Автомобильного генератора характеристики


Характеристики автомобильных генераторов

Способность генераторной установки обеспечивать потребителей электроэнергией на различных режимах работы двигателя определяется его токоскоростной характеристикой (ТСХ) - зависимостью наибольшей силы тока, отдаваемого генератором, от частоты вращения ротора при постоянной величине напряжения на силовых выводах. На рис. 5.4 представлена токоскоростная характеристика генератора.

Рисунок 5.11 Токоскоростная характеристика генераторных установок.

На графике имеются следующие характерные точки:

В технической документации на генераторы часто указывается не вся ТСХ, а лишь ее отдельные характерные точки (см. рис. 5.4).

На новые модели отечественных двигателей устанавливаются генераторы компактной конструкции (94.3701 и др.). Безщеточные (индукторные) генераторы (955.3701 для ВАЗов, Г700А для УАЗов) отличаются от традиционной конструкции тем, что у них на роторе расположены постоянные магниты, а обмотки возбуждения - на статоре (смешанное возбуждение). Это позволило обойтись без щеточного узла (уязвимая часть генератора) и контактных колец. Однако эти генераторы имеют несколько большую массу и более высокий уровень шума.

Другой характеристикой, по которой можно представить энергетические способности генератора, является величина его коэффициента полезного действия (КПД), определяемого в режимах соответствующих точкам токоскоростной характеристики (рис. 5.5). Величина КПД по рис. 5.5 приведена для ориентировки, т.к. она зависит от конструкции генератора - толщины пластин, из которых набран статор, диаметра контактных колец, подшипников, сопротивления обмоток и т. п., но, главным образом, от мощности генератора. Чем генератор мощнее, тем его КПД выше.

Рисунок 5.12 Выходные характеристики автомобильных генераторов: 1 - токоскоростная характеристика, 2 - КПД по точкам токоскоростной характеристики.

Наконец, генераторную установку характеризует диапазон ее выходного напряжения, при изменении в определенных пределах частоты вращения, силы тока нагрузки и температуры. Обычно в проспектах фирм указывается напряжение между силовым выводом "+" и "массой" генераторной установки в контрольной точке или напряжение настройки регулятора при холодном состоянии генераторной установки частоте вращения 6000 мин-1, нагрузке силой тока 5 А и работе в комплекте с аккумуляторной батареей, а также термокомпенсация- изменение регулируемого напряжения в зависимости от температуры окружающей среды. Термокомпенсация указывается в виде коэффициента, характеризующего изменение напряжения при изменении температуры окружающей среды на ~1°С. Как было показано выше, с ростом температуры напряжение генераторной установки уменьшается.

studfiles.net

Автомобильные генераторы переменного тока и принцип работы - 30 Ноября 2014 - АвтоБлог

Устройство автомобильного генератора

По конструктивному исполнению генераторные установки можно разделить на две группы:

Обычно "компактные" генераторы оснащаются приводом с повышенным передаточным отношением через поликлиновый ремень и поэтому по принятой у некоторых фирм терминологии, называются высокоскоростными генераторами.

По компоновке щеточного узла различают:

Рис. 1. Генератор переменного тока

Генератор переменного тока содержит статор с обмотками, зажатыми между двумя крышками — передней, со стороны привода, и задней, со стороны контактных колец. Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором сквозь генератор.

Основные требования к автомобильным генераторам

1. Генератор должен обеспечивать бесперебойную подачу тока и обладать достаточной мощностью, чтобы:

2. Генератор должен иметь достаточную прочность, большой ресурс, небольшие массу и габариты, невысокий уровень шума и радиопомех.

 

Принцип действия генератора

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. И наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток.

Эти катушки помещены в пазы стальной конструкции, магнитопровода (пакета железа) статора. Обмотка статора с его магнитопроводом образует статор генератора (рис. 3, поз. 1) - неподвижную часть, в которой образуется электрический ток, а обмотка возбуждения с полюсной системой и некоторыми другими деталями (валом, контактными кольцами) - ротор, вращающуюся часть.

Питание обмотки возбуждения может осуществляться от самого генератора. В этом случае генератор работает на самовозбуждении. При этом остаточный магнитный поток в генераторе, т. е. поток, который образуют стальные части магнитопровода при отсутствии тока в обмотке возбуждения, невелик и обеспечивает самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому в схему генераторной установки, там где обмотки возбуждения не соединены с аккумуляторной батареей, вводят такое внешнее соединение, обычно через лампу контроля работоспособного состояния генераторной установки.

При вращении ротора напротив катушек обмотки статора появляются попеременно "северный", и "южный" полюсы ротора, т. е. направление магнитного потока, пронизывающего катушку, меняется, что и вызывает появление в ней переменного напряжения. Частота этого напряжения f зависит от частоты вращения ротора генератора n и числа его пар полюсов р:

f=p*n/60

За редким исключением генераторы зарубежных фирм, также как и отечественные, имеют шесть "южных" и шесть "северных" полюсов в магнитной системе ротора. В этом случае частота f в 10 раз меньше частоты вращения я ротора генератора.

Поскольку свое вращение ротор генератора получает от коленчатого вала двигателя, то по частоте переменного напряжения генератора можно измерять частоту вращения коленчатого вала двигателя.

С учетом передаточного числа i ременной передачи от двигателя к генератору частота сигнала на входе тахометра fт связана с частотой вращения коленчатого вала двигателя nдв соотношением:

fт=p*nдв(i)/60

Конечно, в случае проскальзывания приводного ремня это соотношение немного нарушается и поэтому следует следить, чтобы ремень всегда был достаточно натянут.

При р=6 , (в большинстве случаев) приведенное выше соотношение упрощается fт=nдв(i)/10. Бортовая сеть требует подведения к ней постоянного напряжения. Поэтому обмотка статора питает бортовую сеть автомобиля через выпрямитель, встроенный в генератор.

Обмотка статора генераторов зарубежных фирм, как и отечественных — трехфазная. Она состоит из трех частей, называемых обмотками фаз или просто фазами, напряжение и токи в которых смещены друг относительно друга на треть периода, т. е. на 1200 (рис. 2). Фазы могут соединяться в "звезду" или "треугольник". При этом различают фазные и линейные напряжения и токи. Фазные напряжения Uф действуют между концами обмоток фаз, а токи Iф протекают в этих обмотках, линейные же напряжения Uл действуют между проводами, соединяющими обмотку статора с выпрямителем. В этих проводах протекают линейные токи Jл. Естественно, выпрямитель выпрямляет те величины, которые к нему подводятся, т. е. линейные.

Рис. 2. Схема генератора переменного тока с выпрямителем

Статор генератора (рис. 3) набирается из стальных листов толщиной 0.8...1 мм, но чаще выполняется навивкой "на ребро". Такое исполнение обеспечивает меньше отходов при обработке и высокую технологичность. При выполнении пакета статора навивкой ярмо статора над пазами обычно имеет выступы, по которым при навивке фиксируется положение слоев друг относительно друга. Эти выступы улучшают охлаждение статора за счет более развитой его наружной поверхности. Необходимость экономии металла привела и к созданию конструкции пакета статора, набранного из отдельных подковообразных сегментов. Скрепление между собой отдельных листов пакета статора в монолитную конструкцию осуществляется сваркой или заклепками.

Рис. 3. Статор генератора:1 - сердечник, 2 - обмотка, 3 - пазовый клин, 4 - паз, 5 - вывод для соединения с выпрямителем

Практически все генераторы автомобилей массовых выпусков имеют 36 пазов, в которых располагается обмотка статора. Пазы изолированы пленочной изоляцией или напылением эпоксидного компаунда.

 Рис. 4. Схема обмотки статора генератора:А - петлевая распределенная, Б - волновая сосредоточенная, В - волновая распределенная------- 1 фаза, - - - - - - 2 фаза, -..-..-..- 3 фаза

В пазах располагается обмотка статора, выполняемая по схемам (рис. 4) в виде петлевой распределенной (рис. 4,А) или волновой сосредоточенной (рис. 4,Б), волновой распределенной (рис. 4,В) обмоток. Петлевая обмотка отличается тем, что ее секции (или полусекции) выполнены в виде катушек с лобовыми соединениями по обоим сторонам пакета статора напротив друг друга. Волновая обмотка действительно напоминает волну, т. к. ее лобовые соединения между сторонами секции (или полусекции) расположены поочередно то с одной, то с другой стороны пакета статора. У распределенной обмотки секция разбивается на две полусекции, исходящие из одного паза, причем одна полусекция исходит влево, другая направо. Расстояние между сторонами секции (или полусекции) каждой обмотки фазы составляет 3 пазовых деления, т.е. если одна сторона секции лежит в пазу, условно принятом за первый, то вторая сторона укладывается в четвертый паз. Обмотка закрепляется в пазу пазовым клином из изоляционного материала. Обязательной является пропитка статора лаком после укладки обмотки.

Особенностью автомобильных генераторов является вид полюсной системы ротора (рис. 5). Она содержит две полюсные половины с выступами — полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы - полувтулки. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса.

Особенностью автомобильных генераторов является вид полюсной системы ротора (рис. 5). Она содержит две полюсные половины с выступами — полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы - полувтулки. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса.

Рис. 5. Ротор автомобильного генератора: а - в сборе; б - полюсная система в разобранном виде; 1,3- полюсные половины; 2 - обмотка возбуждения; 4 - контактные кольца; 5 - вал

Если полюсные половины имеют полувтулки, то обмотка возбуждения предварительно наматывается на каркас и устанавливается при напрессовке полюсных половин так, что полувтулки входят внутрь каркаса. Торцевые щечки каркаса имеют выступы-фиксаторы, входящие в межполюсные промежутки на торцах полюсных половин и препятствующие провороту каркаса на втулке. Напрессовка полюсных половин на вал сопровождается их зачеканкой, что уменьшает воздушные зазоры между втулкой и полюсными половинами или полувтулками, и положительно сказывается на выходных характеристиках генератора. При зачеканке металл затекает в проточки вала, что затрудняет перемотку обмотки возбуждения при ее перегорании или обрыве, т. к. полюсная система ротора становится трудноразборной. Обмотка возбуждения в сборе с ротором пропитывается лаком. Клювы полюсов по краям обычно имеют скосы с одной или двух сторон для уменьшения магнитного шума генераторов. В некоторых конструкциях для той же цели под острыми конусами клювов размещается антишумовое немагнитное кольцо, расположенное над обмоткой возбуждения. Это кольцо предотвращает возможность колебания клювов при изменении магнитного потока и, следовательно, излучения ими магнитного шума.

После сборки производится динамическая балансировка ротора, которая осуществляется высверливанием излишка материала у полюсных половин. На валу ротора располагаются также контактные кольца, выполняемые чаще всего из меди, с опрессовкой их пластмассой. К кольцам припаиваются или привариваются выводы обмотки возбуждения. Иногда кольца выполняются из латуни или нержавеющей стали, что снижает их износ и окисление особенно при работе во влажной среде. Диаметр колец при расположении щеточно - контактного узла вне внутренней полости генератора не может превышать внутренний диаметр подшипника, устанавливаемого в крышку со стороны контактных колец, т. к. при сборке подшипник проходит над кольцами. Малый диаметр колец способствует кроме того уменьшению износа щеток. Именно по условиям монтажа некоторые фирмы применяют в качестве задней опоры ротора роликовые подшипники, т.к. шариковые того же диаметра имеют меньший ресурс.

Валы роторов выполняются, как правило, из мягкой автоматной стали, однако, при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала цементируется и закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива. Однако, во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от проворота при затяжке гайки крепления шкива, или при разборке, когда необходимо снять шкив и вентилятор.

Щеточный узел - это пластмассовая конструкция, в которой размещаются щетки т.е. скользящие контакты. В автомобильных генераторах применяются щетки двух типов — меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными, что неблагоприятно сказывается на выходных характеристиках генератора, однако они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин. Обычно щетки устанавливаются по радиусу контактных колец, но встречаются и так называемые реактивные щеткодержатели, где ось щеток образует угол с радиусом кольца в месте контакта щетки. Это уменьшает трение щетки в направляющих щеткодержателя и тем обеспечивается более надежный контакт щетки с кольцом. Часто щеткодержатель и регулятор напряжения образуют неразборный единый узел.

Выпрямительные узлы применяются двух типов - либо это пластины-теплоотводы, в которые запрессовываются (или припаиваются) диоды силового выпрямителя или на которых распаиваются и герметизируются кремниевые переходы этих диодов, либо это конструкции с сильно развитым оребрением, в которых диоды, обычно таблеточного типа, припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы или в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками. Включение выпрямительных блоков в схему генератора осуществляется распайкой или сваркой выводов фаз на специальных монтажных площадках выпрямителя или винтами. Наиболее опасным для генератора и особенно для проводки автомобильной бортовой сети является перемыкание пластинтеплоотводов, соединенных с "массой" и выводом "+" генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи и возможен пожар. Во избежание этого пластины и другие части выпрямителя генераторов некоторых фирм частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы генераторов это, как правило, радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами. Посадка шариковых подшипников на вал со стороны контактных колец - обычно плотная, со стороны привода - скользящая, в посадочное место крышки наоборот - со стороны контактных колец - скользящая, со стороны привода - плотная. Так как наружная обойма подшипника со стороны контактных колец имеет возможность проворачиваться в посадочном месте крышки, то подшипник и крышка могут вскоре выйти из строя, возникнет задевание ротора за статор. Для предотвращения проворачивания подшипника в посадочное место крышки помещают различные устройства - резиновые кольца, пластмассовые стаканчики, гофрированные стальные пружины и т. п.

Конструкцию регуляторов напряжения в значительной мере определяет технология их изготовления. При изготовлении схемы на дискретных элементах, регулятор обычно имеет печатную плату, на которой располагаются эти элементы. При этом некоторые элементы, например, настроечные резисторы могут выполняться по толстопленочной технологии. Гибридная технология предполагает, что резисторы выполняются на керамической пластине и соединяются с полупроводниковыми элементами - диодами, стабилитронами, транзисторами, которые в бескорпусном или корпусном исполнении распаиваются на металлической подложке. В регуляторе, выполненном на монокристалле кремния, вся схема регулятора размещена в этом кристалле. Гибридные регуляторы напряжения и регуляторы напряжения на монокристалле ни разборке, ни ремонту не подлежат.

Охлаждение генератора осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов (рис. 7,а) воздух засасывается центробежным вентилятором в крышку со стороны контактных колец. У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места - к выпрямителю и регулятору напряжения. На автомобилях с плотной компоновкой подкапотного пространства, в котором температура воздуха слишком велика, применяют генераторы со специальным кожухом (рис. 7,б), закрепленным на задней крышке и снабженным патрубком со шлангом, через который в генератор поступает холодный и чистый забортный воздух. Такие конструкции применяются, например, на автомобилях BMW. У генераторов "компактной" конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Рис. 7. Система охлаждения генераторов.а - генераторы обычной конструкции; б - генераторы для повышенной температуры в подкапотном пространстве; в - генераторы компактной конструкции.

Стрелками показано направление воздушных потоков

Генераторы большой мощности, устанавливаемые на спецавтомобили, грузовики и автобусы имеют некоторые отличия. В частности, в них встречаются две полюсные системы ротора, насаженные на один вал и, следовательно, две обмотки возбуждения, 72 паза на статоре и т. п. Однако принципиальных отличий в конструктивном исполнении этих генераторов от рассмотренных конструкций нет.

Привод генераторов

Привод генераторов осуществляется от шкива коленчатого вала ременной передачей. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива генератора (отношение диаметров называют передаточным отношением), тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток.

Привод клиновым ремнем не применяется для передаточных отношений больше 1,7-3. Прежде всего это связано с тем, что при малых диаметpax шкивов клиновой ремень усиленно изнашивается.

На современных моделях, как правило, привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра и, следовательно, получать более высокие передаточные отношения, то есть использовать высокооборотные генераторы. Натяжение поликлинового ремня осуществляется, как правило, натяжными роликами при неподвижном генераторе.

Крепление генератора

Генераторы крепятся в передней части двигателя болтами на специальных кронштейнах. Крепежные лапы и натяжная проушина генератора находятся на крышках. Если крепление осуществляется двумя лапами, то они расположены на обеих крышках, если лапа одна - она находится на передней крышке. В отверстии задней лапы (если крепежные лапы - две) обычно имеется дистанционная втулка, устраняющая зазор между кронштейном двигателя и посадочным местом лапы.

Выпрямитель 1 содержит шесть диодов VD1 — VD6, образующих два пле­ча: в одном аноды трех диодов VD1 — VD3 соединены с выводом «+» генератора, а в другом катоды диодов VD4 — VD6 – с выводом «-». В принятой на автомобилях однопроводной схеме минусовой вывод соединен с массой. К выпрямителю подведены выводы фазных обмоток статора генератора (на рисунке показано соединение в звезду). Наведенные в обмотках фаз переменные напря­жения иф1 — ифз сдвинуты на 1/3 периода, что характерно для трехфазной системы.

Выпрямитель переменного тока

Диоды выпрямителя при изменении трехфазного напряжения во времени переходят из закрытого состояния в открытое, в результа­те ток нагрузки имеет только одно направление — от вывода «+» генератора к выводу «-».

Рис. 8. Схема генераторной установки (а) и диаграммы напряжений (б):

1-трехфазный мостовой выпрямитель; 2-дополнительный выпрями­тель; 3-регулятор напряжения

Как видно из рисунка 8 б, в момент времени 0, напряжение в об­мотке L1 отсутствует; в обмотке L3 положительное, а в обмотке L2 отрицательное. За положительное напряжение принято направле­ние стрелки к средней точке 0 обмотки статора. Вы­прямленный ток поступает к потребителям в направлении стрелок через находящиеся в открытом состоянии диоды VD3 и VD4.

В момент времени t1 напряжение в обмотке L2 отсутствует, в обмотке L1 положительное, а в обмотке L3 отрицательное. Вы­прямленный ток поступает к потребителям через диоды VD1 и VD5. В каждом плече выпрямителя в течение приблизительно 1/3 периода открыт один диод.

Линейное напряжение при соединении в звезду в 1,73 раза больше, чем при соединении в треугольник. Поэтому при соедине­нии в треугольник в обмотке статора должно быть больше витков, чем при соединении в звезду. Однако ток фазы при соединении в треугольник в 1,73 раза меньше, чем при соединении в звезду. Со­единение обмотки статора в треугольник для генераторов большой мощности позволяет выполнить ее из более тонкого провода.

Выпрямители некоторых генераторов имеют дополнительное плечо, соединенное со средней точкой 0 обмотки статора. Такая схема позволяет увеличить мощность генератора на 15…20% за счет действия третьих гармонических составляющих фазного на­пряжения.

Выпрямленное напряжение Ud имеет пульсирующий характер. Аккумуляторная батарея GB служит своеобразным фильтром, сглаживающим выпрямленное напряжение генератора, при этом ток батареи получается пульсирующим.

В вентильном генераторе диоды выпрямителя не проводят ток от аккумуляторной батареи к обмотке статора, в связи с чем отсут­ствует необходимость в реле обратного тока. Это значительно уп­рощает схему генераторной установки. При длительной стоянке автомобиля возможна разрядка аккумуляторной батареи на обмот­ку возбуждения. Поэтому в некоторых моделях автомобильных ге­нераторов обмотку возбуждения подсоединяют к дополнительному выпрямителю 2. Дополнительный выпрямитель выполнен на трех диодах VD7- VD9, аноды которых соединены с выводом Д. На об­мотку возбуждения в этом случае подается только напряжение от генератора через дополнительный выпрямитель 2 и плечо выпря­мителя 1 с диодами VD4-VD6.

Использование дополнительного выпрямителя имеет и негатив­ную сторону, связанную с самовозбуждением генератора. Генера­тор может самовозбудиться при наличии в нем остаточного маг­нитного потока и достаточно низком сопротивлении цепи возбуж­дения. Поэтому для появления напряжения в рабочем диапазоне частот вращения его ротора в схеме используется контрольная лампа HL обеспечивающая надежное возбуждение генератора.

Существенным недостатком щеточных генераторов, является наличие контактного узла, со­стоящего из электрических щеток и колец, через который к вращающейся обмотке возбуждения подводится ток. Узел этот подвержен изна­шиванию. Пыль, грязь, топливо и масло, попадая на контактный узел, быстро выводят его из строя.

Регуляторы напряжения

Регуляторы поддерживают напряжение генератора в определенных пределах для оптимальной работы электроприборов, включенных в бортовую сеть автомобиля. Все регуляторы напряжения имеют измерительные элементы, являющиеся датчиками напряжения, и исполнительные элементы, осуществляющие его регулирование.

В вибрационных регуляторах измерительным и исполнительным элементом является электромагнитное реле. У контактно-транзисторных регуляторов электромагнитное реле находится в измерительной части, а электронные элементы - в исполнительной части. Эти два типа регуляторов в настоящее время полностью вытеснены электронными.

Полупроводниковые бесконтактные электронные регуляторы, как правило, встроены в генератор и объединены со щеточным узлом. Они изменяют ток возбуждения путем изменения времени включения обмотки ротора в питающую сеть. Эти регуляторы не подвержены разрегулировке и не требуют никакого обслуживания, кроме контроля надежности контактов.

Регуляторы напряжения обладают свойством термокомпенсации - изменения напряжения, подводимого к аккумуляторной батарее, в зависимости от температуры воздуха в подкапотном пространстве для оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение должно подводиться к батарее и наоборот. Величина термокомпенсации достигает до 0,01 В на 1°С. Некоторые модели выносных регуляторов (2702.3702, РР-132А, 1902.3702 и 131.3702) имеют ступенчатые ручные переключатели уровня напряжения (зима/лето).

Принцип действия регулятора напряжения

В настоящее время все генераторные установки оснащаются полупроводниковыми электронными регуляторами напряжения, как правило встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки - тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить — увеличивается.

Принцип работы электронного регулятора удобно продемонстрировать на достаточно простой схеме регулятора типа ЕЕ 14V3 фирмы Bosch, представленной на рис. 9:

Рис. 9. Схема регулятора напряжения EE14V3 фирмы BOSCH:1 - генератор, 2 - регулятор напряжения, SA - замок зажигания, HL - контрольная лампа на панели приборов

Чтобы понять работу схемы, следует вспомнить, что, как было показано выше, стабилитрон не пропускает через себя ток при напряжениях, ниже величины напряжения стабилизации. При достижении напряжением этой величины, стабилитрон "пробивается" и по нему начинает протекать ток. Таким образом, стабилитрон в регуляторе является эталоном напряжения с которым сравнивается напряжение генератора. Кроме того известно, что транзисторы пропускают ток между коллектором и эмиттером, т.е. открыты, если в цепи "база - эмиттер" ток протекает, и не пропускают этого тока, т.е. закрыты, если базовый ток прерывается. Напряжение к стабилитрону VD2 подводится от вывода генератора "D+" через делитель напряжения на резисторах R1(R3 и диод VD1, осуществляющий температурную компенсацию. Пока напряжение генератора невелико и напряжение на стабилитроне ниже его напряжения стабилизации, стабилитрон закрыт, через него, а, следовательно, и в базовой цепи транзистора VT1 ток не протекает, транзистор VT1 также закрыт. В этом случае ток через резистор R6 от вывода "D+" поступает в базовую цепь транзистора VT2, который открывается, через его переход эмиттер - коллектор начинает протекать ток в базе транзистора VT3, который также открывается. При этом обмотка возбуждения генератора оказывается подключена к цепи питания через переход эмиттер - коллектор VT3.

Соединение транзисторов VT2 и VT3, при котором их коллекторные выводы объединены, а питание базовой цепи одного транзистора производится от эмиттера другого, называется схемой Дарлингтона. При таком соединении оба транзистора могут рассматриваться как один составной транзистор с большим коэффициентом усиления. Обычно такой транзистор и выполняется на одном кристалле кремния. Если напряжение генератора возросло, например, из-за увеличения частоты вращения его ротора, то возрастает и напряжение на стабилитроне VD2, при достижении этим напряжением величины напряжения стабилизации, стабилитрон VD2 "пробивается", ток через него начинает поступать в базовую цепь транзистора VT1, который открывается и своим переходом эмиттер - коллектор закорачивает вывод базы составного транзистора VT2, VT3 на "массу". Составной транзистор закрывается, разрывая цепь питания обмотки возбуждения. Ток возбуждения спадает, уменьшается напряжение генератора, закрываются стабилитрон VT2, транзистор VT1, открывается составной транзистор VT2,VT3, обмотка возбуждения вновь включается в цепь питания, напряжение генератора возрастает и процесс повторяется. Таким образом регулирование напряжения генератора регулятором осуществляется дискретно через изменение относительного времени включения обмотки возбуждения в цепь питания. При этом ток в обмотке возбуждения изменяется так, как показано на рис.10. Если частота вращения генератора возросла или нагрузка его уменьшилась, время включения обмотки уменьшается, если частота вращения уменьшилась или нагрузка возросла - увеличивается. В схеме регулятора (см. рис.9) имеются элементы, характерные для схем всех применяющихся на автомобилях регуляторов напряжения. Диод VD3 при закрытии составного транзистора VT2,VT3 предотвращает опасные всплески напряжения, возникающие из-за обрыва цепи обмотки возбуждения со значительной индуктивностью. В этом случае ток обмотки возбуждения может замыкаться через этот диод и опасных всплесков напряжения не происходит. Поэтому диод VD3 носит название гасящего. Сопротивление R7 является сопротивлением жесткой обратной связи.

Рис. 10. Изменение силы тока в обмотке возбуждения JB по времени t при работе регулятора напряжения:

tвкл, tвыкл - соответственно время включения и выключения обмотки возбуждения регулятора напряжения; n1 n2 - частоты вращения ротора генератора, причем n2 больше n1; JB1 и JB2 - средние значения силы тока в обмотке возбуждения

При открытии составного транзистора VT2, VT3 оно оказывается подключенным параллельно сопротивлению R3 делителя напряжения, при этом напряжение на стабилитроне VT2 резко уменьшается, это ускоряет переключение схемы регулятора и повышает частоту этого переключения, что благотворно сказывается на качестве напряжения генераторной установки. Конденсатор С1 является своеобразным фильтром, защищающим регулятор от влияния импульсов напряжения на его входе. Вообще конденсаторы в схеме регулятора либо предотвращают переход этой схемы в колебательный режим и возможность влияния посторонних высокочастотных помех на работу регулятора, либо, ускоряют переключение транзисторов. В последнем случае конденсатор, заряжаясь в один момент времени, разряжается на базовую цепь транзистора в другой момент, ускоряя броском разрядного тока переключение транзистора и, следовательно, снижая его нагрев и потери энергии в нем.

Из рис.9 хорошо видна роль лампы HL контроля работоспособного состояния генераторной установки (лампа контроля заряда на панели приборов автомобиля). При неработающем двигателе автомобиля замыкание контактов выключателя зажигания SA позволяет току от аккумуляторной батареи GA через эту лампу поступать в обмотку возбуждения генератора. Этим обеспечивается первоначальное возбуждение генератора. Лампа при этом горит, сигнализируя, что в цепи обмотки возбуждения нет обрыва. После запуска двигателя, на выводах генератора "D+" и "В+" появляется практически одинаковое напряжение и лампа гаснет. Если генератор при работающем двигателе автомобиля не развивает напряжения, то лампа HL продолжает гореть и в этом режиме, что является сигналом об отказе генератора или обрыве приводного ремня. Введение резистора R в генераторную установку способствует расширению диагностических способностей лампы HL. При наличии этого резистора в случае обрыва цепи обмотки возбуждения при работающем двигателе автомобиля лампа HL загорается. В настоящее время все больше фирм переходит на выпуск генераторных установок без дополнительного выпрямителя обмотки возбуждения. В этом случае в регулятор заводится вывод фазы генератора. При неработающем двигателе автомобиля, напряжение на выводе фазы генератора отсутствует и регулятор напряжения в этом случае переходит в режим, препятствующий разряду аккумуляторной батареи на обмотку возбуждения. Например, при включении выключателя зажигания схема регулятора переводит его выходной транзистор в колебательный режим, при котором ток в обмотке возбуждения невелик и составляет доли ампера. После запуска двигателя сигнал с вывода фазы генератора переводит схему регулятора в нормальный режим работы. Схема регулятора осуществляет в этом случае и управление лампой контроля работоспособного состояния генераторной установки.

Рис. 11. Температурная зависимость напряжения, поддерживаемого регулятором EE14V3 фирмы Bosch при частоте вращения 6000 мин-1 и силе тока нагрузки 5А

Аккумуляторная батарея для своей надежной работы требует, чтобы с понижением температуры электролита, напряжение, подводимое к батарее от генераторной установки, несколько повышалось, а с повышением температуры - уменьшалось. Для автоматизации процесса изменения уровня поддерживаемого напряжения применяется датчик, помещенный в электролит аккумуляторной батареи и включенный в схему регулятора напряжения. Но это удел только продвинутых автомобилей. В простейшем же случае термокомпенсация в регуляторе подобрана таким образом, что в зависимости от температуры поступающего в генератор охлаждающего воздуха напряжение генераторной установки изменяется в заданных пределах. На рис.11 показана температурная зависимость напряжения, поддерживаемая регулятором EE14V3 фирмы Bosch в одном из рабочих режимов. На графике указано также поле допуска на величину этого напряжения. Падающий характер зависимости обеспечивает хороший заряд аккумуляторной батареи при отрицательной температуре и предотвращение усиленного выкипания ее электролита при высокой температуре. По этой же причине на автомобилях, предназначенных специально для эксплуатации в тропиках, устанавливают регуляторы напряжения с заведомо более низким напряжением настройки, чем для умеренного и холодного климатов.

Работа генераторной установки на разных режимах

При пуске двигателя основным потребителем электроэнергии является стартер, сила тока достигает сотен ампер, что вызывает значительное падение напряжения на выводах аккумулятора. В этом режиме потребители электроэнергии питаются только от аккумулятора, который интенсивно разряжается. Сразу после пуска двигателя генератор становится основным источником электроснабжения. Он обеспечивает требуемый ток для заряда аккумулятора и работы электроприборов. После подзарядки аккумулятора разность его напряжения и генератора становится небольшой, что приводит к снижению зарядного тока. Источником электропитания по-прежнему является генератор, а аккумулятор сглаживает пульсации напряжения генератора.

При включении мощных потребителей электроэнергии (например, обогревателя заднего стекла, фар, вентилятора отопителя и т.п.) и небольшой частоте вращения ротора (малые обороты двигателя) суммарный потребляемый ток может быть больше, чем способен отдать генератор. В этом случае нагрузка ляжет на аккумулятор, и он начнет разряжаться, что можно контролировать по показаниям дополнительного индикатора напряжения или вольтметра.

Общие рекомендации по выбору автомбильного генератора

При установке аккумуляторной батареи на автомобиль убедитесь в правильной полярности подключения. Ошибка приведет к немедленному выходу из строя выпрямителя генератора, может возникнуть пожар. Такие же последствия возможны при запуске двигателя от внешнего источника тока (прикуривании) при неправильной полярности подключения.

При эксплуатации автомобиля необходимо:

Недопустимо производить следующие действия:

www.autoscience.ru

Характеристики генераторов,применяемых на иномарках

Характеристики генераторов

 

Основной характеристикой генераторной установки является ее токоскоростная характеристика

(ТСХ), т. е. зависимость тока, отдаваемого генератором в сеть, от частоты вращения его ротора при постоянной величине напряжения на силовых выводах генератора. Характеристика эта определяется при работе генераторной установки в комплекте с полностью заряженной аккумуляторной батареей с номинальной емкостью выраженной в А •ч, составляющей не менее 50% номинальной силы тока генератора. Характеристика может определяться в холодном и нагретом состояниях генератора. При этом под холодным состоянием понимается такое, при котором температура всех частей и узлов генератора равна температуре окружающей среды, величина которой

должна быть

23±5°С. Температура воздуха определяется в точке на расстоянии 5 см от воздухозаборника генератора. Поскольку генератор во время снятия характеристики нагревается за счет выделяемых в нем потерь мощности, то методически трудно снять ТСХ в холодном состоянии и большинство фирм приводит токоскоростные характеристики генераторов в нагретом состоянии, т. е. в состоянии при котором узлы и детали генератора нагреты в каждой определяемой точке до установившейся величины за счет выделяемых в генераторе потерь мощности при указанной выше температуре охлаждающего воздуха. Диапазон изменения частоты вращения при снятии характеристики заключен между минимальной частотой, при которой генераторная установка развивает силу тока 2 А (около 1000 мин-') и максимальной. Снятие характеристики осуществляется с интервалом 500 до 4000 мин' и 1000 мин-' при более высоких частотах. Некоторые фирмы приводят токоскоростные характеристики, определенные при номинальном напряжении, т. е. при 14 В, характерном для легковых автомобилей. Однако снять такие характеристики возможно только с регулятором специально перестроенном на высокий уровень поддержания напряжения. Чтобы предотвратить работу регулятора напряжения при снятии токоскоростной характеристики, ее определяют при напряжениях Ut=13,5±0,l В для 12-вольтовой бортовой системы. Допускается и ускоренный метод определения токоскоростной характеристики, требующий специального автоматизированного стенда, при котором генератор прогревается в течение 30 мин при частоте вращения 3000 мин-', соответствующей этой частоте, силе тока и указанном выше напряжении. Время снятия характеристики не должно превышать 30 с при постоянно меняющейся частоте вращения.

 

Токоскоростная характеристика имеет характерные точки

, к которым относятся:

 

n

0 - начальная частота вращения без нагрузки. Поскольку обычно снятие характеристики начинают с тока нагрузки (около 2 А, то эта точка получается экстраполяцией снятой характеристики до пересечения с осью абсцисс.

 

n

L - минимальная рабочая частота вращения, т. е. частота вращения, примерно соответствующая частоте холостого хода двигателя. Условно принимается, nL = 1500 мин-'. Этой частоте соответствует ток IL.

 

Фирма Bosch

для

"компактных" генераторов приняла nL=1800 мин'. Обычно IL составляет 40...50% номинального тока.

 

nR - номинальная частота вращения, при которой вырабатывается номинальный ток IR. Эта частота вращения принята nR = 6000 мин', IR - наименьшая сила тока, который генераторная установка должна выработать при частоте вращения nR.

 

NMAX - максимальная частота вращения. При этой частоте вращения генератор вырабатывает максимальную силу тока IMAX . Обычно максимальная сила тока мало отличается от номинальной IR (не более, чем на 10%).

 

Фирмы приводят в своих информационных материалах в основном только характерные точки токоскорост

ной характеристики. Однако, для генераторных установок легковых автомобилей с достаточной степенью точности можно определить токоскоростную характеристику по известной номинальной величине силы тока / и характеристике по рис. 13, где величины силы тока генератора даны по отношению к ее номинальной величине.

 

Рис

. 13. Выходные характеристики автомобильных генераторов. 1 - токоскоростная характеристика. 2 - КПД по точкам токоскоростной характеристики

Кроме токоскоростной характеристики генераторную уста

новку характеризует еще и частота самовозбуждения. При работе генератора на автомобиле в комплекте с аккумуляторной батареей генераторная установка должна самовозбуждаться при

частоте вращения двигателя меньшей

, чем частота вращения его холостого хода. При этом, конечно, в схему должны быть включены лампа контроля работоспособного состояния генераторной установки мощностью, оговоренной для нее фирмой -

изготовителем генератора и параллельно ей резисторы

, если они предусмотрены схемой.

Другой характеристикой

, по которой можно представить энергетические способности генератора, т. е. определить величину мощности, забираемой генератором от двигателя, является величина его коэффициента полезного действия (КПД), определяемого в режимах соответствующих точкам токоскоростной характеристики (рис. 13), величина КПД по рис. 13 приведена для ориентировки , т. к. она зависит от конструкции генератора - толщины пластин, из которых набран статор, диаметра контактных колец, подшипников, сопротивления обмоток и т. п., но, главным образом, от мощности генератора.

Чем генератор мощнее

, тем его КПД выше

Наконец

, генераторную установку характеризует диапазон ее выходного напряжения, при изменении в определенных пределах частоты вращения, силы тока нагрузки и температуры. Обычно в проспектах фирм указывается напряжение между силовым выводом "+" и "массой" генераторной установки в контрольной точке или

напряжение настройки регулятора при холодном состоянии генераторной установки частоте вращения

6000 мин', нагрузке силой тока 5 А и работе в комплекте с аккумуляторной батареей, а также термокомпенсация - изменение регулируемого напряжения в зависимости от температуры окружающей среды. Термокомпенсация

указывается в виде коэффициента

, характеризующего изменение напряжения при изменении температуры окружающей среды на ~1°С. Как было показано выше, с ростом температуры напряжение генераторной установки уменьшается. Для легковых автомобилей некоторые фирмыпредлагают генераторные установки со следующим напряжением настройки регулятора и термокомпенсацией:

 

Напряжение настройки,В

14,1±0,1 14,5±0,1

Термокомпенсация

, мВ/°С 7±1,5 -10±2

 

Ниже приводятся основные характеристики и особенности конструкции генераторов зарубежных фирм

.

Следует помнить

, что под генератором фирмы имеют в виду генераторную установку, т. е. генератор в комплекте со встроенным в него регулятором напряжения.

Autocop.ru ® 2007 All rights reserved © | [email protected] | 8 (49449) 5 48 26

www.autocop.ru

Автомобильный генератор - схема, принцип работы и замена + Видео

Генератор – это электрическая машина, предназначенная для выработки электрической энергии. Генераторы являются основным элементом электроснабжения и обеспечивают бесперебойную работу электрических приемников.

Устройство и принцип работы автомобильного генератора

Генератор состоит из двух основных элементов – это статор и ротор. В статор входит корпус генератора, на котором установлена обмотка статора. Обмотка производится с медной проволоки и выполняется в виде изолированных друг от друга витков по всей окружности стенка статора. Статор выполняется из металла и состоит из двух частей, которые обеспечивают поперечное соединение генератора и его защиту от воздействий окружающей среды.

Ротор, в свою очередь, представляет собой комплекс обмотки, которая уложена в специальные пазы и имеет вал. Вал предназначен для крепления ротора в продольной оси и крепится при помощи двух подшипников на разных частях корпуса статора. На одной из частей вала, во внутренней части статора установлены два контактных кольца с медной пленкой. С наружной части генератора, на валу устанавливается шкив генератора.

В нижней части располагаются две железные пластины, скрепленные между собой и между ними, в чередующемся порядке закреплены полупроводниковые элементы – диоды. Также, в статоре укрепляется щеточный узел, чаще всего, в комбинации с реле-регулятором напряжения, щетки которого упираются в контактные кольца вала ротора.

Принцип работы генератора, примерно, следующий. При запуске двигателя, со шкива коленчатого вала через ременную передачу передается вращающий момент не шкив вала генератора. Вал начинает вращение и при помощи полюсов и комплекса обмотки наводит ЭДС (электродвижущую силу) в обмотке ротора. Эта ЭДС передается в виде напряжения переменного тока на щеточный узел. Так как значения напряжения имеют прямопропорциональную зависимость от числа оборотов коленчатого вала, то они не постоянны. Для этого ток выпрямляется при помощи диодного моста на дне генератора и попадает на реле регулятор напряжения, расположенный либо в самом щеточном узле, либо в отдельной части подкапотного пространства. Таким образом, полученное напряжение выравнивается и становится неизменным.

Данный агрегат обеспечивает питание током бортовую сеть автомобиля, заряжает аккумулятор и снабжает катушку или модуль зажигания достаточным количеством электрической энергии.

Типы и характеристики генератора

Все автомобильные генераторы подразделяются на генераторы постоянного и переменного тока. Изначально, на автомобилях применялся первый вариант, образец которого, впервые был выставлен в 1946 году. На полюсах статора располагается обмотка возбуждения, которая создает магнитное поле в обмотке ротора. Это поле создает напряжение, которое снимается с контактных колец на валу ротора. Так как данные элементы не подвижны, ток получается постоянным.

Генераторы переменного тока появились в 1954 году. На этот раз магнитное поле возникает в обмотке ротора, которая наводит напряжение в обмотке статора. Подведение тока осуществляется через щеточный узел и контактные кольца.

Характеристики генератора целиком и полностью зависят от бортовой сети автомобиля, мощности двигателя, способа впрыска топлива и множества других параметров. Основными характеристиками любого генератора являются: номинальное напряжение и выходной ток. Как известно, генераторы легковых автомобилей вырабатывают электроэнергию напряжением 14 вольт, однако сила тока может меняться, в зависимости от частоты вращения ротора и имеет определенные максимальные значения. Путем дальнейших преобразований, напряжение снижается до 12 вольт, чтобы обеспечить нормальную работу электрической аппаратуры.

На грузовых автомобилях применяются генераторы, которые выдают 28 вольт. Реле регулятор напряжения позволяет снизить данный параметр до отметок в 24 вольта. Такой генератор имеет большие размеры и массу, по сравнению с генератором для легкового автомобиля. Такое напряжение связано с большим количеством дополнительного оборудования, в том числе, кранового.

Помимо этого, есть ряд определенных генераторов, в которых отсутствует щеточный узел. Напряжение, полученное в результате перемещения магнитного поля, снимается с обмотки статора напрямую. Такие генераторы устанавливались на двигатели: ВАЗ 2112, ВАЗ 2111 и даже ЗМЗ-406. Основным недостатком таких генераторов можно считать повышенный уровень шума и слишком большие габариты, что не позволило им вытеснить щеточные аналоги.

Замена автомобильного генератора

Генератор крепится к двигателю посредством двух болтов, один из которых удерживает агрегат на регулировочной планке, а второй позволяет совершать генератору наклоны для осуществления регулировок. Регулировка предназначена для установки правильного натяжения ремня генератора.

Замена генератора производится в следующем порядке:

1. Автомобиль можно установить на яму или эстакаду (так удобнее), а можно просто на ровную поверхность. Такой подход зависит от высоты расположения генератора, относительно подкапотного пространства. Клемма аккумулятора должна быть отключена.

2. В первую очередь выкручивается гайка на регулировочной планке. После этого, ослабляется длинный болт, предназначенный для наклона генератора.

3. Генератор наклоняют к двигателю автомобиля и снимают ослабевший ремень привода.

4. После этого, откручивают провода массы со шпильки генератора, а затем вытаскивают штекер с плюсовым проводом.

5. Теперь выкрутите нижнюю гайку крепления и вытащите длинный болт крепления. После этого генератор демонтируется и на его место устанавливается новый агрегат.

6. Вставьте длинный болт в нижнее крепление и закрутите гайку, таким образом, чтобы сохранить возможность поворачивать генератор к двигателю.

7. Вставьте штекер с проводами в специальный разъем, и прикрутите провода массы.

8. После этого, наденьте ремень привода генератора на шкивы и, вставив небольшую палку между двигателем и генератором, проведите его натяжение, но не слишком тугое. Закрутите гайку крепления регулировочной планки и подтяните нижний болт крепления.

На этом замена генератора завершена. Удачи на дорогах!

vipwash.ru

Автомобильный генератор: устройство, назначение и неисправности

Генератор предназначен для питания электрическим током всех потребителей и для подзарядки аккумуляторной батареи при работе двигателя на средних и больших оборотах. На современные автомобили устанавливается генератор переменного тока. Он включен в электрическую цепь автомобиля параллельно аккумуляторной батарее. Однако питать потребителей и заряжать батарею генератор будет только в том случае, если вырабатываемое им напряжение превысит напряжение аккумуляторной батареи.

А произойдет это тогда, когда двигатель автомобиля начнет работать на оборотах выше холостых, так как напряжение, вырабатываемое генератором, зависит от скорости вращения его ротора. При этом, по мере увеличения частоты вращения ротора генератора, вырабатываемое им напряжение может превысить требуемое. Поэтому генератор работает в паре с регулятором напряжения. Регулятор напряжения является электронным прибором, который ограничивает вырабатываемое генератором напряжение и поддерживает его в пределах 13,6 — 14,2 вольта.

Устройство автомобильного генератора

Основные части генератораГенератор в разрезеСтатор и ротор

Статор (неподвижная часть генератора) представляет собой обмотки с магнитопроводом, в которых образуется электрический ток. Ротор — вращающаяся часть генератора. Ротор состоит из обмоток возбуждения с полюсной системой, вала и контактных колец. Кольца выполняются чаще всего из меди, с опрессовкой их пластмассой. Для снижения износа и предотвращения окисления они могут изготавливатья из латуни или нержавеющей стали. К кольцам присоединяются выводы обмотки возбуждения. Питание к обмоткам подается через щетки (скользящие контакты), которые прижимаются к кольцам с помощью пружин. Щетки бывают двух типов — меднографитные и электрографитные. Последние имеют более высокое электрическое сопротивление, что снижает выходные характеристики генератора, зато они обеспечивают значительно меньший износ контактных колец. Существуют и бесщеточные генераторы, у которых на роторе расположены постоянные магниты, а обмотки возбуждения — на статоре. Отсутствие щеток и контактных колец повышает надежность генератора, но увеличивает массу и шумность при работе.

При вращении ротора напротив катушек обмотки статора появляются попеременно разнополярные полюсы, т. е. направление и величина магнитного потока, пронизывающего катушку, меняется, что и приводит к появлению в ней переменного напряжения. Так как потребители электрической сети автомобиля работают на постоянном напряжении, в схему генератора вводится диодный выпрямитель.

Диодный мост и регулятор напряженияКонструкция и привод генераторов

Электронные регуляторы напряжения, как правило, встроены в генератор («таблетка») и объединены со щеточным узлом. Иногда они располагаются отдельно в подкапотном пространстве. Регуляторы изменяют ток возбуждения путем изменения времени включения обмотки ротора в питающую сеть. Устройства необслуживаемые, необходимо лишь контролировать надежность контактов. Существуют регуляторы напряжения, наделенные функцией термокомпенсации, — они измененяют напряжение зарядки в зависимости от температуры воздуха в подкапотном пространстве для обеспечения оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение подводится к батарее, и наоборот.

Генераторы выпускаются в двух конструктивных исполнениях — «классическом», с вентилятором у приводного шкива, и компактном, с двумя вентиляторами внутри генератора. Так как «компактные» генераторы имеют привод с более высоким передаточным отношением, их называют еще высокоскоростными генераторами.

Генератор устанавливается на специальном кронштейне двигателя и приводится в действие от шкива коленчатого вала через ременную передачу. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива генератора, тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток. На современных моделях, как правило, привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра. Привод генератора может осуществляться как отдельно, так и одним ремнем вместе с насосом охлаждающей жидкости («помпой»). Натяжение ремня регулируется либо отклонением корпуса генератора, либо (в случае применения поликлинового ремня) натяжными роликами при неподвижном генераторе.

Возможна ли замена генератора одной марки на другой? Вполне, если выполняются следующие условия:

Неисправности автомобильного генератора

ВИДИМАЯ НЕПОЛАДКА ПРИЧИНА СПОСОБ УСТРАНЕНИЯ
Контрольная лампа заряда не горит при включении зажигания Разряжен либо неисправен аккумулятор Зарядить или заменить аккумулятор
Перегорела лампа на приборной панели Заменить
Нет контакта провода массы с задней частью генератора Проверить надежность контакта массы, очистить и подтянуть болты крепления провода массы
Нарушение целостности провода между выводом подключения лампы на генераторе и приборной панелью Проверить вольтметром или омметром по электрической схеме
Не подсоединены разъемы между генератором и приборной панелью Проверить и, если требуется, заменить разъемы
Щетки неплотно прилегают к контактным кольцам («зависли» либо износились) Проверить длину (min=5 мм) и свободу перемещения щеток в щеткодержателе
Дефект регулятора напряжения Заменить регулятор напряжения
Сильный износ роторных колец Проверить и, если требуется, заменить роторные кольца
Обрыв обмоток ротора генератора Проверить ротор, при необходимости заменить.
Контрольная лампа заряда гаснет при увеличении оборотов двигателя, но на аккумуляторе зарядки нет Ослабло натяжение клинового ремня Натянуть клиновой ремень
Обрыв диодов диодного моста Проверить и заменить диодный мост
Дефект регулятора напряжения Проверить и, если требуется, заменить реле регулятор напряжения
Провод между генератором и аккумулятором имеет плохой контакт Проверить и заменить провод, после чего проверить диодный мост в генераторе.
Контрольная лампа заряда не гаснет при увеличении оборотов двигателя Ослабло натяжение клинового ремня Натянуть клиновой ремень
Неисправность диодного моста или обмотки статора Проверить и заменить диодный мост или обмотку
Дефект регулятора напряжения Проверить и, если требуется, заменить реле регулятор напряжения
Провод между генератором и контрольной лампой имеет контакт с массой Найти и устранить замыкание или заменить жгут проводов, после чего проверить диодный мост в генераторе
Контрольная лампа заряда горит при выключенном зажигании Короткое замыкание диода Проверить диоды, и заменить диодный мост
Аккумулятор выкипает Неисправность реле регулятора напряжения Заменить реле регулятор и проверить диоды, при необходимости заменить диодный мост

Правила эксплуатации генератора (по Остеру)

И напоследок несколько «вредных» советов, как быстро и без проблем «сжечь» генератор:

  1. Самый лучший и быстрый способ — «Переплюсовка». Поменяйте местами провода от клемм аккумуляторной батареи, при этом возможен не только оптический эффект (яркая вспышка внутри генератора, легкое дымовое облако), но также звуковой (от щелчка до хлопка и шипения), обонятельный (почувствуете непередаваемый аромат горящих проводов!), и, наконец, тактильный (ожог 1-3 степени — подбирается экспериментально!) После применения этого способа диодный мост выгорает с вероятностью 99%, статор — 60%, реле-регулятор — 20%, провода — 10%, автомобиль целиком — 0,01%! Способ очень эффективен при «прикуривании». Возможны побочные эффекты — выгорание бортовых компьютеров, сигнализации, музыки и т.д. Большой плюс — не требует специальных навыков и знаний, легко осваивается начинающими.
  2. Способ «Мойка». Помойте двигатель своей машины. Особенно тщательно помойте генератор, проследите, чтобы потоки воды прополоскали все внутренности агрегата. Ни в коем случае не продувайте генератор после мойки! Сразу же заводите машину и включите побольше нагрузок — весь свет, обогрев, музыку. Если эффект не произошел — повторите попытку. Эффект появится, поверьте!!! Плюс — сгоревший генератор будет чистым.
  3. «Дедовский» метод — сдёргивание плюсовой клеммы аккумулятора на работающем двигателе вроде бы для проверки зарядной системы. Процент сгоревших релюшек увеличивается до 50-70%. Способ требует определенной сноровки — главное, чтобы было побольше искр! Возникающие в цепях высоковольтные коммутационные процессы рано или поздно должны будут сжечь хоть что-нибудь в Вашем генераторе, или, в крайнем случае, в машине! Как всегда, рекомендуется включить побольше всяких там нагрузок — свет, печки, подогрев. Способ не очень эффективен на старых машинах, но главное — верить, что так и будет!
  4. «Лужа» — способ, которым пользуется множество автолюбителей, даже не подозревая об этом. При этом многие искренне уверены, что автомобиль и его агрегаты, включая генератор, по водонепроницаемости должен быть сродни подводной лодке. Дерзайте! Как много неисследованных глубин ждут своих первооткрывателей! И еще простой совет — лужу надо проезжать на возможно максимальной скорости, тщательно следя, чтобы брызги равномерно захлестывали подкапотное пространство. Отсутствие защитных кожухов и поддонов во многом облегчит Вашу непростую задачу. Очень большой плюс — способом можно пользоваться практически ежедневно, не выходя из машины!
  5. Способ «Меломан». Для очень крутых! Поставьте в Вашу машинку супер магнитолку, парочку CD чейнджеров, пару-тройку ламповых усилителей ватт по 200-300, сабвуфер ватт на 500, ну колонок с десяток, лучше полтора. Вообще, чем больше — тем лучше! Баксов на 12-25 тысяч! (Это не враки — случай зафиксирован!) Включайте! Если через пару минут генератор все ещё работает, а характерного дыма и запаха все еще нет — значит Вы поставили слишком дешёвую аппаратуру!
  6. «Аккумуляторный» способ — наиболее коварный и таинственный из всех, поскольку его осознание требует понимания химических и физических процессов (ну хотя бы закон Ома, что уже не всем дано!) А если по-простому — используйте давно просроченный аккумулятор, не моложе трех-пяти лет. Чем старше — тем больше вероятность, что в аккумуляторе окажется короткозамкнутая банка. При этом аккумулятор может подавать признаки жизни — заводить машину, подзаряжаться от зарядного устройства и т.д., но при этом он становится мощной паразитной нагрузкой в цепи генератора. Возможно, что силы тока будет хватать на работу инжектора, но при включении дальнего света и обогрева генератор будет греться так, что его можно использовать для приготовления яичницы в походных условиях! Главное — не обращать на это внимания, и способ когда-нибудь сработает!

avtonov.info

Схема автомобильного генератора

Устройство авто генератора, принцип работы генератора в автомобиле.

Генератор — неотъемлемая часть каждого автомобиля. С помощью данного устройства, мы получаем электрическую энергию в автомобиле. Рассмотрим его составляющие и способ функционирования. Каждый автомобиль оснащен генератором, для функционирования всего электрооборудования. Генератор — изменяет энергию движка машины в электро — энергию, необходимую устройствам машины и питает потребителей. Генератор, неразрывно связан с стабилизатором тока. Данная схема, имеет название — устройство генерирования электричества. Наиболее популярными, стали генераторы изменяющие заряд тока. Они хорошо справляются с поставленной задачей и отвечают необходимым техническим требованиям.

Технические характеристики генератора. Подключение автомобильного генератора в электрическую цепь автомобиля.

Вывод генератора, предотвращает снижение заряда АКБ, в различных режимах работы автомобиля. Генератор, обеспечивает постоянное напряжение, при различных нагрузках.

Аккумуляторная батарея, является наиболее чувствительной к изменению напряжения. Именно по этому, подключение автомобильного генератора — берет на себя роль стабилизатора напряжения. Если напряжение понижается, батарея может разрядиться. Данные последствия, не позволили бы автомобилю свободно запускаться. В случае превышенного заряда, батарея, может в скором времени нарушить правильное функционирование.

В основном, генераторы отличаются качеством изготовления и соответственно схемой. Принципы функционирования и устройство, аналогичны на всех автомобилях. В зависимости от производителя, могут изменяться габариты, схема и выходы генератора (способы подключения автомобильного генератора).

Схема устройства генератора.

Генератор, включает в себя следующие составные части:

— Шкив. Данное устройство отвечает за подачу силы двигателя к установке генерации. Передача происходит при помощи ременного привода.

— Оболочка генератора. Cхема оболочки, состоит из двух частей: торцевая (смотрящая на шкив) и тыловая (в сторону контактов). Оболочка генерирующего устройства, необходима для монтажа генератора и сопутствующих составляющих на движок машины. Тыловая часть, содержит выпрямитель, щеточный механизм, штатный стабилизатор напряжения и выход, для подключения электрического оборудования.

— Ротор. Схема Данного устройства, имеет вид вала с двумя металлическими втулками. Между ними, находиться рабочая обмотка. Выводы к обмотке, соединяют ее с контактами. На большинстве генераторов, контакты представлены в виде колец из меди.

— Статор. Представляет собой небольшую трубку, созданной из стальных составляющих. В обмотке стартера, формируется необходимая сила генератора.

— Узел, с диодами. В узле, расположены 6 диодов. В каждом тепло отводе, находятся по три свето — диоды.

— Регулятор. Стабилизирует напряжение в сети, предотвращает перепад нагрузок электричества.

— Щеточный механизм. Представляет собой небольшую конструкцию из пластика. На съемном механизме, имеется ряд щеток, взаимодействующие с контактами ротора.

— Крышка защиты диодов.

Система функционирования генератора и отдельных его частей.

Генератор, функционирует согласно методу индукции. Когда, катушку пронизывает магнитный ток, во время его изменения — на выходе катушки появляется электрическое напряжение. Напряжение, напрямую зависит от скорости изменения передаваемого тока. Таким же образом, принцип действует в обратном порядке. Для получения магнитного потока, необходимо пустить на катушку электрический ток. Выходит, для того, чтобы получить электрический ток, необходим источник (с переменным магнитным полем) и катушка (для снятия переменного напряжения).Источником переменного тока, является вращающаяся часть рабочей обмотки. Обмотка с системой полюсов, в совокупности представляют ротор.

На полюсах ротора, находиться магнитный поток. Даже, если ток отсутствует в обмотке, на полюсах сохраняются его остатки. Ток остается в незначительном количестве и способен запустить генератор, только при высоких оборотах.Для получения первичного магнитного импульса ротором, АКБ подает небольшую часть тока, через обмотку ротора. Данный процесс осуществляется через контакты лампочки подтверждающей правильную работу генератора. Оптимальный поток тока, позволяет запустить холостой генератор. При этом, ток не должен быть высоким, в противном случае произойдет полный разряд батареи. В связи с этим, мощность сигнальной лампочки около двух с половиной Вт. Когда на обмотках набирается необходимое количество напряжения, сигнальная лампочка тухнет. В дальнейшем, обмотка получает питание уже от самого генератора. В данном случае, генератор функционирует автономно.

Обмотки статора, подают выходящее напряжение. Когда ротор вращается, со стороны катушек, сменно появляются плюсовую и минусовую полярность ротора. По этому, изменение движения магнитного импульса, проходит через катушку, образуя переменный импульс. Напряжение в катушке, зависит от скорости движения генератора и количества полюсов. Дело в том, что ротор может быть оснащен несколькими парами полюсов.Статор, имеет обмотку с тремя фазами. Обмотка состоит из нескольких частей, намотанных по специальной методике.

Для подведения потока к трех фазовой обмотки статера, катушки размещены в специальных пазах магнито — провода. Данная конструкция, не позволяет магнитному потоку рассеиваться. МП, находиться в катушках и магнито — проводе. Таким образом, появляется побочный ток, который занижает уровень тока и способны нагревать статор. Именно поэтому, магнито — провод, собирают из стальных частей.

Электрическая сеть машины, требует стабильного и бесперебойного напряжения. Обмотка генератора, питает части машины, через специальный стабилизатор. В стабилизатор, встроены диоды, имеющих по три выхода с определенной полярностью. Диоды открыты и не замедляют движение тока по цепи.Часть производителей, наиболее заботливы об электрических приборах автомобиля. Таковые, заменяют диоды специальными стабилизирующими устройствами. Привычная схема диодов, заменяется на стабилизатор. Отличие данного устройства от классических диодов, заключается в пропускании тока, только необходимой величины. Обычно, данное напряжение не превышает предела в тридцать Вт. При увеличении данного показателя, стабилизаторы, направляют ток в обратном порядке. При этом, на выводах, напряжение остается стабильным. Тем самым, стабилизаторы, не допускают ток, нарушающий работу электронных приборов в автомобиле.Стабилизатор, поддерживает постоянство напряжения на выходе и используется как регулятор.

Регуляторы напряжения.

Не зависимо от конструкции регуляторов, принцип действия у них аналогичен. Электрические регуляторы, включают и выключают подачу тока с катушки, тем самым стабилизирую напряжение. При необходимости снизить заряд тока, время подачи тока с катушки уменьшается. В случае, необходимости большего заряда тока, время подачи с катушки — увеличивается.Модернизированная схема стабилизатора.

Часть регуляторов, обладают свойствами компенсации. Они адаптируют заряд, подходящий к аккумулятору автомобиля. Данное регулирование, осуществляется в связи с изменением температур под капотом авто. В случае снижения температура, на АКБ, подается большее количество тока.

Генератор, одна из важнейших составляющий автомобиля. Схема генератора, позволит подробно изучить его элементы и принцип функционирования. Изучение устройства, поможет вам правильно диагностировать неисправность. От правильной работу рассматриваемого устройства, зависит функционирование всех электронных устройств и срок эксплуатации аккумуляторной батареи. При возникновении ошибок в работе генератора, необходимо оперативно приступить к его диагностике и устранению неисправностей. Своевременно обслуживайте и проверяйте генератор, во избежание масштабных неполадок. Для снятия и замены электрического генератора, пользуйтесь советами производителя, указанных в комплектующей инструкции. Удачи в изучении генератора!

 

Похожие статьи

carmend.ru

Устройство и принцип действия автомобильных генераторов - для специалистов - Каталог статей

Автомобильный генератор

Генератор автомобильный при работающем двигателе является основным источником энергии, который обеспечивает электроснабжение потребителей и подзаряд АБ.

К автомобильным генераторам предъявляют следующие требования: простота конструкции; долговечность и надежность в эксплуатации; малые габаритные размеры, масса и стоимость; большая удельная мощность; возможность заряда аккумуляторных батарей при малой частоте вращения вала двигателя.

На рис. 1 показано устройство автомобильных генераторов переменного тока типа 37.3701 с электромагнитным возбуждением и встроенными в крышку кремниевыми диодами. Промышленность выпускает трехфазные синхронные генераторы с клю-вообразным ротором, контактными кольцами, кремниевыми диодами и встроенным регулятором напряжения, например, Г221, Г222, Г250, 37.3701, Г272, Г273 и др, индукторные генераторы – бесконтактные автомобильные генераторы переменного тока с электромагнитным возбуждением для автомобилей и сельхозмашин, например, 2102, 3701, бесщеточные автомобильные генераторы переменного тока с укороченными полюсами, например, 45.3701, 49.3701.

В настоящее время на смену автомобильным генераторам постоянного тока пришли генераторы переменного тока, которые удовлетворяют выше перечисленным требованиям (таблица 1). Генераторы Г 250-А, Г 270-А от генератора Г 250 отличаются сепараторами, что предупреждает выброс смазки на контактные кольца, и герметизированной установкой кремниевых диодов в алюминиевые оребренные теплоотводы.

В 24-В автомобильном генераторе Г 270-А обмотка возбуждения и каждая катушка обмотки статора намотаны более тонким проводом с большим числом витков. Сердечник статора 21 (рис. 1) для уменьшения нагрева вихревыми токами набирают из тонких стальных пластин, изолированных друг от друга лаком.

Рис. 1 Общий вид автомобильного генератора переменного тока

:

1 и 19 – алюминиевые крышки; 2 – блок диодов выпрямителя; 3 –вентиль выпрямительного блока; 4 – винт крепления выпрямительного блока; 5 – контактные кольца; 6 и 18 – задний и передний шарикоподшипники; 7 – конденсатор; 8 – вал ротора; 9 и 10 – выводы; 11– вывод регулятора напряжения; 12 – регулятор напряжения; 13 – щетка; 14 – шпилька; 15 – шкив с вентилятором; 16 – полюсный наконечник ротора; 17 – дистанционная втулка; 20 – обмотка ротора; 21- статор; 22 – обмотка статора; 23 – полюсный наконечник ротора; 24 – буферная втулка; 25 – втулка; 26 – поджимная втулка

Внутренняя поверхность статора имеет 18 пазов, в которые укладывают 18 катушек обмотки. Катушки распределены на три фазы и включены по схеме «звезда». В каждой фазе включено по шесть катушек.

Таблица 1

Технические характеристики

Тип генератора

Г-250

16.3701

17.3701

29.3701

Г-273

37.3701

Напряжение,В

14

14

14

14

28

14

Максимальный ток,А при n=5000 мин -1

40

65

40

45

30

55

Частота вращения, мин-1 при Jn = 0 Jn= max

950 2100

950 2100

950 2100

950 2100

1000 2100

1000 5000

Номинальный ток, А

28

50

24

32

20

-

Регулятор напряжения

РР-350

13,3702

Я-1121

Я-1121

Я-210

РР-380

Выпрямительный блок

ВБГ-1

БПВ-60

БПВ-45

БПВЧ-60

БПВЧ-45

Встроен

Сопротивление ОВТ.Ом

0,12

-

0,12

0,12

-

-

Установлен на автомобиль

ЗИЛ ГАЗ

ГАЗ

ЛИАЗ

АЛК

КамАЗ

ВАЗ АЗЛК

Концы катушек присоединены к трем изолированным зажимам или к зажимам блоков диодов выпрямителя. Ротор состоит из двух стальных шести-полюсных наконечников 10. Наконечники одной половины ротора с северной магнитной полярность входят между наконечниками второй половины ротора с южной магнитной полярностью. Катушка обмотки возбуждения 20 расположена между полюсами наконечниками. Оба конца этой обмотки присоединены к двум медным контактным кольцам 5. Две щетки установлены в щеткодержателях и прижимаются к контактным кольцам пружинами. Изолированная от корпуса щетка соединена проводником с зажимом «Ш», другая щетка соединена на массу. Крышки 1 и 19 имеют прорези для движения воздуха, нагнетаемого крыль-чаткой 15 шкива. Подшипники 6 и 18 защищены сальниками. На задней крышке 1 установлен зажим (-) и зажим (+).

В начале работы автомобильного генератора обмотка возбуждения питается от АБ, а затем от выпрямителя и создает сильное магнитное поле. При вращении ротора под каждым зубцом статора происходит то северный, то южный полюс ротора, в результате чего магнитный поток, проходящий через зубцы статора, изменяет свое направление и величину. В результате этого происходит пересечение катушек обмотки статора магнитными силовыми линиями, и в них индуктируется ЭДС переменного направления. ЭДС создает трехфазный переменный ток, который посредством кремниевых диодов выпрямляется в постоянный ток.

Выпрямительный блок БПВ 4-60-02 состоит из шести кремниевых диодов, включенных по трехфазной мостовой схеме к зажимам обмотки статора. Три диода (Д242АП) соединены с массой, а другие три (Д242А) с положительным зажимом генератора. Диоды обладают большой механической и электрической прочностью, имеют большой срок службы, хорошо работают при температуре от – 60одо + 125о С, выдерживают до 100 В. Генератор типа 37.3701 - переменного тока представляет собой трехфазную синхронную машину с электромагнитным возбуждением. Для преобразования переменного тока в постоянный имеется встроенный выпрямитель из шести кремниевых диодов.

Напряжение регулируется встроенным микроэлектронным регулятором напряжения. Генератор установлен на двигателе и приводится во вращение клиновым ремнем от шкива коленчатого вала. Лапами крышек генератор крепится к кронштейну на двигателе, а шпилькой 14 – к натяжной планке. Чтобы не обломились лапа крышек при затягивании болта крепления, в отверстие крышки 1 устанавливаются две стальные втулки 25 и 26 и резиновая буферная втулка 24. При затягивании болта буферная втулка сжимается между втулками 25, 26 и осевое усилие затяжки не передается на крышки генератора.

При включении зажигания ток от АБ поступает в обмотку возбуждения. При вращении ротора его магнитный поток пересекает витки обмоток статора и в них индуктируется переменный ток, который затем преобразуется в постоянный. Когда напряжение, вырабатываемое генератором, станет больше, чем напряжение АБ, ток от генератора пойдет во внешнюю цепь на заряд батареи и на питание других потребителей. В обмотку возбуждения в это время ток поступает также от генератора.

Напряжение автомобильного генератора с увеличением частоты вращения вала двигателя может достигнуть недопустимой величины. Для поддержания напряжения генератора в определенных пределах в крышку генератора со стороны контактных колей встроен неразборный интегральный регулятор напряжения. Когда напряжение генератора превысит 14,5 В, регулятор напряжения прерывает поступление тока в обмотку возбуждения.

В результате этого напряжение автомобильного генератора падает, регулятор снова пропускает ток в обмотку возбуждения и процесс повторяется. Напряжение поддерживается в пределах 13,5...14,5 В. Максимальная сила тока отдачи при напряжении 13 В – 55 А. Индукторные генераторы, например, 2102, 3701 представляют собой одноименно – полюсную семифазную индукторную машину с односторонним электромагнитным возбуждением и встроенным кремниевым выпрямителем.

Статор имеет 14 зубцов, на которых закреплены катушки семифазной обмотки. Обмотка – катушечная одноплоскостная, имеет по две последовательно соединенных катушки в фазе. Фазы соединены в семиугольник. Ротор представляет собой цилиндрический пакет с зубцами снаружи – 10 зубцов и цилиндрическими отверстиями внутри. Ротор соединен с приводом консольно с помощью стального фланца. Система возбуждения состоит из обмотки возбуждения и внешнезамкнутого магнитопровода, наружная часть которого – магнитопроводящая стальная крышка, внутренняя – центральная втулка, ось и переходная втулка.

Созданный обмоткой возбуждения магнитный поток замыкается через элементы статора и ротора. При вращении ротора в зубцах статора магнитный поток обмотки возбуждения пульсирует и вызывает ЭДС в катушках обмотки статора, охватывающих зубцы. В бесщеточных генераторах переменного тока с укороченными полюсами, например, 49.3107 за счет неподвижного крепления обмотки возбуждения с помощью немагнитной обоймы достигается бесконтактность. Полюса клюквообразной формы имеют длину меньше половины длины активной части ротора. В процессе вращения ротора магнитный поток возбуждения пересекает витки обмотки статора, индуцируя в них ЭДС. Трудоемкость обслуживания этих генераторов сведена к минимуму, но они имеют большие весовые показатели.

Учебное издание Петров Валерий Максимович, Дьяков Иван Федорович

Электрооборудование, электронные системы и бортовая диагностика автомобилей

nkcentr.ucoz.ru


Смотрите также