Содержание
Двигатель внутреннего сгорания, ДВС – устройство, работа
В настоящее время двигатель внутреннего сгорания является основным видом автомобильного двигателя. Двигателем внутреннего сгорания (сокращенное наименование – ДВС) называется тепловая машина, преобразующая химическую энергию топлива в механическую работу.
Различают следующие основные типы двигателей внутреннего сгорания: поршневой, роторно-поршневой и газотурбинный. Из представленных типов двигателей самым распространенным является поршневой ДВС, поэтому устройство и принцип работы рассмотрены на его примере.
Достоинствами поршневого двигателя внутреннего сгорания, обеспечившими его широкое применение, являются: автономность, универсальность (сочетание с различными потребителями), невысокая стоимость, компактность, малая масса, возможность быстрого запуска, многотопливность.
Вместе с тем, двигатели внутреннего сгорания имеют ряд существенных недостатков, к которым относятся: высокий уровень шума, большая частота вращения коленчатого вала, токсичность отработавших газов, невысокий ресурс, низкий коэффициент полезного действия.
В зависимости от вида применяемого топлива различают бензиновые и дизельные двигатели. Альтернативными видами топлива, используемыми в двигателях внутреннего сгорания, являются природный газ, спиртовые топлива – метанол и этанол, водород.
Водородный двигатель с точки зрения экологии является перспективным, т.к. не создает вредных выбросов. Наряду с ДВС водород используется для создания электрической энергии в топливных элементах автомобилей.
Устройство двигателя внутреннего сгорания
Поршневой двигатель внутреннего сгорания включает корпус, два механизма (кривошипно-шатунный и газораспределительный) и ряд систем (впускную, топливную, зажигания, смазки, охлаждения, выпускную и систему управления).
Корпус двигателя объединяет блок цилиндров и головку блока цилиндров. Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Газораспределительный механизм обеспечивает своевременную подачу в цилиндры воздуха или топливно-воздушной смеси и выпуск отработавших газов.
Впускная система предназначена для подачи в двигатель воздуха. Топливная система питает двигатель топливом. Совместная работа данных систем обеспечивает образование топливно-воздушной смеси. Основу топливной системы составляет система впрыска.
Система зажигания осуществляет принудительное воспламенение топливно-воздушной смеси в бензиновых двигателях. В дизельных двигателях происходит самовоспламенение смеси.
Система смазки выполняет функцию снижения трения между сопряженными деталями двигателя. Охлаждение деталей двигателя, нагреваемых в результате работы, обеспечивает система охлаждения. Важные функции отвода отработавших газов от цилиндров двигателя, снижения их шума и токсичности предписаны выпускной системе.
Система управления двигателем обеспечивает электронное управление работой систем двигателя внутреннего сгорания.
Работа двигателя внутреннего сгорания
Принцип работы ДВС основан на эффекте теплового расширения газов, возникающего при сгорании топливно-воздушной смеси и обеспечивающего перемещение поршня в цилиндре.
Работа поршневого ДВС осуществляется циклически. Каждый рабочий цикл происходит за два оборота коленчатого вала и включает четыре такта (четырехтактный двигатель): впуск, сжатие, рабочий ход и выпуск.
Во время тактов впуск и рабочий ход происходит движение поршня вниз, а тактов сжатие и выпуск – вверх. Рабочие циклы в каждом из цилиндров двигателя не совпадают по фазе, чем достигается равномерность работы ДВС. В некоторых конструкциях двигателей внутреннего сгорания рабочий цикл реализуется за два такта – сжатие и рабочий ход (двухтактный двигатель).
На такте впуск впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределенный впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При открытии впускных клапанов газораспределительного механизма воздух или топливно-воздушная смесь за счет разряжения, возникающего при движении поршня вниз, подается в камеру сгорания.
На такте сжатия впускные клапаны закрываются, и топливно-воздушная смесь сжимается в цилиндрах двигателя.
Такт рабочий ход сопровождается воспламенением топливно-воздушной смеси (принудительное или самовоспламенение). В результате возгорания образуется большое количество газов, которые давят на поршень и заставляют его двигаться вниз. Движение поршня через кривошипно-шатунный механизм преобразуется во вращательное движение коленчатого вала, которое затем используется для движения автомобиля.
При такте выпуск открываются выпускные клапаны газораспределительного механизма, и отработавшие газы удаляются из цилиндров в выпускную систему, где производится их очистка, охлаждение и снижение шума. Далее газы поступают в атмосферу.
Рассмотренный принцип работы двигателя внутреннего сгорания позволяет понять, почему ДВС имеет небольшой коэффициент полезного действия — порядка 40%. В конкретный момент времени как правило только в одном цилиндре совершается полезная работа, в остальных – обеспечивающие такты: впуск, сжатие, выпуск.
устройство, принцип работы и классификация
Вокруг активно говорят про электокары, но двигатель внутреннего сгорания (ДВС) никуда не исчезает. Почему? О принципе работы и конструкции двигателей внутреннего сгорания, плюсах и минусах ДВС – в нашем материале.
Что такое ДВС?
ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.
ДВС работает благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.
Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).
Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).
Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.
- Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго.
Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
- Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС.
Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
- Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.
Устройство двигателя внутреннего сгорания
При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:
- Блок цилиндров. Блоки цилиндров – цельнолитые детали.
Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
- Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).
- Газораспределительный механизм (ГРМ).
Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.
Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).
Замену ГРМ проводят через каждые 60000 — 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.
Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.
- Система питания. В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
- Система смазки. Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
- Система охлаждения. Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.
- Выхлопная система. Служит для отвода от мотора продуктов сгорания.
Включает:
— выпускной коллектор (приёмник отработанных газов),
— газоотвод (приёмная труба, в народе- «штаны»),
— резонатор для разделения выхлопных газов и уменьшения их скорости,
— катализатор (очиститель) выхлопных газов,
— глушитель (корректирует направление потока газов, гасит шум). - Система зажигания. Входит в состав только бензодвигателей. Неотъемлемые компоненты системы – свечи и катушки зажигания. Самый популярный вариант конструкции – «катушка на свече». У двигателей внутреннего сгорания старого поколения также были высоковольтные провода и трамблер (распределитель). Но современные производители моторов, прежде всего, благодаря появлению конструкции «катушка на свече», могут себе позволить не включать в систему эти компоненты.
- Система впрыска. Позволяет организовать дозированную подачу топлива.
В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.
Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС.
Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.
А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.
Принцип работы двигателя
Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива — тепловой энергии, освобождённой от сгорания топлива, в механическую.
При этом сам процесс преобразования энергии может отличаться.
Самый распространённый вариант такой:
- Поршень в цилиндре движется вниз.
- Открывается впускной клапан.
- В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
- Поршень поднимается.
- Выпускной клапан закрывается.
- Поршень сжимает воздух.
- Поршень доходит до верхней мертвой точки.
- Срабатывает свеча зажигания.
- Открывается выпускной клапан.
- Поршень начинает двигаться вверх.
- Выхлопные газы выдавливаются в выпускной коллектор.
Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.
При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE.
Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.
Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.
Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):
- Такт выпуска.
- Такт сжатия воздуха.
- Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
- Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха
4 такта образуют рабочий цикл.
При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.
Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?
- Поршень двигается снизу-вверх.
- В камеру сгорания поступает топливо.
- Поршень сжимает топливно-воздушную смесь.
- Возникает компрессия. (давление).
- Возникает искра.
- Топливо загорается.
- Поршень продвигается вниз.
- Открывается доступ к выпускному коллектору.
- Из цилиндра выходят продукты сгорания.
То есть первый такт в этом процессе – одновременный впуск и сжатие, второй — опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.
Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.
Важно! Кроме количества тактов есть отличия в механизме газообмена.
В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.
У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).
Классификация двигателей
Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.
Классификация двигателей в зависимости от рабочего цикла
В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов:
- Ориентированные на цикл Отто. Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
- Ориентированные на цикл Дизеля. Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела.
Такой цикл лежит в основе работы дизельных двигателей.
Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними.
А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска. Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов.
И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.
Классификация двигателей в зависимости от конструкции
- Поршневой.
Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
- Роторные (двигатели Ванкеля). Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.
Классификация двигателей по принципу подачи воздуха
Подача воздуха также разделяет ДВС на два класса:
- Атмосферные.
При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
- Турбокомпрессорные. Организована дополнительная подкачка воздуха в камеру сгорания.
Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.
Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.
Преимущества ДВС
- Удобство. Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
- Высокая скорость заправки двигателя топливом.
- Длительный ресурс работы. Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе ~4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.
- Компактность. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.
Недостатки ДВС
При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.
Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).
Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.
Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.
Двигатель внутреннего сгорания | Encyclopedia.com
Принципы
Структура двигателя внутреннего сгорания
Ресурсы
Двигатель внутреннего сгорания — это любой тепловой двигатель, который получает механическую энергию путем сжигания химической энергии (топлива) в замкнутом пространстве (камере сгорания). Изобретение и разработка двигателя внутреннего сгорания в девятнадцатом веке оказали глубокое влияние на человеческую жизнь. Двигатель внутреннего сгорания представляет собой относительно небольшой и легкий источник энергии, который он производит. Использование этой мощности сделало возможным создание практичных машин, начиная от самой маленькой модели самолета и заканчивая самым большим грузовиком. Электричество часто вырабатывается двигателями внутреннего сгорания. Газонокосилки, бензопилы и генераторы также могут использовать двигатели внутреннего сгорания. Важным устройством на основе двигателя внутреннего сгорания является автомобиль.
Однако во всех двигателях внутреннего сгорания основные принципы остаются одинаковыми. Топливо сжигается внутри камеры, обычно цилиндра. Энергия, создаваемая сгоранием или сжиганием топлива, используется для движения устройства, обычно поршня, через камеру. Прикрепив поршень к валу вне камеры, движение и сила поршня могут быть преобразованы в другие движения.
Горение – это сжигание топлива. Когда топливо сгорает, оно выделяет энергию в виде тепла, которое вызывает расширение газа. Это расширение может быть быстрым и мощным. Силу и движение расширения газа можно использовать для толкания объекта. Встряхнуть банку газировки — это способ увидеть, что происходит, когда газ расширяется. Встряхивание вызывает реакцию углекислого газа — шипение газировки, которое, когда банка открыта, выталкивает газированную жидкость из банки и через отверстие.
Однако простое сжигание топлива не очень полезно для создания движения. Зажигание спички, например, сжигает кислород в окружающем ее воздухе, но поднявшееся тепло рассеивается во всех направлениях и, следовательно, дает очень слабый толчок. Чтобы расширение газа, вызванное горением, было полезным, оно должно происходить в ограниченном пространстве. Это пространство может направлять или направлять движение расширения; он также может увеличить свою силу.
Цилиндр представляет собой полезное пространство для направления силы сгорания. Круглая внутренняя часть цилиндра позволяет газам легко течь, а также увеличивает силу движения газов. Круговое движение газов также может способствовать втягиванию воздуха и паров в цилиндр или их обратному вытеснению. Ракета — это простой пример использования внутреннего сгорания в цилиндре. В ракете нижний конец цилиндра открыт. Когда топливо внутри цилиндра взрывается, газы быстро расширяются к отверстию, создавая толчок, необходимый для того, чтобы оттолкнуть ракету от земли.
Эта сила может быть еще более полезной. Его можно заставить толкать объект внутри цилиндра, заставляя его двигаться через цилиндр. Пуля в пистолете — пример такого объекта. Когда горючее, в данном случае порох, взрывается, возникающая сила проталкивает пулю через цилиндр или ствол пистолета. Это движение полезно для некоторых вещей; однако его можно сделать еще более полезным. Замыкая концы цилиндра, можно управлять движением предмета, заставляя его двигаться вверх и вниз внутри цилиндра. Затем это движение, называемое возвратно-поступательным движением, можно использовать для выполнения других задач.
Двигатели внутреннего сгорания обычно используют возвратно-поступательное движение, хотя газотурбинные, ракетные и роторные двигатели являются примерами других типов двигателей внутреннего сгорания. Однако поршневые двигатели внутреннего сгорания являются наиболее распространенными и используются в большинстве автомобилей, грузовиков, мотоциклов и других машин с приводом от двигателя.
Основными компонентами двигателя внутреннего сгорания являются цилиндр, поршень и коленчатый вал. К ним присоединены другие компоненты, которые повышают эффективность возвратно-поступательного движения и преобразуют это движение во вращательное движение коленчатого вала. Топливо должно быть подано в цилиндр, а выхлоп, образующийся при взрыве топлива, должен быть обеспечен выходом из цилиндра. Также должно быть произведено воспламенение или зажигание топлива. В поршневом двигателе внутреннего сгорания это делается одним из двух способов.
Дизельные двигатели также называют двигателями с компрессией, потому что они используют сжатие для самовоспламенения топлива. Воздух сжимается, то есть выталкивается в небольшое пространство в цилиндре. Сжатие заставляет воздух нагреваться; когда топливо попадает в горячий сжатый воздух, топливо взрывается. Давление, создаваемое сжатием, требует, чтобы дизельные двигатели были более прочными и, следовательно, более тяжелыми, чем бензиновые двигатели, но они более мощные и требуют менее дорогого топлива. Дизельные двигатели обычно используются в крупных транспортных средствах, таких как грузовики и тяжелая строительная техника, или в стационарных машинах, но в 2000-х годах они находят свое применение и в автомобилях по мере совершенствования технологий и поиска потребности в менее дорогом топливе.
Бензиновые двигатели также называют двигателями с искровым зажиганием, потому что они зависят от электрической искры, вызывающей взрыв топлива в цилиндре. Легче дизельного двигателя, газовый двигатель требует топлива более высокой степени очистки (таким образом, более дорогого).
В двигателе цилиндр размещается внутри блока цилиндров, достаточно прочного, чтобы сдерживать взрывы топлива. Внутри цилиндра находится поршень, который точно подходит к цилиндру. Поршни обычно имеют куполообразную форму сверху и полые снизу. Поршень прикреплен через шатун, установленный в полом дне, к коленчатому валу, который преобразует движение поршня вверх и вниз в круговое движение. Это возможно, потому что коленчатый вал не прямой, а имеет изогнутую часть (по одной на каждый цилиндр), называемую кривошипом.
Подобная конструкция приводит в движение велосипед. При езде на велосипеде верхняя часть ноги человека сродни поршню. От колена до ступни нога действует как шатун, который крепится к коленчатому валу кривошипом или педальным узлом велосипеда. Когда сила воздействует на верхнюю часть ноги, эти части приходят в движение. Возвратно-поступательное движение голени преобразуется во вращательное или вращательное движение коленчатого вала.
Обратите внимание, что при езде на велосипеде нога совершает два движения, одно вниз и одно вверх, чтобы завершить цикл вращения педалей. Это так называемые инсульты. Поскольку двигателю также необходимо всасывать топливо и снова выбрасывать топливо, большинство двигателей используют четыре такта для каждого цикла, который совершает поршень. Первый такт начинается, когда поршень находится в верхней части цилиндра, называемой головкой цилиндра. Когда он вытягивается, он создает вакуум в цилиндре. Это связано с тем, что поршень и цилиндр образуют герметичное пространство. Когда поршень опускается, пространство между ним и головкой цилиндра увеличивается, а количество воздуха остается прежним. Этот вакуум помогает подавать топливо в цилиндр, подобно действию легких. Поэтому этот такт называется тактом впуска.
Следующий такт, называемый тактом сжатия, происходит, когда поршень снова проталкивается вверх внутри цилиндра, сжимая или сжимая топливо во все более и более плотное пространство. Сжатие топлива к верхней части цилиндра вызывает нагрев воздуха, который также нагревает топливо. Сжатие топлива также облегчает его воспламенение и делает результирующий взрыв более мощным. Для расширяющихся газов взрыва меньше места, а это значит, что они будут сильнее давить на поршень, чтобы вырваться.
В верхней части такта сжатия топливо воспламеняется, вызывая взрыв, толкающий поршень вниз. Этот ход называется рабочим ходом, и это ход, при котором вращается коленчатый вал. Последний такт, такт выпуска, снова поднимает поршень, который выбрасывает выхлопные газы, образовавшиеся в результате взрыва, из цилиндра через выпускной клапан. Эти четыре удара также обычно называют «сосать, сжимать, хлопать и дуть». Двухтактные двигатели исключают такты впуска и выпуска, совмещая их с тактами сжатия и рабочего хода. Это позволяет использовать более легкий и мощный двигатель относительно размера двигателя, требуя менее сложной конструкции. Однако двухтактный цикл является менее эффективным методом сжигания топлива. Остаток несгоревшего топлива остается внутри цилиндра, что препятствует сгоранию. Двухтактный двигатель также воспламеняет свое топливо в два раза чаще, чем четырехтактный двигатель, что увеличивает износ деталей двигателя. Поэтому двухтактные двигатели используются в основном там, где требуется двигатель меньшего размера, например, на некоторых мотоциклах и с небольшими инструментами.
Для горения требуется присутствие кислорода, поэтому для воспламенения топливо необходимо смешать с воздухом. Дизельные двигатели подают топливо непосредственно для реакции с горячим воздухом внутри цилиндра. Однако двигатели с искровым зажиганием сначала смешивают топливо с воздухом вне цилиндра. Это делается либо через карбюратор, либо через систему впрыска топлива. Оба устройства испаряют бензин и смешивают его с воздухом в соотношении около 14 частей воздуха на каждую часть бензина. Дроссельная заслонка в карбюраторе регулирует количество воздуха, смешиваемого с топливом; на другом конце дроссельная заслонка контролирует, сколько топливной смеси будет отправлено в цилиндр.
Вакуум, создаваемый при движении поршня вниз через цилиндр, втягивает топливо в цилиндр. Поршень должен точно входить в цилиндр, чтобы создать этот вакуум. Резиновые компрессионные кольца, вставленные в канавки поршня, обеспечивают герметичность. Бензин поступает в цилиндр через впускной клапан. Затем бензин сжимается в цилиндре следующим движением поршня, ожидая воспламенения.
Двигатель внутреннего сгорания может иметь от одного до двенадцати или более цилиндров, все они действуют вместе в точно рассчитанной последовательности для привода коленчатого вала. Велосипедиста на велосипеде можно описать как двухцилиндровый двигатель, каждая нога которого помогает другой в создании мощности для движения велосипеда и в подтягивании друг друга через цикл гребков. Автомобили обычно имеют четырех-, шести- или восьмицилиндровые двигатели, хотя также доступны двухцилиндровые и двенадцатицилиндровые двигатели. Количество цилиндров влияет на объем двигателя; то есть общий объем топлива, прошедшего через цилиндры. Больший рабочий объем позволяет сжигать больше топлива, создавая больше энергии для привода коленчатого вала.
Искра подается через свечу зажигания, расположенную в головке блока цилиндров. Искра вызывает взрыв бензина. Свечи зажигания содержат два металлических конца, называемых электродами, которые входят в цилиндр. Каждый цилиндр имеет свою свечу зажигания. Когда электрический ток проходит через свечу зажигания, ток переходит от одного электрода к другому, создавая искру.
Этот электрический ток возникает в батарее. Однако ток батареи недостаточно силен, чтобы создать искру, необходимую для воспламенения топлива. Поэтому он проходит через трансформатор, который значительно увеличивает его напряжение или силу. Затем ток может быть направлен на свечу зажигания.
Однако в случае двигателя с двумя или более цилиндрами искра должна подаваться на каждый цилиндр по очереди. Последовательность запуска цилиндров должна быть рассчитана таким образом, чтобы, пока один поршень находился в такте рабочего хода, другой поршень находился в такте сжатия. Таким образом, усилие, действующее на коленчатый вал, может поддерживаться постоянным, что позволяет двигателю работать плавно. Количество цилиндров влияет на плавность работы двигателя; чем больше цилиндров, тем постояннее усилие на коленчатом валу и тем ровнее будет работать двигатель.
Момент зажигания цилиндров контролируется распределителем. Когда ток поступает в распределитель, он направляется к свечам зажигания по проводам, по одному на каждую свечу зажигания. Механические распределители, по сути, представляют собой вращающиеся роторы, которые по очереди подают ток в каждый вывод. Электронные системы зажигания используют компьютерные компоненты для выполнения этой задачи.
В самых маленьких двигателях используется аккумулятор, который при разрядке просто заменяется. Однако в большинстве двигателей предусмотрена возможность подзарядки аккумулятора с использованием движения вращающегося коленчатого вала для выработки тока обратно в аккумулятор.
Поршень или поршни давят и тянут вверх коленчатый вал, заставляя его вращаться. Такой переход от возвратно-поступательного движения поршня к вращательному движению коленчатого вала возможен потому, что для каждого поршня коленчатый вал имеет кривошип, т. е. участок, поставленный под углом к возвратно-поступательному движению положения. На коленчатом валу с двумя или более цилиндрами эти кривошипы также расположены под углом друг к другу, что позволяет им действовать согласованно. Когда один поршень толкает кривошип вниз, второй кривошип толкает поршень вверх.
Большое металлическое колесообразное устройство, называемое маховиком, прикреплено к одному концу коленчатого вала. Его функция заключается в поддержании постоянного движения коленчатого вала. Это необходимо для четырехтактного двигателя, потому что поршни выполняют рабочий ход только один раз за каждые четыре такта. Маховик обеспечивает импульс для перемещения коленчатого вала до тех пор, пока он не получит следующий рабочий ход. Он делает это, используя инерцию, то есть принцип, согласно которому движущийся объект стремится остаться в движении. Как только маховик приводится в движение вращением коленчатого вала, он будет продолжать двигаться и вращать коленчатый вал. Однако чем больше цилиндров у двигателя, тем меньше ему нужно будет полагаться на движение маховика, потому что большее количество поршней будет поддерживать вращение коленчатого вала.
Когда коленчатый вал вращается, его движение можно приспособить для самых разных целей, прикрепив шестерни, ремни или другие устройства. Колеса можно заставить вращаться, пропеллеры можно заставить вращаться, а двигатель можно использовать просто для выработки электроэнергии. К коленчатому валу также прикреплен дополнительный вал, называемый распределительным валом, который открывает и закрывает впускные и выпускные клапаны каждого цилиндра в соответствии с четырехтактным циклом поршней. Кулачок — это колесо, имеющее форму яйца, с длинным и коротким концами. К распределительному валу крепятся несколько кулачков, в зависимости от количества цилиндров двигателя. Поверх кулачков установлены толкатели, по два на каждый цилиндр, которые открывают и закрывают клапаны. Когда распределительный вал вращается, короткие концы позволяют толкателям отходить от клапана, заставляя клапан открываться; длинные концы кулачков толкают штоки обратно к клапану, снова закрывая его. В некоторых двигателях, называемых двигателями с верхним расположением распредвала, распределительный вал опирается непосредственно на клапаны, что устраняет необходимость в узле толкателя. Двухтактные двигатели, поскольку впуск и выпуск достигаются за счет движения поршня по каналам или отверстиям в стенке цилиндра, не требуют распределительного вала.
Еще два компонента могут управляться коленчатым валом: системы охлаждения и смазки. Взрыв топлива создает сильное тепло, которое может быстро привести к перегреву двигателя и даже плавлению, если оно не рассеивается или не отводится должным образом. Охлаждение достигается двумя способами: через систему охлаждения и, в меньшей степени, через систему смазки.
Существует два типа систем охлаждения. В системе жидкостного охлаждения используется вода, которую часто смешивают с антифризом для предотвращения замерзания. Антифриз снижает температуру замерзания, а также повышает температуру кипения воды. Вода, которая очень хорошо собирает тепло, прокачивается вокруг двигателя через ряд проходов, содержащихся в рубашке. Затем вода циркулирует в радиаторе, который содержит множество трубок и тонких металлических пластин, увеличивающих площадь поверхности воды. Вентилятор, прикрепленный к радиатору, пропускает воздух по трубкам, еще больше снижая температуру воды. И насос, и вентилятор приводятся в действие движением коленчатого вала.
В системах с воздушным охлаждением для отвода тепла от двигателя используется воздух, а не вода. Большинство мотоциклов, многие небольшие самолеты и другие машины, при движении которых создается сильный ветер, используют системы с воздушным охлаждением. В них металлические ребра прикреплены к внешней стороне цилиндров, создавая большую площадь поверхности; когда воздух проходит над ребрами, тепло, отдаваемое металлическим ребрам от цилиндра, уносится воздухом.
Смазка двигателя жизненно важна для его работы. Движение деталей друг относительно друга вызывает сильное трение, которое вызывает нагрев и износ деталей. Смазочные материалы, такие как масло, создают тонкий слой между движущимися частями. Прохождение масла
КЛЮЧЕВЫЕ ТЕРМИНЫ
Инерция —Склонность движущегося объекта оставаться в движении и тенденция покоящегося объекта оставаться в состоянии покоя.
Возвратно-поступательное движение — Движение, при котором объект перемещается вверх и вниз или вперед и назад.
Вращательное движение — Движение, при котором объект вращается.
через двигатель также помогает отводить часть выделяемого тепла.
Коленчатый вал в нижней части двигателя упирается в картер. Он может быть заполнен маслом, или отдельный масляный поддон под картером служит резервуаром для масла. Насос подает масло через проходы и отверстия к различным частям двигателя. Поршень также оснащен резиновыми маслосъемными кольцами, в дополнение к компрессионным кольцам, для подачи масла вверх и вниз внутри цилиндра. Двухтактные двигатели используют масло как часть топливной смеси, обеспечивая смазку двигателя и устраняя необходимость в отдельной системе.
КНИГИ
Кроул, Дэниел А. Понимание взрывов . Нью-Йорк: Центр безопасности химических процессов, Американский институт инженеров-химиков, 2003.
Ниссен, Уолтер, Р. Процессы сжигания и сжигания . Нью-Йорк: Марсель Деккер, 2002.
Полицер, Питер и Джейн С. Мюррей, ред. Энергетические материалы . Амстердам, Нидерланды и Бостон, Массачусетс: Elsevier, 2003.
M.L. Cohen
49 CFR § 173.220 — Двигатели внутреннего сгорания, транспортные средства, машины, содержащие двигатели внутреннего сгорания, оборудование или машины с батарейным питанием, оборудование или машины с питанием от топливных элементов. . | Электронный свод федеральных правил (e-CFR) | Закон США
§ 173.220 Двигатели внутреннего сгорания, транспортные средства, машины, содержащие двигатели внутреннего сгорания, оборудование или машины с батарейным питанием, оборудование или машины с питанием от топливных элементов.
(а) Применимость. Двигатель внутреннего сгорания, самоходное транспортное средство, оборудование, содержащее двигатель внутреннего сгорания, которые не отгружаются в соответствии с пунктом ООН 3363 «Опасные грузы в машинах или устройствах», транспортное средство или оборудование, работающие от аккумуляторной батареи, или транспортное средство, работающее на топливных элементах, или оборудование или любое их сочетание подпадают под действие требований настоящей главы при перевозке в качестве груза на транспортном средстве, судне или самолете, если:
(1) Транспортное средство, двигатель или оборудование содержат жидкое или газообразное топливо. Транспортные средства, двигатели или механизмы могут считаться не содержащими топлива, если компоненты двигателя и любые топливные магистрали полностью слиты, достаточно очищены от остатков и паров для устранения любой потенциальной опасности, а двигатель, удерживаемый в любом положении, не будет выпускать любое жидкое топливо;
(2) Топливный бак содержит жидкое или газообразное топливо. Топливный бак может считаться не содержащим топлива, если топливный бак и топливопроводы полностью опорожнены, в достаточной степени очищены от остатков и паров для устранения любой потенциальной опасности;
(3) Оснащен жидкостным аккумулятором (включая непроливаемый аккумулятор), натриевым аккумулятором или литиевым аккумулятором; или
(4) За исключением случаев, предусмотренных в параграфе (f)(1) настоящего раздела, он содержит другие опасные материалы, подпадающие под действие требований настоящего подраздела.
(б) Требования. Если иное не оговорено в параграфе (b)(4) настоящего раздела, к транспортным средствам, двигателям и оборудованию предъявляются следующие требования:
(1) Легковоспламеняющееся жидкое топливо и топливо, загрязняющее морскую среду.
(i) Топливный бак, содержащий легковоспламеняющееся жидкое топливо, должен быть слит и надежно закрыт, за исключением того, что до 500 мл (17 унций) остаточного топлива может оставаться в баке, компонентах двигателя или топливопроводах при условии, что они надежно закрыты для предотвращения утечки топлива во время транспортировки. Самоходные транспортные средства, заправленные дизельным топливом, освобождаются от требования о сливе топливных баков при условии, что внутри бака оставлено достаточно свободного места для расширения топлива без утечек, а пробки баков надежно закрыты.
(ii) Двигатели и механизмы, работающие на жидком топливе, отвечающие определению загрязнителя морской среды (см. § 171.8 настоящего подраздела) и не отвечающие классификационным критериям любого другого класса или категории, перевозимые судном, подпадают под действие требований § 176.906 этот подраздел.
(2) Легковоспламеняющееся сжиженное или сжатое газовое топливо.
(i) При перевозке автомобильным, железнодорожным или морским транспортом топливные баки и топливные системы, содержащие легковоспламеняющееся сжиженное или сжатое газовое топливо, должны быть надежно закрыты. Для перевозки судном требования §§ 176.78(k), 176.905 и 176.906 настоящего подраздела.
(ii) Для перевозки воздушным транспортом:
(A) Транспортные средства, машины, оборудование или баллоны, работающие на легковоспламеняющемся газе, должны быть полностью освобождены от горючего газа. Линии от сосудов к газовым регуляторам и сами газовые регуляторы также должны быть очищены от всех следов горючего газа. Для обеспечения выполнения этих условий газовые запорные краны должны оставаться открытыми, а соединения линий с газовыми регуляторами должны оставаться отсоединенными при передаче автомобиля оператору. Запорная арматура должна быть закрыта, а линии пересоединены на газовых регуляторах перед погрузкой транспортного средства на борт воздушного судна; или альтернативно;
(B) Транспортные средства, машины или оборудование, работающие на легковоспламеняющемся газе, которые имеют баллоны (топливные баки), оборудованные клапанами с электроприводом, могут перевозиться при следующих условиях:
(1) Клапаны должны быть в закрытом положении, а в случае клапанов с электроприводом питание этих клапанов должно быть отключено;
(2) После закрытия клапанов транспортное средство, оборудование или механизмы должны эксплуатироваться до остановки из-за нехватки топлива перед погрузкой на борт воздушного судна;
(3) Ни в одной части закрытой системы давление не должно превышать 5% от максимально допустимого рабочего давления системы или 290 фунтов на кв. дюйм (2000 кПа), в зависимости от того, что меньше; и
(4) В системе не должно быть остатков сжиженного газа, включая топливный бак.
(C) Если транспортное средство приводится в движение двигателем внутреннего сгорания, работающим на легковоспламеняющейся жидкости и горючем газе, требования параграфов (b)(1) настоящего раздела также должны выполняться.
(3) Кузова грузовиков или прицепы на платформах — работающие на легковоспламеняющейся жидкости или газе. Кузова или прицепы с автоматическим отопительным или холодильным оборудованием типа ЛВЖ могут перевозиться с заправленными топливными баками и оборудованием в рабочем или нерабочем состоянии при использовании для перевозки других грузов и погрузке на платформы в составе совместного железнодорожного и автомобильного движения. , при условии, что оборудование и подача топлива соответствуют требованиям § 177.834(l) данного подраздела.
(4) Модальные исключения. Горючее жидкое топливо объемом более 500 мл (17 унций) может оставаться в топливном баке двигателей самоходных транспортных средств и механизмов только при следующих условиях:
(i) При транспортировке автомобильным или железнодорожным транспортом топливные баки должны быть надежно закрыты.
(ii) При перевозке судном отгрузка должна соответствовать § 176.905 настоящего подраздела для самоходных транспортных средств и § 176.906 настоящего подраздела для двигателей и машин.
(iii) Для перевозки воздушным транспортом, при перевозке на воздушном судне, сконструированном или модифицированном для перегонки транспортных средств, при соблюдении всех следующих условий:
(A) Разрешение на эксплуатацию этого типа было дано соответствующим органом правительства страны, в которой зарегистрировано воздушное судно;
(B) Каждое транспортное средство закреплено в вертикальном положении;
(C) Каждый топливный бак заполняется таким образом и только до такой степени, чтобы исключалась утечка топлива при погрузке, разгрузке и транспортировке; и
(D) Каждое помещение или отсек, в котором перевозится самоходное транспортное средство, должным образом вентилируется для предотвращения скопления паров топлива.
(c) Работает от батареи или устанавливается. Аккумуляторы должны быть надежно установлены, а мокрые аккумуляторы должны быть закреплены в вертикальном положении. Батареи должны быть защищены от опасного выделения тепла, коротких замыканий и повреждения клемм в соответствии с § 173.159(a) и утечки; или должны быть удалены и упакованы отдельно в соответствии с § 173.159. Транспортные средства, машины или оборудование с батарейным питанием, включая инвалидные коляски с батарейным питанием и средства передвижения, не подпадают под действие каких-либо других требований этой подглавы, за исключением § 173.21, при транспортировке по железной дороге, шоссе или судну. В тех случаях, когда возможно перемещение транспортного средства не в вертикальном положении, транспортное средство должно быть закреплено в прочной жесткой внешней упаковке. Транспортное средство должно быть закреплено с помощью средств, способных зафиксировать транспортное средство во внешней упаковке, чтобы предотвратить любое смещение во время перевозки, которое могло бы изменить ориентацию или привести к повреждению транспортного средства.
(d) Литиевые батареи. За исключением случаев, предусмотренных в § 172.102, специальное положение A101 этого подраздела, транспортные средства, двигатели и механизмы, работающие от литий-металлических батарей, которые перевозятся с установленными этими батареями, запрещены на борту пассажирских самолетов. Литиевые батареи, содержащиеся в транспортных средствах, двигателях или механическом оборудовании, должны быть надежно закреплены в держателе батареи транспортного средства, двигателя или механического оборудования и защищены таким образом, чтобы предотвратить повреждение и короткое замыкание (например, с помощью не- токопроводящие колпачки, полностью закрывающие клеммы). За исключением транспортных средств, двигателей или механизмов, перевозимых автомобильным, железнодорожным или морским транспортом с надежно установленными прототипами или малосерийными литиевыми батареями, каждая литиевая батарея должна относиться к типу, успешно прошедшему все испытания согласно Руководству ООН по испытаниям и критериям (IBR). , см. § 171.7 этого подраздела), как указано в § 173.185, если только это не одобрено заместителем администратора. В тех случаях, когда возможно перемещение транспортного средства не в вертикальном положении, транспортное средство должно быть закреплено в прочной жесткой внешней упаковке. Транспортное средство должно быть закреплено с помощью средств, способных зафиксировать транспортное средство во внешней упаковке, чтобы предотвратить любое смещение во время перевозки, которое могло бы изменить ориентацию или привести к повреждению транспортного средства. Если литиевая батарея снята с транспортного средства и упакована отдельно от транспортного средства в ту же наружную тару, упаковка должна быть отправлена как «UN 3481, Ионно-литиевые батареи, упакованные с оборудованием» или «UN 3091, Литий-металлические батареи, упакованные с оборудованием» и подготовленные в соответствии с требованиями, указанными в § 173.185.
e) Топливные элементы. Топливный элемент должен быть закреплен и защищен таким образом, чтобы предотвратить повреждение топливного элемента. Оборудование (кроме транспортных средств, двигателей или механического оборудования), такое как бытовые электронные устройства, содержащие топливные элементы (картриджи топливных элементов), должно описываться как «картриджи топливных элементов, содержащиеся в оборудовании» и перевозиться в соответствии с § 173.230. В тех случаях, когда возможно перемещение транспортного средства не в вертикальном положении, транспортное средство должно быть закреплено в прочной жесткой внешней упаковке. Транспортное средство должно быть закреплено с помощью средств, способных зафиксировать транспортное средство во внешней упаковке, чтобы предотвратить любое смещение во время перевозки, которое могло бы изменить ориентацию или привести к повреждению транспортного средства.
(f) Другие опасные материалы.
(1) Предметы, содержащие опасные материалы, такие как огнетушители, аккумуляторы сжатого газа, предохранительные устройства и другие опасные материалы, являющиеся неотъемлемыми компонентами автомобиля, двигателя или механического оборудования и необходимые для работы транспортного средства, двигателя или механического оборудования, а также для безопасности его оператора или пассажиров, должны быть надежно установлены в автомобиле, двигателе или механическом оборудовании. В остальном такие предметы не подпадают под действие требований настоящего подраздела. Оборудование (кроме транспортных средств, двигателей или механического оборудования), такое как бытовые электронные устройства, содержащие литиевые батареи, должно описываться как «литий-металлические батареи, содержащиеся в оборудовании» или «ионно-литиевые батареи, содержащиеся в оборудовании», в зависимости от обстоятельств, и перевозиться в в соответствии с § 173.185 и применимыми специальными положениями. Оборудование (кроме транспортных средств, двигателей или механического оборудования), такое как бытовые электронные устройства, содержащие топливные элементы (картриджи топливных элементов), должно описываться как «картриджи топливных элементов, содержащиеся в оборудовании» и перевозиться в соответствии с § 173.230.
(2) Другие опасные материалы должны быть упакованы и транспортированы в соответствии с требованиями настоящего подраздела.
(g) Дополнительные требования к двигателям внутреннего сгорания и транспортным средствам с определенным электронным оборудованием при перевозке воздушным или морским транспортом. Если двигатель внутреннего сгорания, не установленный на транспортном средстве или оборудовании, предлагается для перевозки воздушным или морским транспортом, все топливные, охлаждающие или гидравлические системы, оставшиеся в двигателе, должны быть слиты, насколько это практически возможно, и все отсоединенные жидкостные трубопроводы, которые ранее содержали жидкость должна быть закрыта герметичными крышками, которые надежно удерживаются. При предъявлении к перевозке воздушным транспортом транспортных средств, оснащенных противоугонными устройствами, установленными средствами радиосвязи или навигационными системами, такие устройства, оборудование или системы должны быть отключены.
(з) Исключения. За исключением случаев, предусмотренных в параграфе (f)(2) настоящего раздела, поставки, осуществляемые в соответствии с положениями настоящего раздела:
(1) Не подпадают под действие каких-либо иных требований настоящей подгруппы для перевозки автомобильным или железнодорожным транспортом;
(2) Не подпадают под действие подразделов D, E и F (маркировка, маркировка и табло соответственно) части 172 настоящего подраздела или § 172.