Чертеж генератора


Ветроэлектростанция ВЭС

ТЕМПЕРАТУРА

МЕНЮ САЙТА

ОТДЫХ ЛЕТОМ

ПРОЖИВАНИЕ

ЭКСКУРСИИ

РЫБАЛКА

ПРОЕЗД

ПОХОДЫ

МАНГАЛ

РЕСУРСЫ

ЯРКОСТЬ

КОНТАКТЫ

САБЕЛЬНИК

КАРТА САЙТА

ГОСТЕВАЯ КНИГА

ЗЕМЛЯНИКА

ГЕНЕРАТОР

Трехфазный синхронный генератор переменного тока без магнитного залипания с возбуждением от постоянных неодимовых магнитов, 12 пар полюсов.

Очень давно еще в советские времена в журнале "Моделист Конструктор" была опубликована статья посвященная построению ветряка роторного типа. С тех пор у меня появилось желание построить что то подобное на своем дачном участке, но до реальных действий дело так и не дошло. Все изменилось с появлением неодимовых магнитов. Собрал кучу информации в интернете и вот что получилось. Устройство генератора: Два стальных диска из низкоуглеродистой стали с наклеенными магнитами жестко соединены между собой через распорную втулку. В зазоре между дисками расположены неподвижные плоские катушки без сердечников. ЭДС индукции возникающая в половинках катушки противоположна по направлению и суммируется в общую ЭДС катушки. ЭДС индукции возникающая в проводнике движущемся в постоянном однородном магнитном поле определяется по формуле E=B·V·L где: B-магнитная индукция V-скорость перемещения L-активная длина проводника. V=π·D·N/60 где: D-диаметр N-скорость вращения. Магнитная индукция в зазоре между двумя полюсами обратно пропорциональна квадрату расстояния между ними. Генератор собран на нижней опоре ветряной турбины.

Схема трехфазного генератора, для простоты развернута на плоскость.

На рис. 2 показана схема расположения катушек когда их количество в два раза больше, правда в этом случае увеличивается и зазор между полюсами. Катушки перекрываются на 1/3 от ширины магнита. Если ширину катушек уменьшить на 1/6 тогда они встанут в один ряд и зазор между полюсами не изменится. Максимальный зазор между полюсами равен высоте одного магнита.

Расчет генератора

Однофазный синхронный генератор переменного тока и одна волновая катушка.

Встречно намотанная катушка уменьшает индуктивное сопротивление генератора. Величина встречной ЭДС самоиндукции прямо пропорциональна величине индуктивности катушки генератора и зависит от тока в нагрузке. Индуктивность катушки прямо пропорциональна линейным размерам, квадрату числа витков и зависит от способа намотки.

Схема однофазного генератора рис. 1, для простоты развернута на плоскость.

Для повышения КПД на рис. 2 показана схема генератора состоящая из двух одинаковых катушек. Чтобы зазор между полюсами не увеличился кольцевые обмотки необходимо вставить друг в друга.

Однофазный синхронный генератор и петлевые распределенные катушки.

Схема петлевой и волновой намотки

Ветряная турбина с вертикальной осью вращения и шестью лопастями.

Устройство турбины: Состоит из статора, шесть неподвижных лопастей (для экранирования и форсирования поступающего ветра) и ротора, шесть вращающихся лопастей. Сила ветра оказывает влияние на лопасти ротора и на входе в турбину и на выходе из неё. Для верхней и нижней опоры используются ступицы от автомобиля.  Не создает шума, не идет в разнос при сильном ветре, не требует ориентирования на ветер, не требует высокой мачты. Большой коэффициент использования ветра, большой крутящий момент, вращение начинается при очень слабом ветре.

Расчет и чертеж ветродвигателя

Однофазный синхронный генератор переменного тока с обмоткой возбуждения на статоре без щеток, 12 пар полюсов.

Долго думал над тем как предотвратить перезаряд аккумулятора не применяя в конструкции механические устройства для повышения надежности. Индукторный генератор выполняет функцию сброса лишней энергии. В качестве нагрузки используется элемент нагревания, можно нагреть воду или кафельные полы. Устройство генератора: Генератор собран на верхней опоре ветряной турбины. К неподвижному кольцу из низкоуглеродистой стали крепятся 24 стальных сердечника с катушками, между катушек на кольцо намотана обмотка возбуждения. Возбуждение на генератор подается через электрическую схему от нижнего генератора. Генератор использует от 3% до 5% вырабатываемой мощности на возбуждение. Любой электромагнит является усилителем мощности источника тока. Генератор также является электромагнитной муфтой скольжения уменьшая нагрузку на подшипники. На каждом подшипнике теряется 5% вращающего момента, на шестерне 7-10%. Частота переменного тока вычисляется по формуле f=p·n/60 где: p-количество пар полюсов n-скорость вращения. Например: f=p·n/60=12·250/60=50 Гц.

Схема индукторного генератора, для простоты развернута на плоскость.

На рис. 2 показана схема индукторного генератора с использованием меньшего количества железа, следовательно и потери в железе будут меньше. Обмотка возбуждения состоит из 12 последовательно соединенных катушек.

Электрическая принципиальная схема устройства для подключения обмотки возбуждения генератора.

Ток возбуждения начинает поступать на генератор только при достижении на выходе трехфазного выпрямителя напряжения 14 вольт.

Магнитный двигатель будет вращать генератор если нет ветра.

Электромагнитное поле создается электрическим током т.е. направленным движением электрических зарядов (свободных электронов). Физическими опытами было подтверждено, что магнитное поле постоянного магнита также создается направленным движением электрических зарядов (свободных электронов). Учитывая общие электромагнитные закономерности, можно по аналогии с электродвигателем создать магнитный двигатель для преобразования магнитной энергии в механическую энергию вращения. Основным условием для роторных двигателей является взаимодействие магнитных полей по круговым замкнутым траекториям. Этим требованиям отвечает составной магнит "Сибирский Коля".

Неподвижный генератор - это статический электромагнитный усилитель мощности.

Уже давно известно, что изменение магнитного поля проходящего через провод будет генерировать в нем электродвижущую силу (ЭДС). Изменение магнитного потока от постоянного магнита в сердечнике неподвижного генератора создается с помощью электронного управления, а не механическим движением. Магнитным потоком в сердечнике управляет автогенератор. Работает автогенератор в режиме резонанса и потребляет от источника питания ничтожно малую мощность.

Колебания автогенератора отклоняют по очереди магнитные потоки от постоянных магнитов в левую и правую сторону сердечника из наборного железа или феррита. Мощность генератора увеличивается с повышением частоты колебаний автогенератора. Запуск осуществляется подачей кратковременного импульса на выход генератора. Очень важно чтобы постоянный магнит не вызвал переход материала сердечника в область магнитного насыщения. Неодимовые магниты имеет магнитную индукцию в диапазоне 1,15-1,45 Тл. Трансформаторное железо имеет индукцию насыщения 1,55-1,65 Тл. Сердечники на основе порошка из железа имеет индукцию насыщения 1,5-1,6 Тл., и потери меньше чем у трансформаторного железа. Сердечники из магнитомягких ферритов марганец-цинковых марок имеют индукцию насыщения 0,4-0,5 Тл., для борьбы с насыщением необходим воздушный зазор.

Схема генератора с перемагничиванием сердечника силовой катушки.

Схема неподвижного генератора на тороидальных (кольцевых) сердечниках.

Три кольца, восемь магнитов, четыре катушки управления, восемь силовых катушек.

На все составные части могу выслать чертежи и подробное описание за вознаграждение.

ИЮНЬ

ИЮЛЬ

АВГУСТ

СЕНТЯБРЬ

www.house063.narod.ru

Техническая информация о стартере и генераторе. О ремонте стартера и ремонте генератора.

Генератор предназначен для обеспечения питанием электропотребителей, входящих в систему электрооборудования, и зарядки аккумулятора при работающем двигателе автомобиля. Выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля не происходил прогрессивный разряд аккумулятора. Кроме того, напряжение в бортовой сети автомобиля, питаемой генератором, должно быть стабильно в широком диапазоне частот вращения и нагрузок. Последнее требование вызвано тем, что аккумуляторная батарея весьма чувствительна к степени стабильности напряжения. Слишком низкое напряжение вызывает недозаряд батареи и, как следствие, затруднения с пуском двигателя, слишком высокое напряжение приводит к перезаряду батареи, и ее ускоренному выходу из строя. Не менее чувствительны к величине напряжения лампы освещения и сигнализация, акустическое оборудование.

Генератор – достаточно надежное устройство, способное выдержать повышенные вибрации двигателя, высокую подкапотную температуру, воздействие влажной среды, грязи и других факторов. Принцип работы электрогенератора и его принципиальное конструктивное устройство одинаковы у всех автомобильных генераторов, независимо от того, где они выпускаются.

Принцип действия генератора

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. И наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток. Таким образом, для получения переменного электрического тока требуются катушка, по которой протекает постоянный электрический ток, образуя магнитный поток, называемая обмоткой возбуждения и стальная полюсная система, назначение которой – подвести магнитный поток к катушкам, называемым обмоткой статора, в которых наводится переменное напряжение. Эти катушки помещены в пазы стальной конструкции, магнитопровода (пакета железа) статора. Обмотка статора с его магнитопроводом образует собственно статор генератора, его важнейшую неподвижную часть, в которой образуется электрический ток, а обмотка возбуждения с полюсной системой и некоторыми другими деталями (валом, контактными кольцами) ротор, его важнейшую вращающуюся часть. Питание обмотки возбуждения может осуществляться от самого генератора. В этом случае генератор работает на самовозбуждении. При этом остаточный магнитный поток в генераторе, т.е. поток, который образуют стальные части магнитопровода при отсутствии тока в обмотке возбуждения, невелик и обеспечивает самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому в схему генератора, там где обмотки возбуждения не соединены с аккумуляторной батареей, вводят такое внешнее соединение (обычно через контрольную лампу  состояния генераторной установки). Ток, поступающий через эту лампу в обмотку возбуждения после включения выключателя зажигания и обеспечивает первоначальное возбуждение генератора. Сила этого тока не должна быть слишком большой, чтобы не разряжать аккумуляторную батарею, но и не слишком малой, т.к. в этом случае генератор возбуждается при слишком высоких частотах вращения, поэтому фирмы-изготовители оговаривают необходимую мощность контрольной лампы - обычно 2...3 Вт.

При вращении ротора напротив катушек обмотки статора появляются попеременно "северный", и "южный" полюсы ротора, т.е. направление магнитного потока, пронизывающего катушку, меняется, что и вызывает появление в ней переменного напряжения.

За редким исключением генераторы зарубежных фирм, также как и отечественные, имеют шесть "южных" и шесть "северных" полюсов в магнитной системе ротора. В этом случае частота f в 10 раз меньше частоты вращения  ротора генератора. Поскольку свое вращение ротор генератора получает от коленчатого вала двигателя, то по частоте переменного напряжения генератора можно измерять частоту вращения коленчатого вала двигателя. Для этого у генератора делается вывод обмотки статора, к которому и подключается тахометр. При этом напряжение на входе тахометра имеет пульсирующий характер, т.к. он оказывается включенным параллельно диоду силового выпрямителя генератора.

Обмотка статора генераторов зарубежных и отечественных фирм – трехфазная. Она состоит из трех 3 частей, называемых обмотками фаз или просто фазами, напряжение и токи в которых смещены друг относительно друга на треть периода, т.е. на 120 электрических градусов. Фазы могут соединяться в "звезду" или "треугольник". При этом различают фазные и линейные напряжения и токи. Фазные напряжения  действуют между концами обмоток фаз, а токи  протекают в этих обмотках, линейные же напряжения  действуют между проводами, соединяющими обмотку статора с выпрямителем. В этих проводах протекают линейные токи . Естественно, выпрямитель выпрямляет те величины, которые к нему подводятся, т. е. линейные. При соединении в "треугольник" фазные токи меньше линейных, в то время как у "звезды" линейные и фазные токи равны. Это значит, что при том же отдаваемом генератором токе, ток в обмотках фаз, при соединении в "треугольник", значительно меньше, чем у "звезды". Поэтому в генераторах большой мощности довольно часто применяют соединение в "треугольник", т.к. при меньших токах обмотки можно наматывать более тонким проводом, что технологичнее. Однако линейные напряжения у "звезды" больше фазного, в то время как у "треугольника" они равны и для получения такого же выходного напряжения, при тех же частотах вращения "треугольник" требует соответствующего увеличения числа витков его фаз по сравнению со "звездой".

Более тонкий провод можно применять и при соединении типа "звезда". В этом случае обмотку выполняют из двух параллельных обмоток, каждая из которых соединена в "звезду", т.е. получается "двойная звезда". Выпрямитель для трехфазной системы содержит шесть силовых полупроводниковых диодов, три из которых соединены с выводом "+" генератора, а другие три с выводом "—" ("массой"). При необходимости форсирования мощности генератора применяется дополнительное плечо выпрямителя. Такая схема выпрямителя может иметь место только при соединении обмоток статора в "звезду", т. к. дополнительное плечо запитывается от "нулевой" точки "звезды".

У многих  генераторов зарубежных фирм обмотка возбуждения подключается к собственному выпрямителю. Такое подключение обмотки возбуждения препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля. Полупроводниковые диоды находятся в открытом состоянии и не оказывают существенного сопротивления прохождению тока при приложении к ним напряжения в прямом направлении и практически не пропускают ток при обратном напряжении.  Следует обратить внимание на то, что под термином "выпрямительный диод", не всегда скрывается привычная конструкция, имеющая корпус, выводы и т.д. Иногда это просто полупроводниковый кремниевый переход, герметизированный на теплоотводе

Применение в регуляторе напряжения электроники и особенно, микроэлектроники, т.е. применение полевых транзисторов или выполнение всей схемы регулятора напряжения на монокристалле кремния, потребовало введения в генератор элементов ее защиты от скачков высокого напряжения, возникающих, например, при внезапном отключении аккумуляторной батареи, сбросе нагрузки. Такая защита обеспечивается тем, что диоды силового моста заменены стабилитронами. Отличие стабилитрона от выпрямительного диода состоит в том, что при воздействии на него напряжения в обратном направлении, он не пропускает ток лишь до определенной величины этого напряжения (напряжением стабилизации).

Обычно в силовых стабилитронах напряжение стабилизации составляет 25... 30 В. При достижении этого напряжения стабилитроны "пробиваются ", т.е. начинают пропускать ток в обратном направлении, причем в определенных пределах изменения силы этого тока напряжение на стабилитроне, а, следовательно, и на выводе "+" генератора остается неизменным, не достигающем опасных для электронных узлов значений. Свойство стабилитрона поддерживать на своих выводах постоянство напряжения после "пробоя" используется и в регуляторах напряжения.

Принцип действия регулятора напряжения (реле регулятора)

В настоящее время все генераторы оснащаются полупроводниковыми электронными регуляторами напряжения, как правило, встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки – тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно, можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения.

Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить – увеличивается.

Конструктивное исполнение генераторов

По своему конструктивному исполнению генераторные установки можно разделить на две группы – генераторы традиционной конструкции с вентилятором у приводного шкива и генераторы так называемой «компактной» конструкции с двумя вентиляторами во внутренней полости генератора. Обычно «компактные» генераторы оснащаются приводом с повышенным передаточным отношением через поликлиновый ремень и поэтому, по принятой у некоторых фирм терминологии, называются высокоскоростными генераторами. При этом внутри этих групп можно выделить генераторы, у которых щеточный узел расположен во внутренней полости генератора между полюсной системой ротора и задней крышкой (Mitsubishi, Hitachi), и генераторы, где контактные кольца и щетки расположены вне внутренней полости (Bosch, Valeo). В этом случае генератор имеет кожух, под которым располагается щеточный узел, выпрямитель и, как правило, регулятор напряжения.

Любой генератор содержит статор с обмоткой, зажатый между двумя крышками –передней, со стороны привода, и задней, со стороны контактных колец. Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором сквозь генератор.

Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, генераторы «компактной» конструкции еще и на цилиндрической части –  над лобовыми сторонами обмотки статора. «Компактную» конструкцию отличает также сильно развитое оребрение, особенно в цилиндрической части крышек. На крышке со стороны контактных колец крепятся щеточный узел, который часто объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности. Иногда статор полностью утоплен в передней крышке и не упирается в заднюю крышку (Denso). Существуют конструкции, у которых средние листы пакета статора выступают над остальными, и они являются посадочным местом для крышек. Крепежные лапы и натяжное ухо генератора отливаются заодно с крышками, причем, если крепление двухлапное, то лапы имеют обе крышки, если однолапное - только передняя. Впрочем, встречаются конструкции, у которых однолапное крепление осуществляется стыковкой приливов задней и передней крышек, а также двухлапные крепления, при котором одна из лап, выполненная штамповкой из стали, привертывается к задней крышке, как, например, у некоторых генераторов фирмы Paris-Rhone прежних выпусков. При двухлапном креплении в отверстии задней лапы обычно располагается дистанционная втулка, позволяющая при установке генератора выбирать зазор между кронштейном двигателя и посадочным местом лап. Отверстие в натяжном ухе может быть одно с резьбой или без, но встречается и несколько отверстий, чем достигается возможность установки этого генератора на разные марки двигателей. Для этой же цели применяют два натяжных уха на одном генераторе.

Особенностью автомобильных генераторов является вид полюсной системы ротора. Она содержит две полюсные половины с выступами – полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы - полувтулки. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса. Обмотка возбуждения в сборе с ротором пропитывается лаком. Клювы полюсов по краям обычно имеют скосы с одной или двух сторон для уменьшения магнитного шума генераторов. В некоторых конструкциях для той же цели под острыми конусами клювов размещается антишумовое немагнитное кольцо, расположенное над обмоткой возбуждения. Это кольцо предотвращает возможность колебания клювов при изменении магнитного потока и, следовательно, излучения ими магнитного шума. После сборки производится динамическая балансировка ротора, которая осуществляется высверливанием излишка материала у полюсных половин. На валу ротора располагаются также контактные кольца, выполняемые чаще всего из меди, с опрессовкой их пластмассой. К кольцам припаиваются или привариваются выводы обмотки возбуждения. Иногда кольца выполняются из латуни или нержавеющей стали, что снижает их износ и окисление, особенно при работе во влажной среде. Диаметр колец при расположении щеточно-контактного узла вне внутренней полости генератора не может превышать внутренний диаметр подшипника, устанавливаемого в крышку со стороны контактных колец, т.к. при сборке подшипник проходит над кольцами. Малый диаметр колец способствует кроме того уменьшению износа щеток. Именно по условиям монтажа некоторые фирмы применяют в качестве задней опоры ротора роликовые подшипники, т.к. шариковые того же диаметра имеют меньший ресурс.

Валы роторов выполняются, как правило, из мягкой автоматной стали, однако, при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала цементируется и закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива. Однако, во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от проворота при затяжке гайки крепления шкива, или при разборке, когда необходимо снять шкив и вентилятор.

Щеточный узел – это пластмассовая конструкция, в которой размещаются щетки т.е. скользящие контакты.

В автомобильных генераторах применяются щетки двух типов – меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными, что неблагоприятно сказывается на выходных характеристиках генератора, однако они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин. Обычно щетки устанавливаются по радиусу контактных колец, но встречаются и так называемые реактивные щеткодержатели, где ось щеток образует угол с радиусом кольца в месте контакта щетки. Это уменьшает трение щетки в направляющих щеткодержателя, и тем обеспечивается более надежный контакт щетки с кольцом. Часто щеткодержатель и регулятор напряжения образуют неразборный единый узел.

Выпрямительные узлы применяются двух типов – либо это пластины-теплоотводы, в которые запрессовываются (или припаиваются) диоды силового выпрямителя или на которых распаиваются и герметизируются кремниевые переходы этих диодов, либо это конструкции с сильно развитым оребрением, в которых диоды, обычно таблеточного типа, припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы, либо в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками. Включение выпрямительных блоков в схему генератора осуществляется распайкой или сваркой выводов фаз на специальных монтажных площадках выпрямителя или винтами. Наиболее опасным для генератора и особенно для проводки автомобильной бортовой сети является перемыкание пластин-теплоотводов, соединенных с "массой" и выводом "+" генератора, случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи, что может привести к возгоранию. Во избежание этого пластины и другие части выпрямителя генераторов некоторых фирм частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы генераторов это, как правило, радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами (Delco Remy, Motorcraft). Посадка шариковых подшипников на вал со стороны контактных колец обычно плотная, со стороны привода - скользящая, в посадочное место крышки наоборот - со стороны контактных колеи - скользящая, со стороны привода - плотная. Так как наружная обойма подшипника со стороны контактных колец имеет возможность проворачиваться в посадочном месте крышки, то подшипник и крышка могут вскоре выйти из строя, возникнет задевание ротора за статор. Для предотвращения проворачивания подшипника в посадочное место крышки помещают различные устройства - резиновые кольца, пластмассовые проставки, гофрированные стальные пружины и т.п. Конструкцию регуляторов напряжения в значительной мере определяет технология их изготовления. При изготовлении схемы на дискретных элементах, регулятор обычно имеет печатную плату, на которой располагаются эти элементы. При этом некоторые элементы, например, настроечные резисторы могут выполняться по толстопленочной технологии. Гибридная технология предполагает, что резисторы выполняются на керамической пластине и соединяются с полупроводниковыми элементами – диодами, стабилитронами, транзисторами, которые в бескорпусном или корпусном исполнении распаиваются на металлической подложке. В регуляторе, выполненном на монокристалле кремния, вся схема регулятора размещена в этом кристалле.

Охлаждение генератора осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов (воздух засасывается центробежным вентилятором в крышку со стороны контактных колец. У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места - к выпрямителю и регулятору напряжения. На автомобилях с плотной компоновкой подкапотного пространства, в котором температура воздуха слишком велика, применяют генераторы со специальным кожухом закрепленным на задней крышке и снабженным патрубком со шлангом, через который в генератор поступает холодный и чистый забортный воздух. Такие конструкции применяются, например, на автомобилях BMW. У генераторов «компактной» конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Генераторы большой мощности, устанавливаемые на спецавтомобили, грузовики и автобусы имеют некоторые отличия. В частности, в них встречаются две полюсные системы ротора, насаженные на один вал и, следовательно, две обмотки возбуждения, 72 паза на статоре и т. п. Однако принципиальных отличий в конструктивном исполнении этих генераторов от рассмотренных конструкций нет.

Привод генераторов и крепление их на двигателе

Привод генераторов всех типов автомобилей осуществляется от коленчатого вала ременной или зубчатой передачей. При этом возможны два варианта - клиновым или поликлиновым ремнем. Приводной шкив генератора выполняется с одним или двумя ручьями для клинового ремня и с профилированной рабочей дорожкой для поликлинового. Вентилятор, выполненный, как правило, штамповкой из листовой стали, в традиционной конструкции генератора крепится на валу рядом со шкивом. Шкив может выполняться сборным из двух штампованных дисков, литым из чугуна или стали, а также полученным методом штамповки или точеным из стали.

Качество обеспечения питанием потребителей электроэнергии, в том числе зарядка аккумуляторной батареи, зависит от передаточного числа ременной передачи, равного отношению диаметров ручьев приводного шкива генератора к шкиву коленчатого вала. Для повышения качества питания электропотребителей это число должно быть как можно больше, т.к. при этом частота вращения генератора повышается, и он способен отдать потребителям больший ток. Однако при слишком больших передаточных числах происходит ускоренный износ приводного ремня, поэтому передаточные числа передачи двигатель-генератор для клиновых ремней лежат в пределах 1,8...2,5, для поликлиновых до 3. Более высокое передаточное число возможно потому, что поликлиновые ремни допускают применение на генераторах приводных шкивов малых диаметров и меньший угол охвата шкива ремнем. Наилучшей конструкцией для генератора является индивидуальный привод. При таком приводе подшипники генератора оказываются менее нагруженными, чем в «коллективном» приводе, при котором обычно генератор приводится во вращение одним ремнем с другими агрегатами, чаще всего водяным насосом, и где шкив генератора служит натяжным роликом. Поликлиновым ремнем обычно приводится во вращение сразу несколько агрегатов. Например, на автомобилях Mercedes один поликлиновой ремень приводит во вращение одновременно генератор, водяной насос, насос гидроусилителя руля, гидромуфту вентилятора и компрессор кондиционера. В этом случае натяжение ремня осуществляется и регулируется одним или несколькими натяжными роликами при фиксированном положении генератора. Крепление генераторов на двигателе выполнено на одной или двух крепежных лапах, сочленяемых с кронштейном двигателя. Натяжение ремня производится поворотом генератора на кронштейне, при этом натяжная планка, соединяющая двигатель с натяжным ухом, может быть выполнена в виде винта, по которому перемещается резьбовая муфта, сочленяемая с ухом.

Встречаются конструкции, у которых прорезь в натяжной планке имеет зубчатую нарезку, по которой перемещается натяжное устройство, соединенное с натяжным ухом. Такие конструкции позволяют обеспечивать натяжение ремня очень точно и надежно.

К сожалению, на данный момент не существует международных нормативных документов, определяющих габаритные и присоединительные размеры генераторов легковых автомобилей, поэтому генераторы различных фирм существенно отличаются друг от друга, разумеется, кроме изделий, специально предназначенных в качестве запчастей для замены генераторов других фирм.

Бесщеточные генераторы

Бесщеточные генераторы применяются там, где возникают требования повышенной надежности и долговечности, главным образом на магистральных тягачах, междугородных автобусах и т.п. Повышенная надежность этих генераторов обеспечивается тем, что у них отсутствует щеточно-контактный узел, подверженный износу и загрязнению, а обмотка возбуждения неподвижна. Недостатком генераторов этого типа являются увеличенные габариты и масса. Бесщеточные генераторы выполняются с максимальным использованием конструктивной преемственности со щеточными. На выпуске генераторов такого типа специализируется американская фирма Delco-Remy, являющаяся отделением General Motors. Отличие этой конструкции состоит в том, что одна клювообразная полюсная половина посажена на вал, как у обычного щеточного генератора, а другая в урезанном виде приваривается к ней по клювам немагнитным материалом.

eksin-retail.ru

Персональный сайт - мой первый генератор

Рекомендую купить ДИСК об альтернативной энергетике. Информация на диске более обширна, чем у меня на сайте.

Диск содержит много программ, также много литературы, в общем, смотрим презентацию.

Появилась  третья версия этого диска, теперь Диск имеет  еще более мощное содержание,(более 20-ти программ, 37 фильмов,22 книги, одна интерактивная,подробное описание 3-х ветрогенераторов, а также содержит подробное описание для изготовление солнечных батарей). И это еще далеко не все, Диск имеет доступ к бесплатной интернет библиотеке, к форуму по альтернативной энергетике, и к моему сайту. Порадует удобный интерфейс). Для тех, у кого есть доступ к интернету, и нет ограничений на скачивание, Вы можете приобрести файлы этого диска,- эквивалент  10$. Для этого свяжитесь со мной через Email- yalovenkoval@i.ua   Как только я получаю деньги, сразу отсылаю на Ваш адрес файл, и пароли к нему. Диск содержит информацию о расчетах и постройке ветрогенераторов. Очень много фото,видео, есть видео в 3-D деталировке генератора,много книг, и программного обеспечения. Всё по честному. Мой сайт http://veter-yak.narod.ru/

                                                                                                                                Самодельный ветряк

с  аксиальным генератором на неодимовых магнитах

 от Яловенко Валерия Григорьевича email yalovenkoval@i.ua

Живу я в маленьком городке Харьковской обл., часный дом, небольшой участок.

Сам я как говорит сосед ходячий генератор идей, так как практически всё в своем хозяйстве сделано своими руками. Ветер хоть и небольшой, но практически постоянно дует, и тем самым соблазняет использовать свою энергию.

После нескольких неудачных попыток с тракторным самовозбуждающим генератором идея создания ветрогениратора засела в мозгу еще больше. Начал искать и после двух месяцев поисков в инете, множества скачанных файлов, прочтенных форумов и советов я окончательно определился с постройкой генератора.

За основу была взята конструкция Бурлака Виктора Афанасьевича http://rosinmn.ru/sam/burlaka/burlaka.html с небольшими конструктивными изменениями.

Основной задачей была постройка генератора с того материала, который есть, с минимумом затрат. Поэтому каждый, кто попытается сделать подобную конструкцию должен исходить с того материала, который у него есть, главное желание и понять принцип работы.

 

Для изготовления ротора использовал листовой кусок метала толщиной 20мм (что было) с которого по моим чертежам кум выточил и разметил на 12 частей два диска диаметром 150 мм и еще один диск под винт который разметил на 6 частей диаметром 170 мм.

 

Купил через Интернет 24 шт. дисковых неодимовых магнита 25×8 мм

http://mega-magnit.ru/  тел. (+38)066 11-77-777,  которые приклеил к дискам, (очень выручила разметка). ОСТОРОЖНО НЕ ПОДСТАВЛЯЕТЕ ПАЛЬЦИ!

Перед тем как приклеить магниты к стальному диску маркером нанесите на магниты полярность , это очень поможет вам избежать ошибок. После размещения магнитов(12 шт. на диск и чередуйте полярность), до половины залил их эпоксидной смолой.

 

 

 

 

 

Для изготовления статора использовал эмаль-провод ПЭТ-155 диаметром 0,95 мм (купил на частном предприятии Хармедь). Намотал 12 катушек по 55 витков каждая, толщина обмоток получилась 7 мм. Для намотки изготовил несложный разборный каркас. Намотку катушек делал на самодельном намоточном станке. (делал во времена застоя)

 

 

 

 

Затем разместил 12 катушек по шаблону и  зафиксировал их положение изолентой на тканевой основе. Выводы катушек распаял последовательно начало с началом ,конец с концом. Я использовал 1 фазную схему включения.

 

 

 

 

 

 

 

Для изготовления формы под заливку катушек эпоксидной смолой склеил две прямоугольные заготовки 4 мм фанеры. После высыхания получилась прочная 8 мм заготовка. С помощью сверлильного станка и приспособления (балерина) вырезал в фанере отверстие диаметром 200 мм, а с вырезанного диска вырезал центральный диск диаметром 60 мм. Заранее  заготовленные ДСП заготовки прямоугольной формы обтянул плёнкой и по краях закрепил стиплером, затем по разметке разместил вырезанный центр (обтянутый скотчем), а  также вырезанную заготовку,  обмотанную скотчем.

 

 

 

 

 

Форму до половины залил эпоксидной смолой, на дно положил стеклоткань, затем катушки, сверху стеклоткань, долил эпоксидку, немного выждал и сверху сдавил вторым куском ДСП также обтянутым пленкой. После застывания извлёк диск с катушками, обработал, покрасил, просверлил отверстия

 

 

 

Ступицу, а также основу поворотного узла изготовил с буровой трубы НКТ с внутренним диаметром 63 мм. Были изготовлены гнёзда под 204 подшипник и приварены к трубе. С задней стороны тремя болтами прикручена крышка с прокладкой с маслостойкой резины, с передней стороны прикручена крышка с сальником. Внутрь между подшипниками через специальное отверстие залил автомобильное полусинтетическое масло. На вал надел диск с магнитами, причем поскольку паз под шпонку сделать небыло возможности на валу сделал углубления на половину диаметра шарика с 202 подшипника т.е. 3,5 мм, а на дисках высверлил паз 7 мм сверлом предварительно выточив боночку и запрессовал её в диск. После извлечения боночки в диске получился ровный, красивый паз под шарик.

 

 

 

 

 

 

 

Далее закрепил статор тремя латунными шпильками, вставил промежуточное кольцо с расчетом чтобы статор не затирало и надел второй диск с магнитами(магниты на дисках должны иметь противоположную полярность, т.е. притягиваться) ЗДЕСЬ ОЧЕНЬ ОСТОРОЖНО С ПАЛЬЦАМИ!

 

 

 

 

 

чертежи по которым кум точил детали,извените что от руки ,но кум всё понял,мелочи уточняли в процессе.

 

 

 

 

 Довольно много приходит писем на мою электронную почту, но вот одно письмо меня удивило и порадовало, письмо это было от Груздева Максима Н., он прислал мне технически правильные чертежи выполненные по моим рисункам.Максим на чертежах заменил 204 подшипник на 205. С разрешения Максима выкладываю эти чертежи, хочу сделать небольшую поправку по чертежам, внутри между подшипниками на вал необходимо надеть распорную втулку, она предотвратит зажимание вала при затягивании гайки, а так вроде бы всё ОКЕЙ. 

Винт изготовил с канализационной трубы диаметром 160 мм http://ecotoc.ru/alternative_energy/wind_energy/d120/

Кстати неплохой получается винт.Поэтому принципу изготовлен последний винт с алюминевой трубы 1,3м (смотрите выше)

 

 

 

 

Разметил трубу, болгаркой вырезал заготовки, по концах  стянул болтами и електрорубанком обработал пакет. Затем раскрутил пакет и каждую лопасть обработал отдельно, подгоняя вес на электронных весах.

 

 

 

 

Защита от ураганного ветра выполнена по классической зарубежной схеме, т. е. ось вращения смещена от центра. Вот ссылка на сайт  http://www.otherpower.com/otherpower_wind.html

Желающие узнать больше здесь найдут все интересующие вопросы, причем совершенно бесплатно! Мне этот сайт помог очень здорово особенно с чертежами хвоста. Вот пример чертежей с этого сайта.

 

 

 

 

 

 

 

 

 

Свой хвост ветряка я подгонял методом подпиливания.

Вся конструкция насаженна на два 206 подшипника, которые закреплены на оси с внутренним отверстием под кабель и приваренной к двухдюймовой трубе.

 

 

 

 

Подшипники плотно входят в корпус ветроустановки, что позволяет без каких либо усилий и люфтов свободно поворачиваться конструкции. Кабель проходит внутри мачты к диодному мосту.(выше смотрите чертежи)

на фото первоначальный вариант

 

 

 

 

Для изготовления ветроголовки не учитывая двух месяцев поиска решений, ушло полтора месяца, сейчас у нас февраль месяц, снег и холод похоже за всю зиму, поэтому основных испытаний еще не проводил, но даже на этом расстоянии от земли автомобильная лампочка 21 ватт перегорела. Жду весны,  готовлю трубы под мачту. Эта зима пролетела у меня быстро и интересно.

VIDEO можно просмотреть здесь, (двойное нажатие на видео открывает прямую ссылку на youtube), Да, если нравится или не нравится отображайте своё мнение.

 

 

 

 

 

 

Прошло немного времени с того момента когда разместил на сайте свой ветряк, но весна так толком и не пришла, землю копать чтобы замуровать стол под мачту еще нельзя,-земля мёрзлая да и грязь везде, поэтому времени для испытаний на временной 1,5м стойке было предостаточно, а теперь подробней.

После первых испытаний винт случайно зацепил трубу, это я пытался зафиксировать хвост, чтобы ветряк не уходил из под ветра и посмотреть какая будет максимальная мощность. В итоге мощность успел зафиксировать примерно ватт 40, после чего винт благополучно разлетелся на щепки. Неприятно, но наверное полезно для мозгов. После этого я решил поэкспериментировать и намотал новый статор. Для этого изготовил новую форму под заливку катушек .Форму тщательно смазал автомобильным  литолом,  чтобы лишнее не пристало. Катушки теперь немного уменьшил по длине, благодаря чему в сектор теперь поместилось 60 витков 0,95мм толщина намотки 8мм (в конечном итоге статор получился 9 мм), причем длина провода осталась прежней.

 

 

 

 

В эпоксидку добовил тальк примерно 30%

 

 

 

Винт теперь сделал с более прочной трубы 160мм  и трехлопастным, длина лопасти 800мм.

Новые испытания сразу показали результат, теперь ГЕНА выдавал до 100 ватт, галогенная автомобильная лампочка в 100 ватт  горела в полный накал, и чтобы её не спалить на сильных порывах ветра лампочку  отключал.

 

 

 

 

замеры на автомобильном акумуляторе 55 А.ч.

Теперь окончательные испытания на мачте, результат опишу поже.

 

 

 

 

 

 

Ну, вот уже середина августа, и как я обещал, попытаюсь закончить эту страничку.

Сначала то, что пропустил

Мачта один из ответственных елементов конструкции

 

 

 

 

Один из стыков (труба меньшего диаметра входит внутрь большей)

 

 

 

 

 

и поворотный узел

 

 

 

 

теперь остальное

3-х лопастный винт (рыжая канализационая труба диаметром 160мм)

 

 

 

 

 

Начну с того, что сменил несколько винтов и остановился на 6-ти лопастном с алюминиевой трубы диаметром 1,3м, хотя большую мощность давал винт с ПВХ трубы 1,7м.

Основная проблема была в том чтобы заставить заряжаться АКБ от малейшего вращения винта и вот здесь на помощь пришел блокинг  генератор  который даже при входном напряжении в 2v дает заряд АКБ - пускай маленьким током, но лучше чем разряд, а на нормальных ветрах вся энергия на АКБ поступает через VD2(смотрите по схеме), и идет полноценный заряд.

Вот здесь можно всё прочитать http://vrtp.ru/index.php?CODE=article&act=categories&article=1759

 

 

 

 

 

Конструкция собрана прямо на радиаторе, полунавесным монтажом,если монтаж правильный,- работает без проблем. В некоторых случаях для запуска блокин-генератора возможно уменьшение сопротивления R1 до 500 Ом, трансформатор - феритовое кольцо диаметром 45мм, сечение 8мм на 8мм ( можно намотать на строчном трансе от старого телека), намотан проводом 1мм ,сначала мотал 60 витков ,а сверху равномерно намотал 21 виток

 

 

 

 

 

Контролёр заряда тоже использовал самодельный, схема простая, слепил как всегда с того, что было под рукой, нагрузкой служит два витка нихромового провода (при заряженном АКБ и сильном ветре нагревается до красна) Все транзисторы ставил на радиаторы (с запасом), хотя VT1 и VT2 практически не греются, а вот VT3 на радиатор ставить обязательно! (при продолжительном срабатывании контролёра VT3 греется прилично)

фото готового контролёра

 

 

 

 

 

простая схемка

 

 

 

 

Схема подключения ветряка к нагрузке выглядит так

 

 

 

 

 

 

 

 

 

Вид сзади 

 

 

 

 

 

Нагрузкой у меня как и планировалось, является свет в туалете и летнем душе + уличное освещение (4 светодиодные лампы которые включаются автоматически через фотореле и освещают двор целую ночь ,с восходом солнца опять срабатывает фотореле которое отключает освещение и идет заряд АКБ .И это на убитой АКБ (в прошлом году снял с авто)

на фото снято защитное стекло ( в верху фотодатчик)

 

 

 

 

 

Фотореле купил готовое для сети 220V и переделал на питание от 12V(перемкнул входной конденсатор и последовательно стабилитрону подпаял резистор в 1К)

 

 

 

И ночью

 

 

 

 

Теперь самое ГЛАВНОЕ!!!

С своего опыта, советовал для начала сделать небольшой ветрячок, набратся опыта и знаний и понаблюдать что можно поиметь с ветров вашей местности,Ведь можно потратить кучу денег, сделать мощный ветряк ,а силы ветра не хватит чтобы получать теже 50 ватт  и будет ваш ветряк типа подводной лодки в гараже. Здесь ЛУЧШЕ СИНИЦА В РУКАХ ЧЕМ ДЯТЕЛ В ЖО-Е!!!

 

 

 

Простейший анемометр.Квадрат сторона 12см на 12см,на нитке 25см привязан тенисный шарик.

 

 

 

Я сделал вот такой анемометр

 

 

 

 

 

 

Многие читатели  часто задают вопрос ,а сколько выдаёт такой гена?

Пришлось для наглядности сделать небольшое видео

 

 

 

 

 

 

Мы никогда незадумываемся насколько сильным бывает даже маленький ветерок,но стоит посмотреоть с какой скоростью иногда раскручивается турбина и сразу понимаеш какая это мощь

Ветер, ветер ты могуч...(фото со двора)

 

 

 

 

 

Процес модернизации ветряка закончен , так он выглядит на даном этапе.На видео его рабочий режим (снимал фотокамерой, поэтому видна дискретность винта, насамом деле он крутится как подорваный). На  очень малых ветрах работает БЛОКИНГ ГЕНЕРАТОР.

 

 

 

 

 

 

Начало подьёма на ветер

 

 

 

А здесь уже на ветру

 

 

 

 

 

Все расчеты ветрогенератора  (спасибо Николаю), можно увидеть здесь

http://tng.flybb.ru/topic13.html

Вот сайты, по которым можно отыскать много интересного

Не ленитесь в эти сайты  заглянуть!!!

http://forum.otherenergy.ru/index.php

http://tng.flybb.ru/

http://windpower-russia.ru/forum/index.php

http://alter-energo.ru/profile.php?mode=sendpassword

http://www.rlocman.ru/forum/showthread.php?t=3948

http://evgenb.mylivepage.ru/wiki/index/

http://knigi.tr200.ru/v.php?id=210763

http://rosinmn.ru/

http://www.uv.es/navasqui/

http://www.crashplanet.ru/component/option,com_remository/Itemid,29/func,startdown/id,81/

http://www.magnitos.com.ua/

http://www.supermagnet.ru/

Для Харьковчан и не только

http://www.polus-n.com/contact.html

 

Всем удачи!!!

Буду рад если хоть немножко комуто помог,все вопросы на стену или email

 

Для всех кто дочитал эту статью, предлагаю экскурс в еще одну  удачно повторяемую конструкцию

 

Давненько я не возвращался к этой статье, с момента написания этой статьи прошло более двух лет, за это время  конструкция была повторена много раз, это я могу судить, по отзывам, пришедшим по электронной почте. Многие повторяли конструкцию один в один с моим вариантом, но  те кто ко мне обращался за помощью, я советовал делать только трёхфазный вариант, и результат был намного выше.

С разрешения Михальчук Алексея Викторовича выкладываю одну с достойных повторений, конструкцию трёхфазного генератора.

До знакомства со мной Алексей практически все заготовил для повторения моей конструкции, впоследствии менять практически ничего не стали, за исключением я убедил делать генератор трехфазным. На удивление Алексея генератор получился довольно не плохим, довольно шустро заряжал АКБ,но так как конструкция была временной (Алексей до последнего не верил в успех), то впоследствии этот генератор был демонтирован, было принято решение добавить магнитных полюсов, и более надежно сделать конструкцию. Впоследствии родился 16-ти полюсный аксиальный генератор, могу сказать, что он превзошел все ожидания, даже мои.

 

 

 

 

 

Не буду повторяться в описании . Просто в вкратце некоторые данные

 

12 катушек провод 1.18 ушло 1.5 кг по 75 витков на катушку.Толщина катушки равна толщине магнита - 8ммВнутренний диаметр катушек равен диаметру магнитов -25 ммМагниты 16 пар 25*8Диски стальные толщина 10 мм диаметр 25смЛопасти с алюминиевой трубы диаметром 300 ммТолщина метала 4мм длина лопастей -1м

Такой генератор без проблем выдает более 500 ватт!

 

Некоторые моменты изготовления генератора смотрим на фото

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В процессе эксплуатации этого генератора был выявлен существенный недостаток в конструкции, Алексей пренебрег защитой от ураганных ветров, поэтому были разрушены лопасти. Для всех кто повторят конструкцию с ВЕТРОМ ШУТИТЬ НЕЛЬЗЯ ,необходимо делать защиту от ураганных ветров, выйдет дешевле чем каждый раз менять лопасти.

В данный момент Алексей исправил недоделки, и ветряк приносит ему существенную помощь

Вот Алексей подкинул еще несколько фоток после модерницазии ветряка

 

 

 

 

 

 

 

и небольшое видео

 

 

 

 

 

 

 

 

 

 

слева ветрогенератор с асинхронника, справа генератор  тот что в описании.Ну, вот пока и все, пилите гири, Господа, они золотые!

Вот сайты, по которым можно отыскать много интересного

Не ленитесь в эти сайты  заглянуть!!!

http://forum.otherenergy.ru/index.php

http://tng.flybb.ru/

http://windpower-russia.ru/forum/index.php

http://alter-energo.ru/profile.php?mode=sendpassword

http://www.rlocman.ru/forum/showthread.php?t=3948

http://evgenb.mylivepage.ru/wiki/index/

http://knigi.tr200.ru/v.php?id=210763

http://rosinmn.ru/

http://www.uv.es/navasqui/

http://www.crashplanet.ru/component/option,com_remository/Itemid,29/func,startdown/id,81/

http://www.magnitos.com.ua/

http://www.supermagnet.ru/

Для Харьковчан и не только

http://www.polus-n.com/contact.html

 

 

 

veter-yak.narod.ru

Аксиальный ветрогенератор своими руками фото и описание ветряка

> Этот ветрогенератор специально проектировался под малые ветра, большой тихоходный генератор, который лежит в основе этого ветряка должен уже при слабом ветре 3_4м/с выдавать до 500ватт/ч. Естественно такие запросы потребовали серьезных расчетов, и конструкция генератора получилась прямо скажем не маленькой, но так и должно быть, все в угоду тихоходности и мощности на молом ветру.

На фотографиях вся работа по созданию этого ветряка. За основу генератора была взята автомобильная ступица, здесь использована ступица от автоприцепа. Для ротора, на котором располагаются магниты, были вырезаны два металлических диска диаметром 40см, и толщиной 12мм. Изготовление дисков мы заказывали, так-как обычная резка могла повести металл,они были вырезаны на специальном станке гидроабразивной резки, цена составила 70 долларов, но зато сделаны не хуже заводских и просверлены все необходимые отверстия под крепление на ступицу.

Поворотная ось генератора

Поворотная ось изготовлена из отрезка трех-дюймовой трубы длиной 400мм. Вал для ступицы закреплён внутри трубы длиной и диаметром 100мм через 2 стальных кольца. Стальной кронштейн для крепления хвоста выполнен из 1,2см стали, его высота 150мм. Кронштейн будет приварен к поворотной оси под углом 20гр., и относительно вала генератора в горизонтальной плоскости на 45гр. > > Для удобства дальнейшей работы из обрезков труб была сварена подставка, на которую одели поворотную ось генератора. Далее были нарезаны и приварены шесть пластин для крепления ротора, а так-же из фанеры вырезан шаблон для наклейки магнитов на дисках ротора, так-как магниты очень сильные и наклеить без шаблона очень проблематично.

Тестовая катушка

Следующим шагом на диски по шаблону с помощью супер-клея были наклеены магниты. В этом генераторе мы решили использовать 16 пар магнитов, по 16 на каждом диске, размеры магнитов 75*40*20мм. Генератор будет трехфазным, с соотношением по 4 магнита на каждые 3 катушки, то-есть катушек будет 12, по 4 катушки на фазу. Перед тем как делать статор с катушками, мы изготовили тестовую катушку, чтобы определить мощность генератора и определиться каким сечением провода в дальнейшем мотать катушки статора. Для определения размеров катушки я нарисовал шаблон, поделил его на 12 секторов, нарисовал линии прохождения магнитов и определил размеры катушки, кстати внутренний диаметр катушки должен быть чуть больше или равным длине магнита, а внешний как можно больше, на сколько позволяет пространство. Ниже на фото мы намотали тестовую катушку, закрепили ее на заготовке из фанеры и закрепили на генераторе. > > > > > > > Для тестовой прокрутки катушки мы использовали оптический тахометр для измерения оборотов, и мультиметр для снятия показаний. Сначала мы решили поэкспериментировать и покрутить генератор с одной половинкой ротора, при 70бо/м тестовая катушка выдала 2,4 вольта, а кода мы установили второй диск ротора, то напряжение катушки выросло до 5,5 вольт. Далее мы намотали еще одну катушку более толстым проводом с меньшим количеством витков и покрутили на нагрузку 10 Ом, получилось 6 вольт и 6 ампер на 100об/м, это 36 ватт/ч с катушки, значит с 12-ти катушек генератора на 100об/м получится около 400ватт/ч. Мы правда ожидали большего, но некоторые потери возможно из-за слишком плотного размещения магнитов на дисках ротора, из-за этого часть магнитного поля замыкается на соседние магниты, а не проходит через статор. Но это первый такой большой генератор и мы учтем в будущем эти недочеты. > > После прокрутки генератора с тестовой катушкой мы принялись за изготовление статора. Статор это диск с залитыми в нем медными катушками. Для заливки из фанеры был изготовлен шаблон, на ранее расчерченный шаблон мы вырезали квадрат из фанеры с внутренним отверстием по диаметру статора, он у нас получился 50см, это на 10см больше диаметра дисков ротора. Катушки статора намотали двойным проводом 0,6мм, по 68витков в катушке, всего 12 катушек, по 4 на фазу. Изначально мы хотели мотать проводом 3,3мм, но его в наличие не оказалось и мы решили мотать сдвоенным проводом.

Катушки статора мы закрепили между собой кусочками стеклоткани на супер-клее, после катушки были распаены в три фазы и соединенные звездой концы вывели на контактные соединения. Перед заливкой форму смазали автомобильным воском чтобы смола не пристала. Далее в форму налили немного полиэфирной смолы, кстати эта смола прочнее эпоксидной и менее чувствительна к высоким температурам, но правда при работе таксична, поэтому лучше соблюдать меры предосторожности. Из стеклоткани вырезали круг и утопили в шаблоне, на него выложили катушки, выровняли по центру. Катушки залили полностью смолой и положили сверху второй круг из стеклоткани, после закрыли кругом и стянули чтобы смола ровно легла и не вытекла из формы. Так-же смолой залили и магниты на дисках ротора.

> > > > После высыхания смолы готовый статор был извлечен из формы. Края немного обработали, просверлили отверстия для крепления. Болты для крепления решили использовать из немагнитного металла, так-как мощные магниты при вращении будут притягиваться к болтам и создавать залипание при старте и вибрацию при вращении генератора.

После сборки генератора мы принялись за сборку хвостовой части. Хвостовую часть ветряка мы собрали из труб, длинна хвоста составляет 2,5м. Длинна хвоста обычно равна длине радиуса винта, так как мы рассчитываем сделать винт диаметром 5м, значит длина хвоста 2,5м. Поворотная часть хвоста сделана из толстостенной трубы диаметром 5см, она одевается на приваренный к поворотной оси штырь. Хвост выполняет по классической схеме с уводом ветроголовки от сильного ветра. Винт под давлением ветра поворачивается в сторону, при этом хвост под углом складывается.

Перед покраской мы проверили как будет складываться хвост при сильном ветре уводя лопасти от ветра, и приварили ограничитель для того чтобы хвост складываясь не повредил лопасти. После завершения всех сварочных работ принялись за придание ветрогенератору красивого внешнего вида и защиты его от ржавчины. Для этого зачистили металлические поверхности, прогрунтовали и покрасили. На вид вроде нормально и зелёный цвет символ защиты природы от вредных выхлопов и загрезняющей природу деятельности человека, пускай владельцы дымящих бензогенераторов завидуют, и платят деньги за топливо.

> > > > > После всех сварочных и молярных работ мы произвели окончательную сборку ветрогенератора. Установили статор и выставили зазор в 3мм, потом с таким же зазором устатовили второй диск с магнитами. Лопасти изготавливали из дерева, по рассчетам у нас выходил не маленький трехлопастной винт диаметром 5м, рассчеты велись по Пиготту. Лопасти мы закрепили на фанерном основании. Основа это два диска из фанеры через которые лопасти стянуты болтами. Перед стягиванием с помощъю рулетки мы вывели одинаковые расстояния от кончика до кончика каждой лопасти. Винт крипится к генератору так-же с помощъю болтов.

Готовый ветрогенератор установили на мачту и через расстяжки поднимали с помощъю автомобиля. Мачту мы решили сделать как можно выше и она получилась 18 метров, из-за большого веса генератора и длинны мачты нам не с первого раза удалось поднять ветрогенератор. Чтобы облегчить нам пришлось снять винт и прднимать ветрогенератор без него, а винт потом ставить уже на поднятый генератор.

> > > > > > Этот ветрогенератор работает уже давольно продолжительное время, пока всё нормально и никаких проблем. Большая площадь лопастей позволяет ветрогенератору генерировать приличную мощность даже на очень слабом ветру от 2-х м/с. При скорости ветра в 4,5м/с ветряк выдаёт 400 ватт мощности, а при 7м/с примерно 1,5 киловатт. Иногда ветрогенератор при хорошем ветре расходится до 2-х киловатт, и пару раз при сильном ветре мощность доходила до 3,8 киловатта. На постройку данной ветроустановки ушло примерно 20 дней.

e-veterok.ru

Генераторы, схемы

Генератор — это усилитель с такой положительной обратной связью, ко­торая обеспечивает поддержание сигнала на выходе усилителя без пода­чи внешнего входного сигнала. Генератор преобразует постоянный ток (получаемый от источника питания) в переменный сигнал. Для возник­новения устойчивых колебаний должны выполняться два основных тре­бования:

а) обратная связь должна быть положительной;

б) полный петлевой коэффициент усиления должен быть больше 1.

Существует два типа генераторов: генераторы синусоидальных сиг­налов, вырабатывающие гармонические сигналы, и генераторы несинусо­идальных сигналов, называемые также релаксационными генераторами или мультивибраторами, обычно вырабатывающие прямоугольные сиг­налы.

 

Генераторы с резонансным контуром в цепи коллектора

В схеме генератора на рис. 33.1 элементы L2 и C2 образуют резонансный контур, с которого снимается выходной сигнал.

Рис. 33.1. Генератор с резонансным            Рис. 33.2. Генератор с резонансным контуром в       

           контуром в цепи базы.                                                    цепи  коллектора.           

 

Часть этого выходного сигнала подается обратно на вход через трансформаторную связь       L1 – L2 таким образом, чтобы сигнал обратной связи совпадал по фазе с сигналом на входе. Транзистор включен по схеме с ОЭ и работает в режиме класса А, который задается цепью смещения R1 – R2. Конденсатор C1 обеспе­чивает развязку для резистора R2 цепи смещения, а конденсатор C3 — развязку для обычного стабилизирующего резистора R3 в цепи эмиттера.

 

Генераторы с резонансным контуром в цепи базы

В схеме генератора на рис. 33.2 разделительный конденсатор C2 обеспечи­вает работу транзистораT1 в режиме класса С. Элементы L2 и C1 образу­ют резонансный контур. Положительная обратная связь осуществляется через конденсатор C3 и трансформатор Тр1.

Трехточечная схема генератора с индуктивной обратной связью (схема Хартли)

В этом генераторе (рис. 33.3) катушка индуктивности с отводом L1 обеспе­чивает необходимую обратную связь на эмиттер транзистора. Элементы C2 и L1 образуют резонансный контур.

Трехточечная схема генератора с емкостной обратной связью (схема Колпитца)

В этом случае используется расщепленный конденсатор C1 — C2 (рис. 33.4). Элементы         C1 — C2 и L1 образуют резонансный контур, кон­денсатор C3 обеспечивает работу транзистора в режиме класса С.

Генераторы с фазосдвигающей цепью обратной связи, или RC-генераторы

Синусоидальные колебания можно также получить с помощью специаль­но подобранных  RC-цепочек обратной связи, как показано на рис. 33.5. RC-секции R1– C1, R2– C2,                  R3– C3 образуют фазосдвигающую цепь, которая на заданной частоте обеспечивает сдвиг фазы сигнала на 180°. Поскольку транзистор сдвигает фазу сигнала на 180°, то в петле обратной связи получается полный фазовый сдвиг 360°. Таким образом, обратная связь оказывается положительной. Обычно номиналы всех резисторов и всех конденсаторов в фазосдвигающей цепи выбираются одинаковыми, и каждая RC-секция вносит фазовый сдвиг 60°.

Рис. 33.3. Схема Хартли.                         Рис. 33.4. Схема Колпитца.

Рис. 33.5.RC-генератор с фазосдвигающей цепью обратной связи на элементах R1– C1,

 R2– C2, R3– C3, обеспечивающей сдвиг фазы сигнала на 180°. 

Еще раз отметим, что вся фазосдвигающая цепь обеспечивает фазовый сдвиг 180° только на одной частоте, определяемой номиналами используемых компонентов.

Кварцевые генераторы

Одним из самых важных требований, предъявляемых к генератору, явля­ется стабильность частоты генерируемых им колебаний. Изменения частоты могут быть вызваны, например, изменением емкости или индук­тивности элементов резонансного контура или изменением параметров транзистора при колебаниях температуры. Стабильность частоты можно улучшить путем точного подбора элементов схемы, в том числе транзистора. Для обеспечения очень высокой стабильности частоты приме­няется кристалл кварца, точно задающий и стабилизирующий частоту колебаний. В небольших пределах частоту генератора с кварцевой стаби­лизацией можно изменять с помощью конденсатора переменной емкости, подключаемого параллельно кристаллу кварца. Кварцевые генераторы используются в цветных телевизорах для генерации поднесущей частоты 4,43 МГц с точностью до нескольких герц.

УВЧ-генераторы

Генераторы очень высоких и ультравысоких частот (УВЧ) по принципу работы аналогичны другим генераторам. Однако из-за очень высокой частоты емкости и индуктивности элементов настройки С и L очень ма­лы. Катушку индуктивности может заменить одна полоска проводника или простая петля из меди. В качестве конденсатора может служить варактор. Для построения резонансной схемы иногда используются от­резки длинных линий, имеющих распределенную емкость и индуктив­ность.

Генераторы несинусоидальных сигналов

Эти генераторы, называемые еще релаксационными генераторами, выра­батывают прямоугольные импульсные сигналы путем переключения од­ного или двух транзисторов из открытого состояния в закрытое и обратно. Несинхронизированный мультивибратор, описанный в предыдущей главе, является примером такого генератора. Другой разновидностью генерато­ра несинусоидальных сигналов является блокинг-генератор.

Блокинг-генератор

В генераторе этого типа применяется трансформаторная обратная связь с коллектора на базу транзистора (рис. 33.6). Работа этой схемы осно­вана на том, что в силу трансформаторной связи напряжение на базе будет наводиться только при изменении тока коллектора, то есть при его увеличении или уменьшении. В первом случае действует положитель­ная обратная связь, во втором — отрицательная. При первом включении схемы транзистор открывается, его коллекторный ток увеличивается, со­здавая напряжение обратной связи на базе, в результате чего транзистор открывается еще больше. Когда достигается насыщение, увеличение кол­лекторного тока прекращается, что вызывает появление на базе напря­жения противоположной полярности. Это напряжение закрывает тран­зистор. Транзистор удерживается в закрытом состоянии отрицательным зарядом на конденсаторе С до тех пор, пока этот конденсатор в доста­точной степени не разрядится через резистор R. После этого транзистор снова отпирается и описанный процесс повторяется.

Выходное напряжение блокинг-генератора представляет собой после­довательность узких импульсов (рис. 33.7). Ширина (длительность) импульса определяется параметрами трансформатора, а временной интер­вал между импульсами — постоянной времени RC. Поэтому частоту ко­лебаний блокинг-генератора можно изменять путем изменения номинала резистора R.

Рис. 33.6. Блокинг-генератор.

   

Рис. 33.7. Выходной сигнал бло­кинг-генератора.

 

Рис. 33.8. Генератор на однопереходном транзисторе.

Вторичная обмотка трансформатора является коллекторной нагруз­кой транзистора. Быстрое изменение тока через эту обмотку при закры­вании транзистора приводит к появлению большой противоЭДС и большо­го выброса коллекторного напряжения. Этот выброс напряжения может превысить максимально допустимое коллекторное напряжение и вызвать разрушение транзистора. Для защиты транзистора параллельно первич­ной обмотке трансформатора включается диод D1. В нормальном режиме этот диод смещен в обратном направлении и закрыт. Открывается он только в том случае, когда напряжение на коллекторе транзистора превышает напряжение источника питания VCC.

 

Генераторы на однопереходных транзисторах

Полупроводниковые приборы, имеющие на характеристике участок с от­рицательным сопротивлением, например одиопереходные транзисторы, могут быть использованы в генераторах. На рис. 33.8 приведена схе­ма генератора на однопереходном транзисторе. Транзистор смещен в ту область своей выходной характеристики, где выходной ток увеличивается при уменьшении входного напряжения, то есть в область отрицательного сопротивления. Он попеременно открывается и закрывается без какой-либо обратной связи. Выходное напряжение на базе 2 (b2) представля­ет собой последовательность импульсов. Еще один выходной сигнал — последовательность импульсов противоположной полярности — можно снять с базы 1 (b1). С эмиттера транзистора можно снять пилообраз­ный сигнал. Частота генерируемых импульсов определяется постоянной времени R1C1.

 

Генераторы пилообразного напряжения

На рис. 33.9 показана схема генератора, вырабатывающего пилообразный сигнал при подаче на его вход прямоугольных импульсов. На участке периода входной последовательности импульсов между точками А и В (рис. 33.10) на базе транзистора действует нулевое напряжение, и тран­зистор находится в состоянии отсечки, т. е. закрыт. Конденсатор C1 постепенно заряжается через резистор R1. Прежде чем конденсатор пол­ностью зарядится, на вход поступает положительный фронт ВС импуль­са, переключающий транзистор в проводящее состояние. В результате конденсатор C1 очень быстро разряжается через открытый транзистор. Конденсатор находится в разряженном состоянии во время действия им­пульса (вершина CD). Отрицательный фронт DE импульса переключает транзистор в состояние отсечки, конденсатор C1 снова начинает заря­жаться и т. д.

Рис. 33.9. Генератор пилообразно­го напряжения,

управляемый последовательностью

прямоугольных им­пульсов.

Рис. 33.10. Форма сигналов на вхо­де и

выходе генератора пилообразно­го напряжения.

Тот же принцип заряда и разряда конденсатора используется и в дру­гих генераторах пилообразного напряжения. На рис. 33.11 приведены схемы двух таких генераторов на основе несинхронизированного мульти­вибратора и блокинг-генератора соответственно, применяемых в блоках: развертки телевизоров. Потенциометр R1 управляет частотой развертки (кадровой синхронизацией), а потенциометр R2 — амплитудой сигнала развертки (размером изображения по вертикали).

Рис. 33.11. Генераторы пилообразного напряжения на основе (а) несинхронизированного мультивибратора и (б) блокинг-генератора, применяемые в блоках кадровой развертки телевизоров.

В этом видео рассказывается о генераторах для исследования, настройки и испытаний систем и приборов:

Добавить комментарий

radiolubitel.net

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ

С разбора CD-rom скопилось уже некоторое количество бесколлекторных двигателей постоянного тока (это те, что крутят диск). И место вроде много не занимают, но на глаза попадаются часто. Наконец принял решение, что надо уже как-то с ними определиться.

Итак, это бесколекторный двигатель постоянного тока, положение ротора в нём отслеживается тремя датчиками Холла, управляется при помощи микросхемы драйвера ВА6849FP (регулировка оборотов). В теории всё просто, а вот на практике впечатления могут зашкалить уже от одного обозрения платки на которой движок собственно и установлен.

Поэтому не стал вникать в назначение многочисленных выводов шлейфа, а просто взял и располовинил двигатель, и увидел его статор. Однако полный обзор печатной платы был по прежнему недосягаем. Осознав, что без жертв не обойтись, отпаял провода (3 штуки) идущие с обмоток статора на плату, а затем сложил – переломил вдвое плату  вместе с металлической пластиной крепления.

Освобождённый статор плюхнулся на стол и опять же в позновательных целях был незамедлительно размотан. Теперь могу сообщить, что мотор имел три обмотки (фазы) соединённых методом «звезда», но вполне возможен вариант когда они могут быть соединены методом «дельта».

Схема сборки

Электродвигателя конечно не стало, но вместе с ним не стало и робости перед неизведанным, ибо и неизведанного теперь не было.  На фото проводники образуют обмотки и заканчиваются выводами. Соединения обмоток  отличаются, но электрическая сущность больших изменений не претерпевает. Относительно толстые провода обмоток статора навели на мысль, что с этого движка можно получить неплохой ток, будь он использован в качестве генератора, да ещё если и несколько вольт напряжения выдаст, то возможно «счастье»!

Остановился вот на такой схеме снятия с электродвигателя, впрочем, теперь уже генератора,  вырабатываемого им электрического тока. Данная схема была собрана и опробована со следующими номиналами электронных компонентов: С1 – 100 мкФ х 16 В, все шесть диодов 1N5817.

Было бы интересно опробовать и такую схему, но пока «руки не дошли». Как более совершенный вариант - поставить на выход стабилизатор.

Для дальнейших действий был взят ещё один электродвигатель и приведён в должное состояние для подключения и крепления. Шестерёнки (зубчатая пара) с передаточным отношением 1:5 от китайского фонарика – «жучка».

Всё было смонтировано на подходящее основание. Важным в этой операции является правильно «взять» межцентровое расстояние зубчатых колёс и установить их оси вращения в единой пространственной плоскости.

Схема собрана, вновь обращённый генератор к тесту готов.

При интенсивном, но без мазохизма, вращении большого зубчатого колеса пальцами рук напряжение легко достигает отметки в 1,7 вольта (без нагрузки).

При подключении нагрузки, лампочки на 2,5 В и 150 мА, сила тока достигает 120 мА. Лампочка вспыхивает в пол накала.

Видео - работа под нагрузкой

Возьму на себя смелость заявить, что даже данный конкретный двигатель возможно использовать в качестве ветрогенератора способного вырабатывать электрический ток в достаточном количестве для зарядки одного аккумулятора ААА напряжением 1,2 В и ёмкостью до 1000 мА включительно. Прошу обратить внимание на то фото, которое показывает монтаж шестерён на основании. На правую сторону большого зубчатого колеса так и «проситься» установка ещё одного моторчика. Кинематическая схема будет такой: одно ведущее колесо вращает два ведомых. Возможности удваиваются, реальным становиться собрать повышающий преобразователь и заряжать даже аккумуляторы мобильных телефонов. Вопросами добычи электричества занимался Babay.

   Форум по электротехнике

   Обсудить статью ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ

      

radioskot.ru

Генератор и приборы его регулирования

Строительные машины и оборудование, справочник

Категория:

   Электрооборудование автомобилей

Генератор и приборы его регулирования

Электрическая энергия на автомобиле используется для зажигания рабочей смеси в карбюраторных и газовых двигателях; освещения и сигнализации; пуска двигателя; питания контрольных приборов.

В связи с этим в электрооборудование автомобиля входят: источники электрического тока; система зажигания рабочей смеси; система освещения и сигнализации; система электропуска двигателя; контрольные приборы с электрическим питанием.

Группа источников тока на автомобиле состоит из генератора и аккумуляторной батареи; кроме того, сюда также относятся приборы для регулировки работы генератора и контрольный прибор — амперметр или сигнальная лампа. В случае применения генератора переменного тока в группу источников тока дополнительно входит выпрямитель тока, преобразующий переменный ток в постоянный, который может быть использован для зарядки аккумуляторной батареи.

Генератор является основным источником электрического тока на автомобиле и приводится в действие от его двигателя. Однако при малых числах оборотов коленчатого вала двигателя или когда двигатель не работает генератор не может питать электрооборудование током, поэтому для обеспечения работы приборов электрооборудования в цепь генератора параллельно включен другой источник тока — аккумуляторная батарея. При средних и больших числах оборотов коленчатого вала двигателя, когда питание всех приборов происходит от генератора, батарея поглощает излишек электрической энергии, вырабатываемой генератором, т. е. заряжается. После того как генератор с помощью приборов регулирования автоматически отключается от сети, батарея отдает для питания электрооборудования запасенную в ней электрическую энергию, разряжаясь при этом.

Амперметр контролирует работу батареи, показывая ее зарядку или разрядку. Иногда для этой цели применяют сигнальную лампу.

Для питания всех приборов электрооборудования на автомобилях с карбюраторными двигателями применяют источники тока напряжением 12В. На грузовых автомобилях, оборудованных дизелями ЯМЗ-2Э6 и ЯМ8-238, применены источники тока напряжением 24В, что вызвано необходимостью иметь повышенную мощность стартера для пуска дизеля. На старых грузовых автомобилях с дизелями ЯАЗ-204 и ЯАЗ-206 электрооборудование имеет напряжение 12В с переключением батарей на 24В в момент пуска бусах, где имеется большое количество потребителей и необходима значительная мощность источника тока. На остальных автомобилях применяли в основном генераторы постоянного тока.

Однако с внедрением в практику полупроводниковых выпрямителей, обладающих высокой надежностью действия и компактностью, генераторы переменного тока, как более простые и надежные, начинают получать все большее распространение на автомобилях всех типов, включая и легковые автомобили (ЗАЗ-966В и др.). Описание устройства и действия генератора переменного тока приведено ниже.

Электрический ток в генераторе постоянного тока получается вследствие электромагнитной индукции, возникающей при вращении витка провода в магнитном поле магнитов.

Концы витка провода припаяны к двум изолированным пластинкам, образующим коллектор, к которому прижаты щетки, соединенные с внешней цепью. При вращении виток провода пересекает магнитное поле магнитов и в нем индуктируется электродвижущая сила, а при замыкании цепи в ней появляется электрический ток. При этом при вращении витка по часовой стрелке ток в стороне витка, проходящей у северного полюса магнита, всегда идет за плоскость чертежа, а в стороне витка, проходящего у южного полюса, — из-за плоскости чертеяжа (правило правой руки). Ток с помощью щеток постоянно отводится с коллектора во внешнюю цепь.

Рис. 1. Схема получения постоянного тока

При вращении провода вместе с ним будут вращаться и пластинки коллектора, подходя поочередно то к одной щетке, то к другой. При этом левая щетка всегда соединена со стороной витка, проходящей у северного полюса, где ток идет за плоскость чертежа. Эта щетка обозначается знаком минус. Правая щетка постоянно соединена со стороной витка, проходящей у южного полюса, где ток идет из-за плоскости чертежа. Эта щетка обозначается знаком плюс. Таким образом, при вращении витка ток по внешней цепи будет иметь постоянное направление от плюсовой щетки к минусовой. Такой ток называется постоянным.

В автомобильном генераторе постоянного тока применяется тот же принцип получения электрического тока, только мощность получаемого тока увеличивается следующими способами:1) усилением магнитного поля путем применения электромагнитов;2) увеличением числа витков провода, вращающегося в магнитном поле;3) ускорением пересечения проводами магнитных силовых линий.

Для увеличения мощности вместо одного витка провода в генераторе берется большое число витков, наматываемых на железном сердечнике; количество пластин коллектора при этом соответственно увеличивается. Сердечник с обмотками, коллектором и валом образуют якорь.

Вместо постоянных магнитов применяют электромагниты, состоящие из стальных сердечников-полюсов, на которых намотаны обмотки возбуждения. Сердечники закреплены в общем корпусе. Ток для питания обмоток возбуждения берется от щеток генератора, для чего концы обмотки возбуждения присоединяются к щеткам. Такое включение обмоток возбуждения называется параллельным, а генератор называется шунтовым. Применяют генераторы с двумя или четырьмя полюсами.

Для более быстрого пересечения проводами магнитных силовых линий якорь генератора приводится в действие от двигателя и вращается с большим числом оборотов.

Устройство генератора

В двухполюсном генераторе постоянного тока имеются: корпус с крышками; электромагниты, состоящие из двух полюсов с обмотками возбуждения; вращающийся якорь, состоящий из вала, сердечника, обмоток и коллектора; щетки; приводной шкив.

Корпус генератора изготовлен из мягкой стали и имеет цилиндрическую форму. Внутри корпуса винтами закреплены два железных полюса, на которых из изолированного медного провода намотаны обмотки возбуждения, образующие электромагниты.

С обеих сторон к корпусу присоединены две чугунные крышки, стягиваемые сквозными длинными болтами. В крышках на шарикоподшипниках установлен вал с якорем. Подшипник со стороны привода закрыт с обеих сторон крышками с сальниками и для смазки подшипника на крышке корпуса установлена масленка. Подшипник со стороны коллектора имеет сальник с внутренней стороны, а снаружи закрыт глухой крышкой на прокладке. Смазку закладывают в подшипник при сборке или при необходимости снимают для закладывания смазки крышку.

Подшипники с обеих сторон якоря закреплены на валу гайками. В некоторых моделях генераторов оба подшипника смазываются лишь при сборке и масленок не имеют.

На валу закреплен железный сердечник, изготовленный из отдельных пластин, изолированных одна от другой слоем окалины, имеющейся на пластинах. Это необходимо для того, чтобы в сердечнике, вращающемся в магнитном поле, не было циркуляции якорных токов, которые могли бы вызвать нагрев сердечника. Сердечник цилиндрической формы установлен между полюсами с небольшим зазором и служит для усиления магнитного потока между полюсами. В прямых глубоких пазах на сердечнике намотана изготовленная из изолированного медного провода обмотка 9 якоря, состоящая из отдельных секций. Концы обмотки каждой секции припаяны к коллектору в определенной последовательности. В некоторых моделях генераторов применяют косые пазы на сердечнике, что уменьшает пульсацию тока.

Для автомобильных генераторов обычно применяют петлевую намотку якоря, при которой конец одной секции обмотки и начало другой секции припаяны к одной и той же пластине коллектора. Медные пластины коллектора закреплены наглухо на ласточкином хвосте в пазах на валу и изолированы от вала и одна от другой изоляцией. Обмотки прочно закреплены в на-зах якоря, замотаны лентой по бокам n пропитаны изолирующим лаком во избежание разрыва и пробивания их током.

Рис. 2. Схема устройства и работы генератора постоянного тока

К коллектору прижаты при помощи пружин токособирающие щетки. Щетки спрессованы из угольного порошка и установлены в щеткодержателях, закрепленных на внутренней части крышки со стороны коллектора.

Рис. 3. Конструкция двухполюсного генератора постоянного тока

В двухполюсных генераторах имеются две щетки. Одна щетка — минусовая через щеткодержатель соединена с массой, а другая щетка — плюсовая установлена в щеткодержателе, изолированном от массы, и присоединена проводом к изолированной клемме на корпусе генератора. Эта клемма имеет метку Я (якорь). В случае регулирования работы генератора трехэлементным реле-регулятором один конец обмотки возбуждения, намотанной на оба полюса последовательно, соединяется с массой винтом, а другой присоединен ко второй изолированной клемме корпуса, имеющей метку Ш (шунт). В корпус генератора завернут винт с меткой М, являющийся клеммой для присоединения провода от клеммы М (масса) реле-регулятора.

В корпусе генератора против щеток сделаны окна для их осмотра. Окна закрыты защитной лентой концы ленты стянуты винтом. На наружном конце вала якоря с противоположной стороны от коллектора закреплен на шпонке гайкой с шайбой приводной шкив (литой или штампованный). Генератор ушками, имеющимися на крышках, с помощью болта шарнирно закреплен на кронштейне двигателя, и якорь генератора приводится в действие от коленчатого вала двигателя ременной передачей. Натяжение ремня обычно регулируется поворотом генератора па крепящем болте. В установленном положении генератор фиксируется в кронштейне специальной планкой с болтом.

Рис. 4. Схемы соединения обмоток генератора: а — двухполюсного; б — четырехполюсного с двумя выводными клеммами; в — четырехполюсаого

На автомобилях применяются генераторы с усиленным охлаждением, обеспечиваемым наружным обдувом корпуса с помощью специальной крыльчатки, закрепленной на шкиве, или же внутренней проточной вентиляцией. В генераторах с внутренней проточной вентиляцией в обеих крышках сделаны окна, а на приводном шкиве имеются вентиляционные лопасти. При вращении шкива его лопасти просасывают через корпус генератора воздух или обдувают корпус, в результате чего обмотки охлаждаются. При наличии вентиляции допускается более сильный ток в обмотках генератора без опасности их перегрева, поэтому мощность генераторов повышается без значительного увеличения их размеров.

Работает генератор следующим образом. При вращении якоря в магнитном поле, создаваемом электромагнитами, многочисленные витки обмотки якоря с большой быстротой пересекают магнитные силовые линии поля, и в обмотках индуктируется электродвижущая сила, а при замыкании цепи генератора по обмоткам идет ток. Так как все витки обмотки соединены между собой последовательно через пластины коллектора, то общее напряжение генератора получается значительно больше напряжения каждого витка. Щетки и установлены на коллекторе так, что находятся под наибольшим напряжением, получаемым в обмотках якоря.

Основная часть электрического тока, вырабатываемого генератором, с его щеток поступает во внешнюю сеть к потребителям. Часть тока проходит в обмотки возбуждения электромагнитов 2, подключенных к главным щеткам параллельно. К обмотке возбуждения ток поступает от плюсовой щетки через приборы регулирования и через массу и минусовую щетку возвращается на коллектор. Ток, проходя по обмоткам возбуждения, намагничивает полюсы, создавая сильное магнитное поле между полюсами, в котором и вращается якорь с обмотками.

В момент пуска, когда в обмотках возбуждения тока еще нет, ток в генераторе появляется из-за наличия магнитного поля, создаваемого вследствие остаточного магнетизма полюсов и корпуса.

Применяют также четырехполюсные генераторы (рис. 192, б), которые при тех же размерах развивают большую электрическую мощность. В таких генераторах в корпусе закреплено четыре полюса с обмотками возбуждения и соответственно установлено четыре щетки. Две щетки генератора (минусовые) соединены с массой, а другие две щетки (плюсовые) соединены с выводной изолированной клеммой на корпусе с меткой Я. В случае применения трехэлементного реле-регулятора один конец обмотки возбуждения, намотанной’ на полюсах последовательно, присоединен на массу, а другой — к изолированной клемме III на корпусе.

В случае применения четырехэлементного реле-регулятора обмотки возбуждения намотаны параллельно попарно на два полюса. Один конец каждой обмотки возбуждения соединен на массу, а другой присоединен к отдельной изолированной клемме на корпусе генератора. Клеммы имеют метки Ш1 и Ш2. В остальном конструкция четырехполюсного генератора одинакова с конструкцией двухполюсного генератора.

Рассмотренная конструкция двухполюсного генератора типа Г-108 или Г-130 напряжением 12В, устанавливаемого на автомобилях «Москвич-408», «Волга», УАЗ и грузовых автомобилях ГАЗ и ЗИЛ, является наиболее распространенной. Аналогичное устройство имеют и другие двухполюсные генераторы типа Г-12, Г-20, Г-21 и Г-22, устанавливаемые ранее на автомобилях ГАЗ, УАЗ, ЗИЛ, «Москвич», а также Г-56 автомобилей КрАЗ, Г-101 автомобиля «Чайка», Г-106 автомобилей МАЗ и Г-114 автомобиля «Запорожец». Все эти генераторы отличаются в основном лишь размерами и мощностью вырабатываемого тока.

На новых грузовых автомобилях, оборудованных дизелями ЯМЗ-2Э6 и ЯМЗ-238, применяют четырехполюсные генераторы Г-105 напряжением 24 в с двумя выводными клеммами, а на автомобилях ЗИЛ-1Г1 и КрАЗ-214 и КрАЗ-221 — четырехполюсные генераторы типа Г-8В и Г-8 напряжением 12 в с тремя выводными клеммами.

На автомобилях высокой проходимости устанавливают обычно водостойкие генераторы, которые допускают в нерабочем состоянии кратковременное погружение их в пресную воду при преодолении автомобилем глубоких бродов. Так, например, на автомобиле ЗИЛ-131 установлен водостойкий генератор типа Г-51.

Читать далее: Приборы регулирования работы генератора

Категория: - Электрооборудование автомобилей

Главная → Справочник → Статьи → Форум

stroy-technics.ru


Смотрите также