Гидротрансформатора: Гидротрансформатор АКПП: все об устройстве и неисправностях

Гидротрансформатор АКПП: все об устройстве и неисправностях

Гидротрансформатор – это далеко не новое изобретение для автомобильной индустрии. Впервые он появился порядка ста лет назад, но за долгое время своего существования устройство претерпело значительные изменения. Сегодня гидротрансформаторы используют для передачи крутящего во многих отраслях промышленности. Разумеется, автомобильная промышленность исключением не стала. Об особенностях устройства гидротрансформаторов, принципе их работы, а также неисправностях вы сможете узнать из материала Avto.pro.

Экскурс в историю

Прообраз современных гидротрансформаторов был создан еще в 1905 году Германом Феттингером – талантливым немецким инженером, который работал над устройствами для передачи передачи крутящего момента. Свой механизм он назвал гидромуфтой. Изначально его планировалось использовать в судах. Суть работы муфты сводилась к передаче крутящего момента с помощью рециркуляции жидкости, которая заполняла пространство между парой лопастных колес. Такое техническое решение должно было решить проблемы обратной нагрузку на валы, двигатель и их соединительные элементы – жидкость решила бы недостатки жесткой связи между агрегатами и смежными с ними деталями.

Первый автомобиль, оснащенный гидротрансформатором, выпустил концерн General Motors. Это была модель Oldsmobile Custom 8 Cruiser 1939 года. Автолюбители отметили, что управление данным автомобилем было очень легким, простым и, разумеется, комфортным. Чуть позже аналогичные устройства начали применять и в других моделях личного транспорта. Сегодня гидротрансформатор является верным спутников автоматических коробок передач. Автолюбители часто называют его «бубликом» из-за специфической геометрии.

Достоинства и недостатки

Прежде чем мы начнем изучать устройство гидротрансформаторов, давайте разберемся, почему их вообще стали применять. Трансмиссия с жестким соединением первичного вала с двигателем имеет серьезный недостаток: в определенных режимах работы двигателя на трансмиссию приходятся сильные нагрузки, которые становятся причиной ускоренного износа деталей. Трансформатор решил эту проблему. Но у него есть и другие достоинства. Среди них:

  • Обеспечение плавного троганья с места;
  • Потенциальная возможность увеличения крутящего момента от автомобильного двигателя;
  • Устройство практически не нуждается в обслуживании.

Где есть достоинства, там есть и недостатки. Главная особенность гидротрансфортматора – передача момента посредством движения жидкости – является и его главным недостатком. Вот почему автоконцерны продолжают работать над его улучшением:

  • Устройство имеет относительно невысокий КПД;
  • Оно пагубно сказывается на динамике автомобиля;
  • Стоимость устройства довольно высока.

Так как на раскручивание жидкости в гидротрансформаторе требуется время и мощность, динамика автомобиля может пострадать. Кроме того, проектирование и сборка гидротрансформатора требует больших экспертных мощностей и денежных трат. Автомобиль, оснащенный АКПП с трансформатором стоит дороже моделей с наиболее простой механической трансмиссией. Но с учетом того, что устройтсво не только делает работу трансмиссии более плавной, но и увеличивает ее эксплуатационный ресурс, денежные траты окупаются. 

Подробнее о принципе работы

Принцип работы гидротрансформатора сводится к передаче момента от двигателя к автомобильной трансмиссии без создания жесткой связи. Момент передается посредством рециркуляции жидкости. По сути, работает трансформатор АКПП так же, как и гидравлическая муфта. Но не стоит путать два этих устройства – гидротрансформатор несколько сложнее. Он состоит из таких элементов:

  1. Корпус;
  2. Насосное колесо / насос;
  3. Статор / реактор;
  4. Обгонная муфта;
  5. Механизм блокировки / плита блокировки;
  6. Турбинное колесо / турбина.

Запчасти на Ford custom

Антидождь

CUSTOM Tourneo bus (01.12 — )

Запчасти на Mazda 2

Подвесной подшипник карданного вала

2 хетчбек (DL, DJ) (11. 14 — )

Если разобрать гидротрансформатор, то можно увидеть следующее: на одной оси размещено турбинное, насосное и реакторное колесо, а весь внутренний объем механизма заполнен трансмиссионной жидкостью. Между каждым из лопастных колес нет жесткого соединения, но оно и не требуется. Насосное колесо имеет жесткое соединение с коленвалом, а значит, при запуске двигателя оно будет проворачиваться вместе с ним. Турбинное колесо имеет жесткое соединение с первичным валом автомобильной АКП. Между этими колесами расположен реактор, иначе называемый статором. Сам же реактор имеет смежный элемент – муфту свободного хода, которая не дает ему вращаться в двух направлениях. Кстати, в обычных гидравлических муфтах, которые часто сравнивают с гидравлическими трансформаторами, статора и муфты нет.

Лопасти всех колес имеет особую геометрию, которая позволяет им захватывать как можно больший объем трансмиссионной жидкости. Работает устройство так: при включении двигателя и по ходу повышения оборотов насосное колесо начинает вращаться со все большей скоростью, постепенно раскручивая и жидкость. Так как турбинное колесо имеет схожую геометрию лопастей, оно начнет вращаться, увлекаемое трансмиссионной жидкостью. Выделяется здесь только реактор – он придает жидкости ускорение. Это становится возможным благодаря особой конструкции лопаток. Они имеют специфический профиль с сужающимися межлопаточными каналами. Жидкость, входя в сужающиеся каналы, выбрасывается в сторону выходного вала с увеличенной скоростью.

Формирование потока жидкости в гидротрансформаторе напрямую определяется скоростью насосного колеса. Скорость вращения последнего, в свою очередь, зависит от скорости вращения коленчатого вала. Как только лопастные колеса синхронизируется, гидротрансформатор начинает работать как гидромуфта – он не увеличивает крутящий момент. Если же нагрузка на выходной вал увеличивается, турбинное колесо немного замедляется. Реактор (статор) блокируется, начиная трансформировать поток трансмиссионной жидкости.

Режимы работы

Для полного понимания принципов работы гидротрансформатора стоит уделить внимание режимам его работы. Как стало понятно из предыдущих разделов, этот агрегат передает крутящий момент без жесткого соединения вращающихся деталей. Однако в силу отсутствия такого соединения агрегат имеет несколько недостатков. В частности, уже упомянутые низкий КПД и посредственная динамика автомобиля. Проблемы удалось решить на конструктивном уровне – введением механизма блокировки, иначе называемого блокировочной плитой. У современных гидротрансформаторов есть несколько режимов работы:

  1. Блокировка;
  2. Проскальзывание.

Блокировочная плита соединена с турбинным колесом, а значит, и с первичным валом коробки передач при помощи пружин демпфера крутильных колебаний. Получив команду от блока управления трансмиссией, она прижимает к внутренней поверхности корпуса агрегата под действием давления жидкости. Так как на плите расположены фрикционные накладки, она может обеспечить жесткое соединение и передачу крутящего момента от силового агрегата трансмиссии даже без участия жидкости. Блокировка может включаться на любой из передач.

Блокировка гидротрансформатора может быть и частичной. Если плита прижимается к корпусу устройства неполностью, гидротрансформатор переходит в режим проскальзывания. Крутящий момент при этом передаваться как через механизм блокировки, так и через циркулирующую жидкость. В этом режиме автомобиль имеет достойные динамические характеристики, а его трансмиссия продолжает работать плавно. Электроника включает частичную блокировку при разгоне и отключает при понижении скорости. У данного режима есть только один недостаток: частое его включение приводит к истиранию фрикционной накладки плиты. Продукты износа попадают в трансмиссионное масло, что отрицательно сказывается на его рабочих свойствах.

Применение гидротрансформаторов

Возьмем пример того, когда гидротрансформатор упрощает пользование автомобилем. Предположим, начинается подъем на гору после движения по ровному участку дороги. Водитель забыл о манипуляциях с педалью акселератора. Так как нагрузка на ведущие колеса увеличилась, а автомобиль сбросил скорость, частота вращения турбины должна уменьшиться. При этом уменьшилось гидравлическое сопротивление – скорость циркуляции трансмиссионного масла в гидротрансформаторе увеличилась. Это означает, что крутящий момент, передаваемый валу турбинного колеса, вырос. Водитель обнаружит, что пока лопастные колеса не синхронизировались, автомобиль двигается так, будто произошел переход на низшую передачу, как это делается в автомобилях с механической коробкой передач.

Пытливый автолюбитель может обнаружить следующее: крутящий момент может преобразовываться гидротрансформатором слишком большое число раз. Что при этом происходит? Необходимая скорость уже достигнута, однако жидкость продолжает набирать скорость вращения. Здесь на выручку приходит механизм блокировки. Он создает жесткую связь между ведущим и ведомым валом. Блокировка устроена так, что потери  мощности будут минимальными. При этом гидротрансформатор не увеличит расход топлива как до, так и после блокировки.

Вот еще один вопрос: если гидротрансформатор сам может менять величину крутящего момента, зачем присоединять его к автоматической коробке передач? Дело в том, что коэффициент изменение крутящего момента данного устройства равен 2,0 – 3,5 (обычно 2,4). Это не тот диапазон передаточных чисел, который нужен для эффективной работа автомобильной трансмиссии. К тому же, гидротрансформатор никак не поможет в движении задним ходом или в случаях, когда ведущие колеса разъединены с двигателем.

Неисправности гидротрансформаторов

Конструкция гидротрансформатора не кажется слишком сложной. Да, каждая деталь устройства спроектирована с учетом того, что к ней будут прилагаться большие нагрузки. Однако учтите тот факт, что в тандеме с трансформатором работает и электроника. Механические и электронные компоненты рано или поздно выходят из строя, причем у разных моделей авто могут быть свои специфические неисправности. Чаще всего автолюбители отмечают следующее:

  • Появление посторонних звуков при работе трансмиссии без приложения нагрузки. Причина: износ опорных или промежуточных подшипников;
  • Появление вибрации на высоких скоростях, реже – во всех режимах работы АКПП. Причина: засоренность масляного фильтра и загрязнение трансмиссионной жидкости;
  • Выход реактора из строя и падение динамике автомобиля. Здесь стоит проверить обгонную муфту;
  • Скрежет, стук гидротрансформатора. Причина: разрушение лопастей;
  • Самопроизвольное переключение ступеней АКПП. Причина: неисправность электронной системы управления;
  • Полный выход трансмиссии из строя. Такое может произойти при обрыве соединения колеса с первичным валом коробки передач. Иногда помогает восстановление шлицевого соединения.

Отдельно стоит сказать об опасности перегрева гидротрансформатора. Если автолюбитель игнорировал необходимость замены трансмиссионного масла, трансформатор будет страдать от сухого трения и перегрева. Также стоит уделять внимание остаточному ресурсу фильтра АКПП и чистоте системы охлаждения агрегата. Обычно проблема устраняется заменой расходников, чисткой и заливкой нового масла. В запущенных случаях требуется замена отдельных узлов гидротрансформатора.

Общие признаки выхода гидротрансформатора из строя: повышенный расход топлива, рывки при движении на постоянной скорости, а также при торможении двигателем, плохое состояние масла при замене. Как правило, масло в агрегате с изношенным гидротрансформатором имеет черный цвет. Некоторые неисправности могут указывать на поломку других деталей автоматической коробки передач, так что если вы заметили ненормальную работу трансмиссии, скорее обращайтесь к специалисту для диагностики своего авто.

Выбор нового агрегата

Найти новый гидротрансформатор не так уж сложно. Автолюбителям важно понимать, что при подборе нельзя допускать ошибок – если он выберет неподходящий агрегат, его не получится установить на свой автомобиль. Как результат, устройство нужно будет возвращать продавцу и начинать поиски снова. Чтобы не допустить ошибку, гидротрансформатор обычно ищут по:

  • VIN-коду;
  • Коду имеющегося агрегата.

Особняком стоит поиск по параметрам автомобиля. Он не всегда дает точный результат, но если вести поиски в проверенных электронных каталогах, то вероятность ошибки становятся меньше. Необходимо указывать практически все технические параметры транспортного средства – от марки, модели и года выпуска до характеристик двигателя и коробки передач.

Отдельно стоит рассказать о ремонте гидротрансформатора. Новое устройство в сборе стоит от 600 до 1000$, а иногда и больше. Ремонт же обходится в среднем в 4-6 раза дешевле. Впрочем, важно учитывать и стоимость снятия коробки передач. Как правило, мастера проводят мойку и дефектовку деталей, меняют уплотнители, гидроцилиндры, фрикционные накладки блокировочной плиты, а также по необходимости балансируют лопаточные колеса. Полный выход гидротрансформатора из строя – это запущенный случай. Автолюбителям достаточно менять расходники и вовремя проводить диагностику.

Вывод

Гидротрансформатор – это один из важных компонентов автоматических коробок передач, который делает эксплуатацию автомобиля еще более простой и комфортной. В силу относительной простоты устройства и применения деталей с большим эксплуатационным ресурсом, он редко выходит из строя. Но не стоит думать, что довести дело до капитального ремонта будет сложно. Если водитель игнорирует необходимость регулярной замены масла и фильтров, поломка случится в самый неожиданный момент. Впрочем, даже изношенный гидротрансформатор можно отремонтировать. Добиться полного выхода устройства из строя нелегко. Если вы заметили, что трансмиссия начала работать ненормально, мы советуем для начала обратиться к специалисту. Он локализует проблему и выяснит, подлежат ли компонента АКП ремонту. Так как новый гидротрансформатор стоит немалых денег, ремонт будет предпочтительнее.

назначение, устройство и принцип работы

Чем дальше мы изучаем устройство автомобиля, тем больше возникает вопросов. Сегодня у нас на очереди гидротрансформатор. В этой статье мы разберемся что это, его основное предназначение, устройство и принцип работы. Погнали…

Содержание

  1. Назначение гидротрансформатора
  2. Устройство гидротрансформатора
  3. Принцип работы гидротрансформатора
  4. Блокировка гидротрансформатора (ГДТ)
  5. Неисправности гидротрансформатора, их причины
  6. Преимущества и недостатки гидротрансформатора
  7. Заключение

Назначение гидротрансформатора

Большинство современных коробок «автоматов» совмещены с гидротрансформатором, основное назначение которого передать вращение вала двигателя на вал коробки. Гидротрансформатор является самостоятельным агрегатом, но АКПП не способна работать без него. Цель разработки этого узла — сделать вождение более простым и комфортным за счет отсутствия необходимости пользоваться педалью сцепления. Устройство и принцип работы понять не сложно благодаря простоте конструкции.

Расположение гидротрансформатора

Гидравлический трансформатор в коробке «автомат» является аналогом сцепления, работающим автоматически.

Этот узел нужен для:

  1. Увеличения и передачи крутящего момента с двигателя на коробку.
  2. Защиты автомата при резком увеличении/снижении оборотов.
  3. Нормализации передачи вращения во время разгона (гашения двойного увеличения вращения).
  4. Прерывания связи между двигателем и трансмиссией при смене передачи (трансформатор забирает часть крутящего момента на себя).

Из-за характерного внешнего вида автомеханики этот агрегат часто называю «бубликом». Он тесно связан с коробкой, из которой получает трансмиссионную жидкость, необходимую для работы.

Устройство гидротрансформатора

Гидротрансформаторы устанавливаются на легковые и грузовые машины, автобусы, тракторы, спецтехнику вместе с коробкой автомат (реже с вариаторной коробкой). По конструкции это гидравлическая муфта со статором.

Устройство гидротрансформатора: 1 — блокировочная муфта; 2 — турбинное колесо; 3 — насосное колесо; 4 — реакторное колесо; 5 — механизм свободного хода.

Гидротрансформатор состоит из:

  • корпуса;
  • реакторного колеса (статора) на муфте;
  • насосного (центробежного) колеса;
  • турбинного колеса;
  • механизма блокировки.

Устройство лучше всего рассматривать в разрезе, так как в собранном виде корпус запаян. По краям располагаются турбинное и насосное колесо, между ними реакторное (реактивное). Турбинное колесо связано с валом коробки, насосное с коленвалом двигателя. Реакторное колесо с лопастями особой геометрии установлено на муфту, которая вращается лишь в одном направлении. Трансформатор заполнен трансмиссионной жидкостью, которая во время работы активно циркулирует.

Принцип работы гидротрансформатора

Принцип работы сравнительно простой, и наглядно показан на видео-уроке, ниже.

  1. Крутящий момент от двигателя через насосное колесо и трансмиссионную жидкость АТФ (без жесткой связи) передается на турбинное колесо, которое в свою очередь жорстко связано с коробкой передач. То есть поток создает насосное колесо, после попадания жидкости на турбинное колесо оно начинает вращаться.
  2. При увеличении оборотов двигателя сила потока тоже увеличивается. Масло, отбиваясь от турбинного колеса, попадает обратно на насосное, только уже через реактивное колесо, которое в свою очередь усиливает поток жидкости. Таким образом происходит увеличение крутящего момента (трансформация) — от этого и названия агрегата.
  3. Трансформация происходит до тех пор, пока скорость вращения насосного и турбинного колеса не сравняются. В этом случае реакторное колесо начинает крутится свободно, не увеличивая поток жидкости. В итоге гидротрансформатор начинает работать в режиме гидромуфты. Собственно в этом и их отличие — гидромуфта не трансформирует крутящий момент.

Блокировка гидротрансформатора (ГДТ)

Гидротрансформатор важен для коробки до достижения определенного показателя скорости, при которой насосное и турбинное колесо вращаются с одинаковой скоростью, вращение реактора обеспечивает муфта. В результате все колеса вращаются вместе, крутящий момент перестает увеличиваться. В этом случае передача крутящего момента через жидкость не целесообразна. В этом случае, на современных гидротрансформаторах электроника соединяет входной и выходной валы ГДТ, блокирует бублик, и для передачи момента включается жесткая сцепка. При такой блокировке существенно экономится расход топлива.

Устройство гидротрансформатора с муфтой блокировки

Также на современных авто, блокировка включается на любых передачах и даже для торможения двигателем. Делается это для эффективного и динамичного разгона и торможения автомобиля. Схема блокирующего устройства простая. На входном и выходном валах есть система фрикционных дисков, которые в определенный момент, после команды блока управления, специальный клапан прижимает их друг к другу. Крутящий момент начинает передаваться без участия жидкости.

Неисправности гидротрансформатора, их причины

Гидротрансформатор считается неразъемным узлом, но в мастерских сварочный шов срезают, после ремонта «бублик» сваривают. ГДТ устроен так, что все поломки условно можно разделить на 2 группы:

  1. Неисправности трансформатора (износ валов и соединений между ними, засорение или износ клапанов, подающих масло).
  2. Неисправности блочной плиты (сбои в работе масляного насоса, выход из строя датчиков, отвечающих за подачу масла, засорение каналов и фильтров системы подачи масла).

Признаков неисправности много:

  1. Автомобиль немного пробуксовывает в начале движения.
  2. Во время движение слышится жужжание, стуки.
  3. При смене передачи ощущаются толчки, мотор глохнет.
  4. Замедленный разгон, сопровождающийся шуршанием.
  5. Перегрев бублика.
  6. Появление запаха горения пластмассы.
  7. Вибрация трансформатора.
  8. Недостаточный уровень трансмиссионной жидкости.

Причины проявления симптомов:

  1. Механический шум во время холостого хода появляется при износе подшипников.
  2. При появлении вибраций необходимо проверить качество трансмиссионной жидкости и степень загрязненности фильтра (вибрация исчезает после очистки фильтра и замены жидкости).
  3. Характеристики разгона меняются из-за износа муфты, на которой закреплен статор (деталь нужно заменить).
  4. Скрежет, стук во время движения появляется при разрушении лопастей колес (бублик чаще всего меняется из-за нецелесообразности ремонта).
  5. Расплавленной пластмассой пахнет при засорении системы охлаждения коробки или уменьшении объема трансмиссионной жидкости.
  6. Автомобиль глохнет при смене передачи, если вышла из строя электроника, блокирующая трансформатор, требуется профессиональная диагностика.
  7. Авто самопроизвольно останавливается при выходе из строя электроники, срезании шлиц, засорении клапана блокировки, бублик необходимо поменять.
  8. Уровень трансмиссионной жидкости снижается, если нарушена герметичность корпуса, агрегат чаще всего меняется.

В автомастерскую следует обращаться при проявлении любого из симптомов. После диагностики будет проведен ремонт, если восстановление невозможно, ГДТ заменят. В противном случае не исключена вероятность выхода из строя коробки. Самостоятельно провести ремонт гидротрансформатора сложно из-за герметичного корпуса. Чтобы заменить детали, его необходимо разрезать, потом запаять, что в бытовых условиях сделать практически невозможно.

На автомобилях с гидротрансформаторами устанавливаются менее мощные двигатели, что позволяет сэкономить при покупке и на топливе. Но как и все агрегаты ГДТ имеет свои плюсы и минусы.

К преимуществам можно отнести:

  1. Плавное троганье с места, в том числе на сыпучем грунте и подъеме.
  2. Ход без рывков.
  3. Удобство управления в городе, в том числе в пробках.
  4. Снижение нагрузок и вибраций на трансмиссию при неравномерной работе двигателя.
  5. Избавление от прогорания сцепления.
  6. Отсутствие пробуксовываний.
  7. Гидротрансформатор предотвращает возникновение условий, способствующих изгибанию валов, поэтому на них можно ставить подшипники меньших размеров.
  8. ГДТ небольшие, поэтому узел с коробкой компактный.

Недостатки гидравлических трансформаторов:

  1. Низкий КПД из-за проскальзывания турбинного и насосного колес.
  2. Снижение динамики из-за затрат мощности на создание движения потока жидкости.
  3. Высокая стоимость узла.
  4. Дорогое обслуживание (жидкость стоит дорого, ее нужно много, причем охлажденной при помощи специальной системы, масло и фильтр необходимо часто менять).
  5. На грузовиках узлы коробок объемные из-за больших размеров колес.
  6. Дорогой ремонт и замена.

Заключение

Исходя из устройства и принципа работы гидротрансформатора можно сделать вывод, что срок службы можно продлить, если использовать качественную трансмиссионную жидкость, своевременно менять не только ее, но и сальники, прокладки, фильтр. Свое назначение этот узел выполняет дольше при регулярной диагностике и обслуживании.

Как работают гидротрансформаторы?

Вы когда-нибудь задумывались, что у автоматической коробки передач вместо сцепления? Это называется гидротрансформатор, и он делает всю тяжелую работу за вас

Напомнить позже

Передача мощности от любой трансмиссии к трансмиссии может быть довольно сложным процессом с сотнями движущихся частей, которые необходимо синхронизировать одновременно. Из салона вы просто нажимаете на педаль и перемещаете рычаг переключения передач или, может быть, просто щелкаете лепестком, но все, что происходит под днищем, тщательно спроектировано и разработано, чтобы обеспечить плавное соединение длинного списка компонентов, чтобы вывести ваш автомобиль на трассу. шаг.

В автомобиле с механической коробкой передач у вас есть узел сцепления, который позволяет соединять и разъединять двигатель и трансмиссию и, следовательно, привод на колеса. У двигателей есть холостой ход, который устанавливается с помощью ограничителя дроссельной заслонки, что означает минимальную скорость двигателя, при которой двигатель может работать, прежде чем он заглохнет из-за отсутствия воздушно-топливной смеси, поступающей в цилиндры.

Таким образом, без сцепления при торможении до полной остановки двигатель глохнет, так как нагрузка от трансмиссии будет тянуть его ниже допустимого предела оборотов. Сцепление обеспечивает отключение, необходимое для поддержания работы двигателя, а затем повторное включение вместе с некоторым дросселем, чтобы снова запустить автомобиль.

Гидротрансформатор во всей красе

Однако в автомобиле с автоматической коробкой сцепления нет — вместо него установлен гидротрансформатор. Он должен выполнять ту же работу, что и сцепление, — позволяя двигателю продолжать работать, в то время как трансмиссия и колеса замедляются до полной остановки, — но он делает это другим и довольно изобретательным способом. Преобразователь крутящего момента — это так называемая гидромуфта — устройство, используемое для передачи механической энергии вращения за счет движения жидкости от одной механической движущейся системы к другой.

Может заменить сцепление, поскольку позволяет двигателю свободно вращаться, значительно уменьшая передачу крутящего момента от трансмиссии к трансмиссии. Он никогда не отключается полностью, так как вы можете почувствовать «ползучесть», которая возникает, если вы снимаете ногу с тормоза автомобиля с автоматической коробкой передач с места.

Регулирование крутящего момента достигается за счет использования насоса, который направляет жидкость вокруг гидротрансформатора в зависимости от вращения коленчатого вала. Внутри гидротрансформатора находится турбина, которая вращается, когда перекачиваемая жидкость соприкасается с лопастями турбины, таким образом измеряя величину крутящего момента, который передается на трансмиссию через входной вал.

Koenigsegg Regera использует систему, аналогичную гидротрансформатору, для обеспечения плавного переключения между выходной электрической мощностью и двигателем внутреннего сгорания

. Корпус гидротрансформатора соединен с маховиком (который, следовательно, вращается с той же скоростью, что и коленчатый корпус представляет собой турбину, жидкостный центробежный насос (или рабочее колесо) и статор. Центробежный насос эффективно нагнетает трансмиссионную жидкость в ребра турбины, которая, в свою очередь, вращается и передает крутящий момент на трансмиссию. Статор выступает в качестве барьера для отбрасывания жидкости обратно в турбину, а не обратно в насос, что значительно повышает эффективность системы.

На этом разрезе показаны лопасти центробежного насоса вместе с блокировочной муфтой, зажатой посередине и закрывающей вид на турбину

. Таким образом, на холостом ходу скорость подачи жидкости в турбину очень низкая, что означает очень небольшой крутящий момент. идет от двигателя к трансмиссии. Затем, когда коленчатый вал вращается быстрее с большим дросселем и, в свою очередь, вращает маховик, больше жидкости движется с большей скоростью от насоса в турбину.

После этого турбина вращается быстрее, что позволяет передавать больше крутящего момента на трансмиссию. К сожалению, передача энергии от насоса к турбине никогда не может быть эффективной на 100% — в этой системе происходят дополнительные потери энергии, которые усиливаются, когда крутящий момент двигателя также передается через коробку передач и из дифференциала.

Эта небольшая потеря энергии между насосом и турбиной означает, что турбина всегда вращается немного медленнее, чем насос, что является основной причиной того, что автоматические двигатели в целом имеют более низкий рейтинг эффективности использования топлива, чем их ручные аналоги. К счастью, недавно были разработаны преобразователи крутящего момента, которые содержат блокировочную муфту, которая на определенной скорости блокирует турбину и насос вместе, чтобы устранить падение энергии.

Компоненты гидротрансформатора, включая блокировочную муфту

Итак, хотя автоматическая коробка передач может показаться простой из-за руля, технология, содержащаяся в трансмиссионном туннеле, на самом деле довольно сложна, но чрезвычайно эффективна.

Технологии, лежащие в основе системы гидротрансформатора, действительно впечатляют и, безусловно, заслуживают большого уважения, поскольку они способны подключать и модулировать привод от двигателя к колесам таким плавным образом, что большинство водителей, вероятно, воспринимают его полностью как предоставленный.

В наши дни подавляющее большинство трансмиссий полностью автоматические, дни простого сцепления с педальным приводом кажутся редкими и далекими, что делает гидротрансформатор одним из самых важных компонентов большинства выпускаемых сегодня автомобилей.

Блог AAMCO | Что такое гидротрансформатор [и как он работает]?

Вы когда-нибудь замечали, что ваша машина может прожить не неделю на одном баке бензина, а едва продержаться два дня? Ваша машина когда-нибудь ломалась и могла ехать куда угодно, несмотря на то, что двигатель, казалось бы, работал нормально? Во время любой из этих проблем ваш механик когда-либо поднимал гидротрансформатор?

Гидротрансформатор — это то, что приводит в движение автоматическую коробку передач легковых и грузовых автомобилей. И хотя они являются неотъемлемой частью автомобиля с автоматической коробкой передач, многие люди не понимают, как они работают. Читайте дальше, чтобы узнать, что такое гидротрансформатор и как он заставляет вас катиться по дороге.

Что такое крутящий момент

Прежде чем мы перейдем к идее гидротрансформатора, давайте кратко рассмотрим, что такое крутящий момент. Проще говоря, крутящий момент — это потенциальная энергия, которую вы создаете, когда что-то скручиваете. Заводные игрушки, с которыми вы играли в детстве, и автомобили, которые катятся вперед после того, как вы их тянете назад, работают за счет крутящего момента.

В автомобилях вращение коленчатого вала двигателя создает крутящий момент. Это то, что позволяет вам разогнать свой автомобиль. Чем больше крутящий момент выдает ваш двигатель, тем быстрее он едет.

Значение гидротрансформатора

Преобразователь крутящего момента передает крутящий момент от двигателя на вращающуюся ведомую нагрузку. В автомобиле с автоматической коробкой передач преобразователь крутящего момента соединяет источник питания с нагрузкой.

Анатомия

Преобразователи крутящего момента

состоят из пяти основных компонентов: крыльчатки, турбины, статора, муфты и жидкости. Статор — это то, что делает преобразователь крутящего момента преобразователем крутящего момента; без статора это просто гидромуфта.

Крыльчатка представляет собой деталь с наклонными лопастями, которая чем-то напоминает вентилятор. Эта часть вращается механически двигателем. При вращении крыльчатка проталкивает трансмиссионную жидкость через свои лопасти; чем быстрее он движется, тем быстрее движется жидкость.

Когда жидкость выходит из крыльчатки, она движется в турбину, почти идентичную пластинчатую деталь, которая находится напротив крыльчатки. Жидкость, попадая на наклонные лопасти турбины, заставляет турбину вращаться, что приводит к вращению трансмиссионного вала и насоса в вашем автомобиле. Жидкость перенаправляется через центр турбины, где снова попадает на рабочее колесо.

Здесь вступает в действие статор; статор находится в центре гидротрансформатора. Это еще одна серия лопастей вентиляторного типа, которые расположены под таким углом, что, когда трансмиссионная жидкость течет в них, она снова меняет направление. Статор удерживает трансмиссионную жидкость, которая вращается в направлении, противоположном двигателю, от попадания в корпус гидротрансформатора и его замедления.

Гидротрансформатор также имеет корпус, который крепится к двигателю вместе с крыльчаткой. В большинстве гидротрансформаторов также используется муфта блокировки, которая блокирует крыльчатку и турбину вместе на высоких скоростях, чтобы повысить эффективность использования топлива автомобилем.

Фазы

Гидротрансформатор работает в три этапа: остановка, ускорение и сцепление.

Во время остановки двигатель продолжает вращаться, как и крыльчатка. Но турбина не может крутиться, поэтому машина не едет. Вот что происходит, когда двигатель вашего автомобиля работает, коробка передач включена, а вы нажимаете на тормоз, чтобы машина не двигалась.

Ускорение — это когда в игру вступает сила умножения крутящего момента. По мере увеличения оборотов двигателя крыльчатка начинает двигаться быстрее, что заставляет турбину двигаться быстрее. Но в этот момент крыльчатка все еще движется быстрее, чем турбина.

Сцепление — это то, что происходит, когда вы едете на высокой скорости. На этом этапе скорости вращения крыльчатки и турбины почти идентичны, и именно в этот момент некоторые модели блокируют их вместе с помощью фрикционной муфты для повышения эффективности. Статор на самом деле в основном остается вне этого процесса, поскольку при достаточно высоких скоростях жидкость будет двигаться таким образом, что не будет риска удара о корпус преобразователя.

Эффективность

Одна из важнейших задач статора — сделать гидротрансформатор более эффективным. Перенаправляя жидкость, выходящую из турбины, статор может собирать эту кинетическую энергию и возвращать ее в цикл. Это позволяет преобразователям крутящего момента многократно увеличивать крутящий момент для большего ускорения.

Но преобразователи крутящего момента не могут быть эффективными на 100 процентов, пока не произойдет блокировка; в процессе участвуют трение и некоторая потеря кинетической энергии. Преобразователи крутящего момента наиболее эффективны на очень низких скоростях. Хотя такие компании, как Buick, экспериментировали с добавлением дополнительных турбин к своим муфтам крутящего момента, эти модели никогда не были такими эффективными, как традиционные модели, состоящие из трех частей, и их производство было прекращено.

Общие проблемы

Существует несколько распространенных причин поломки гидротрансформатора, некоторые из которых могут быть опасными. Постоянные высокие уровни проскальзывания в гидротрансформаторе могут вызвать перегрев, что может привести к повреждению эластомерных уплотнений, удерживающих трансмиссионную жидкость в гидротрансформаторе. Жидкость начнет вытекать, а когда в системе закончится жидкость, она может вообще перестать функционировать.

Муфта статора также может заклинить или сломаться. Во время заклинивания внутренние и внешние элементы сцепления могут быть заблокированы навсегда, что приведет к значительному снижению эффективности использования топлива.

Back to top