорости. К примеру, при динамичном разгоне большая нагрузка и масса кузова смещается на заднюю ось, разгружая тем самым передние колеса, это заметно снижает их сцепление с поверхностью дороги. В случае с экстренным торможением ситуация кардинально противоположная. При прохождении поворотов на высоких скоростях вес авто так же смещается ко внешней стороне поворота, это так же вызывает неустойчивое сцепление колес автомобиля на дороге. И для того что максимально минимизировать такого рода нагрузки на разных колесах и применяют амортизаторы самых различных видов и конструкций.

Видео — амортизаторы автомобиля

Поэтому выбирая амортизаторы для своего автомобиля, прежде всего не следует руководствоваться рекламой или брендом компании производителя. В первую очередь, необходимо определиться какими характеристиками должна обладать подвеска вашего автомобиля. Быть жесткой и острой для спортивного и динамичного вождения или наоборот мягкой и валкой для спокойного и плавного вождения. Поэтому выбор амортизатора это поиск некоего баланса между комфортом и точностью управления автомобилем.

AvtoMotoSpec.ru

Как работают газомасляные амортизаторы?

Устойчивость и управляемость автомобилем на дороге зависит не только от водительских умений. Огромную роль в этом играет конструкция самого автомобиля, а также характеристики его амортизаторов, которые могут быть представлены в самых разных вариациях. Одной из них являются газомасляные амортизаторы, которые стали воплощением лучших качеств масляных демпферов. Однако использовать газомасляные амортизаторы можно далеко не на всех автомобилях, поскольку они имеют особую конструкцию. Этому вопросу мы и посвятили нижеприведенную статью.

1. Кому подойдут такие амортизаторы?

Среди автолюбителей часто возникает путаница: они никак не могут определить отличия между газомасляным и газовыми амортизаторами. Дело в том, что речь идет об одном и том же устройстве. По сути такой амортизатор является полностью газовым, однако даже его детали не способны передвигаться без наличия масляной смазки. Именно по этой причине такие демпферы начали называть именно газомасляными.

Преимуществом такого типа амортизаторов является то, что они делают автомобиль более устойчивым. Однако за устойчивость часто приходится платить собственным комфортом, так как при езде по песчаной или ухабистой дороге водитель и его пассажиры будут чувствовать буквально каждую кочку. Тем не менее, если дорога ровная – таким амортизаторам действительно нет цены.

Таким образом, можем сделать вывод о том, что газомасляные амортизаторы больше подойдут для установки на автомобили, которые преимущественно эксплуатируются на ровных дорогах и на высокой скорости. Особенно важное значение они имеют именно для езды на высокой скорости, поскольку благодаря таким амортизаторам повышается маневренность и устойчивость автомобиля на дороге. Нетрудно догадаться, что чаще всего встретить газомасляные амортизаторы можно на автомобилях спортивного и гоночного типа, а также на внедорожниках.

Тем не менее, профессиональные механики всегда рекомендуют обращаться по поводу установки новых амортизаторов к специалистам, поскольку, независимо от типа дорожного покрытия, по которому будет ездить автомобиль, большое значение также имеют конструкционные особенности самого автомобиля, которому могут подходить или не подходить конкретные конструкции амортизаторов.

Если же вы абсолютно уверены в том, что вам нужны газомасляные амортизаторы, то проблема станет лишь за выбором производителя. В последнее время отлично зарекомендовали себя амортизаторы японской компании «Kayaba». Длительный срок службы и отсутствие какого-либо брака на такой важной детали сделали эту компанию одной из самых известных на нашем рынке, хотя и не самой дешевой.

Установкой таких амортизаторов не рекомендуется заниматься самостоятельно. Чтобы осуществить данную процедуру корректно, очень важно знать принципы работы газомасляных амортизаторов, а также уметь правильно вычислять необходимый уровень давления внутри этого устройства, что будет напрямую зависеть от самого автомобиля.

2. Принцип работы газомасляных амортизаторов.

Газомасляный амортизатор обязательно предполагает наличие в его конструкции специальной емкости, которая перед началом эксплуатации обязательно заполняется газом. Этот газ должен находиться в амортизаторе постоянно, чтобы при наезде на ухаб газ сглаживал колебания и не позволял автомобилю слететь с дороги и перевернуться. Как уже говорилось, особенно важное значение это имеет для гоночных автомобилей.

Газ внутри амортизатора находится под очень высоким давлением, которое колеблется в пределах 4-20 атмосфер. Под каким именно давлением необходимо выставлять устройство, будет зависеть от следующих факторов:

- вес автомобиля;

- скорость, с которой преимущественно движется автомобиль;

- качество дорожного покрытия.

С учетом этих данных механики могут запускать в амортизаторы задних и передних колес совершенно разные объемы газа, что делает автомобиль максимально маневренным. При этом более низкие показатели давления могут быть как на передних колесах, так и на задних. Все будет зависеть от пожеланий автовладельца и конструкционных особенностей самого автомобиля. Недопустимым является только неравномерное наполнение газом правого и левого колес, поскольку это может привести к очень серьезному дисбалансу и сделает автомобиль неуправляемым. Стоит отметить, что газ для газомасляных амортизаторов используется специальный, что необходимо для предотвращения аэрации – смешивания газа и масла внутри устройства.

3. Устройство газомасляных амортизаторов.

В первую очередь устройства газомасляного амортизатора отличается его жесткостью, которой нет ни у одного другого типа подобных устройств. Хотя данное качество не всегда считается преимуществом, в некоторых случаях оно может сыграть буквально-таки злую шутку. Речь идет о ситуации, когда водителю автомобиля с такими амортизаторами приходится преодолевать неровные участки дороги – он на собственном теле будет ощущать все ухабы. Так что еще раз стоит отметить, что выбирать такие амортизаторы стоит только для езды по ровным участкам дорог.

Еще одна отличительная черта устройства газомасляных амортизаторов – наличие способности менять свой диапазон сжимания. То есть в процессе езды такое устройство будет постоянно подстраиваться под скорость и тип вождения, в результате чего его рабочая область будет постоянно меняться. Связано это с особенными характеристиками газа, способного сжиматься даже под очень высоким давлением. Как результат – автомобиль на газомасляных амортизаторах становится максимально «эластичным».

Однако добиться такого положительного эффекта от использования газомасляных амортизаторов можно только в том случае, если устройство будет правильно установлено. Дело в том, что его нельзя размещать в горизонтальном положении, иначе все свойства газа и его способность сопротивляться колебаниям кузова сразу же исчезнут. В горизонтальном положении он хоть и не смешается с маслом, однако примет неправильное положение в отношении него. Учитывая этот факт, очень важно доверять установку профессионалам.

Но чтобы окончательно убедиться, подойдет ли такое устройство конкретно вашему автомобилю, необходимо обратиться в представительство производителя и уточнить возможность установки газомасляных амортизаторов. Дело в том, что если конструкция автомобиля и без того является жесткой, дополнительная установка жестких амортизаторов может принести очень много дискомфорта. Более того, если не учесть рекомендации производителя, элементы подвески автомобиля могут очень быстро износиться.

Согласно конструкционным особенностям газомасляных амортизаторов, перед их установкой обязательно необходимо осуществить так называемую прокачку. Необходимость в этой процедуре возникает в связи с тем, что она позволяет в несколько раз увеличить срок службы самого устройства. Стоит отметить, что данный тип амортизаторов не подлежит ремонту, поэтому прокачка является единственным способом продлить их работоспособность.

4. А может все-таки масляные амортизаторы?

Этот вопрос часто ставится среди автолюбителей, но в ответе на него всегда необходимо прибегать к рекомендациям производителя. В том случае, если на вашем автомобиле вышли из строя штатные амортизаторы, на их место все же лучше ставить устройство такого же типа. В противном случае вы сразу же заметите, как изменился «характер» автомобиля. Если же при езде на штатных амортизаторах вы ощущаете сильный дискомфорт, то только в таком случае можно задуматься о внесении конструкционных изменений в свое авто. Но при этом все равно следует учитывать правило: для неровных дорог – мягкие амортизаторы (масляные), для ровных – жесткие (газомасляные).

Если сравнивать между собой масляные и газомасляные амортизаторы, то между ними можно найти ряд существенных отличий:

1. С конструкционной точки зрения газовые амортизаторы являются более сложными. В первую очередь из-за того, что внутри их конструкции обязательно есть камеры для газа, а во вторую – из-за того, что для сжатия газа приходится применять специальные уплотняющие поверхности.

2. Опять же по отношению к газомасляным амортизаторам выдвигаются более высокие требования в отношении качества, поскольку технологически их исполнение является более сложным.

3. Что же касается ресурса и длительности эксплуатации, то в данной категории все же выиграют масляные амортизаторы. Тем не менее, все будет зависеть от качества конкретного устройства. Если приобрести действительно качественный газомасляный амортизатор, то срок его эксплуатации легко может дотянуть до 60 тыс. км.

4. В ценовой категории опять выигрывает масляный амортизатор. Согласно среднерыночной стоимости, заплатить за него придется на 20% меньше, нежели за газомасляный аналог. Если быть до конца честными, то стоит отметить следующее: даже для спортивных каров газомасляные амортизаторы не всегда могут подходить. Ведь добиться наилучших характеристик от данного типа демпферов можно только в том случае, если они будут не только правильно установлены, но и правильно настроены. В некоторых случаях можно добиться такого эффекта, когда газовые амортизаторы будут намного мягче масляных.

Тем не менее, не стоит перекладывать всю ответственность за устойчивость автомобиля на дороге и его управляемость исключительно на амортизаторы. Независимо от их типа, более важную роль в этом будет играть подвеска машины, размеры кузова, тип шин, их изношенность, стиль вождения и умения самого автовладельца. Амортизаторы – это всего лишь «помощник» подвески, которые способен смягчать удары о неровности дороги, тем самым делая езду более комфортной и безопасной.

Таким образом, если вы начали замечать некоторые неисправности в работе амортизаторов своего автомобиля, не стоит прибегать к поспешным решениям и сразу же менять их на газомасляные. В такой ситуации оценка неисправности должна быть максимально широкой, и учитывать абсолютно все факторы, которые могли повлиять на наличие ошибок в работе демпферов. Если их не устранить, установка новых амортизаторов и правильная их настройка не смогут избавить вас от проблем.

Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.

Была ли эта статья полезна?

auto.today


Смотрите также