Идеальный газ чем можно пренебречь: Идеальный газ — определение, свойства, условия

Содержание

Идеальный газ — определение, свойства, условия

Покажем, как применять знание физики в жизни

Начать учиться

Говорят, что нет предела совершенству — но газ бывает идеальным. Сегодня мы узнаем, что эта физическая модель из себя представляет и как ее использовать.

Газ: агрегатное состояние

У веществ есть три агрегатных состояния — твердое, жидкое и газообразное.

Их характеристики — в таблице:

 

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

Твердое

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около положения равновесия в кристаллической решетке

Жидкое

сохраняет объем и текучесть

хаотичное

близко друг к другу

молекулы малоподвижны, при нагревании скорость движения увеличивается

Газообразное

занимает весь предоставленный объем

хаотичное

больше размеров молекул

хаотичное и непрерывное

В жизни мы встречаем вещества в газообразном состоянии, когда чувствуем запахи. Запах очень легко распространяется, потому что газ не имеет ни формы, ни объема (занимает весь предоставленный объем) и состоит из хаотично движущихся молекул, расстояние между которыми больше, чем размеры молекул.

Агрегатных состояний точно три?

На самом деле есть еще четвертое — плазма. Звучит как что-то из научной фантастики, но это просто ионизированный газ — газ, в котором, помимо нейтральных частиц, есть еще и заряженные. Ионизаторы воздуха как раз строятся на принципе перехода из газообразного вещества в плазму.

Практикующий детский психолог Екатерина Мурашова

Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков

Модель идеального газа

В физике есть такое понятие, как модель. Модель — это что-то идеализированное, она нужна в случаях, когда можно пренебречь некоторыми параметрами объекта или процесса.

Идеальный газ — это модель реального газа. Молекулы идеального газа представляют собой материальные точки, которые не взаимодействуют друг с другом на расстоянии, но взаимодействуют при столкновениях друг с другом или со стенками сосуда. При работе с идеальным газом можно пренебречь потенциальной энергией молекул (но не кинетической).

Важно знать

Модель идеального газа не может описать ситуацию, когда газ сжимают так сильно, что он конденсируется — переходит в жидкое состояние.

В повседневной жизни идеальный газ, конечно, не встречается. Но реальный газ может вести себя почти как идеальный. Такое случается, если среднее расстояние между молекулами во много раз больше их размеров, то есть если газ очень разреженный.

Свойства идеального газа

  1. Расстояние между молекулами значительно больше размеров молекул.

  2. Молекулы газа очень малы и представляют собой упругие шары.

  3. Силы притяжения между молекулами пренебрежимо малы.

  4. Молекулы взаимодействуют только при соударениях.

  5. Молекулы движутся хаотично.

  6. Молекулы движутся по законам Ньютона.

Среднеквадратичная скорость

Потенциальной энергией молекул газа пренебречь можно, а вот кинетической — никак нельзя. Потому что кинетическая энергия — это энергия движения, а мы не можем пренебрегать скоростью движения молекул.

На графике показано распределение Максвелла — то, как молекулы распределяются по скоростям. Судя по графику, большинство молекул движутся со средним значением скорости. Хотя есть и быстрые, и медленные молекулы, просто их значительно меньше.

Но наш газ идеальный, а в идеальном газе случаются чудеса. Одно из таких чудес — то, что все молекулы идеального газа двигаются с одинаковой скоростью. Эта скорость называется средней квадратичной.

Средняя квадратичная скорость

vср. кв. — средняя квадратичная скорость [м/с]

v1, v2, vn — скорости разных молекул [м/с]

N — количество молекул [—]

Попробуйте курсы подготовки к ЕГЭ по физике с опытным преподавателем в онлайн-школе Skysmart!

Давление идеального газа

Молекулы газа беспорядочно движутся. Во время движения они сталкиваются друг с другом, а также со стенками сосуда, в котором этот газ находится. Поскольку молекул много, ударов тоже много.

Например, в комнате, в которой вы сейчас находитесь, за одну секунду на каждый квадратный сантиметр молекулы воздуха наносят столько ударов, что их количество выражается двадцатитрехзначным числом.

Хотя сила удара отдельной молекулы мала, действие всех молекул на стенки сосуда приводит к значительному давлению. Представьте, что комар пытается толкать машину — она не сдвинется с места. Но если за работу возьмется пара сотен миллионов комаров, то машину получится сдвинуть.

Эксперимент

Чтобы смоделировать давление газа, возьмите песок и лист бумаги, зажатый между двумя книгами. Песчинки будут выступать в роли молекул газа, а лист — в роли сосуда, в котором этот газ находится. Когда вы начинаете сыпать песок на лист бумаги, бумага отклоняется под воздействием множества песчинок. Так же и молекулы газа оказывают давление на стенки сосуда, в котором находятся.

Зависимость давления от других величин

Зависимость давления от объема

В механике есть формула давления, которая показывает, что давление прямо пропорционально силе и обратно пропорционально площади, на которую эта сила оказывается.

Давление

p = F/S

F — сила [Н]

S — площадь [м2]

То есть если наши двести миллионов комаров будут толкать легковую машину, они распределятся по меньшей площади, чем если бы толкали грузовой автомобиль, — просто потому, что легковушка меньше грузовика. Из формулы давления следует, что давление на легковой автомобиль будет больше из-за его меньшей площади.

Рассмотрим аналогичный пример с двумя сосудами разной площади.

Давление в левом сосуде будет больше, чем во втором, потому что его площадь меньше. А раз меньше площадь сосуда, то меньше и его объем. Значит, давление зависит от объема следующим образом: чем больше объем, тем меньше давление, и наоборот.

При этом зависимость будет не линейная, а примет вот такой вид (при условии, что температура постоянна):

Зависимость давления от объема называется законом Бойля-Мариотта. Она экспериментально проверяется с помощью такой установки:

Объем шприца увеличивают с помощью насоса, а манометр измеряет давление. Эксперимент показывает, что при увеличении объема давление действительно уменьшается.

Зависимость давления от температуры

Рассмотрим зависимость давления газа от температуры при условии неизменного объема определенной массы газа. Исследования в этой области впервые провел французский изобретатель Жак Шарль в XVIII веке.

В ходе эксперимента газ нагревали в большой колбе, соединенной с ртутным манометром в виде узкой изогнутой трубки. Незначительным увеличением объема колбы при нагревании можно пренебречь, как и столь же незначительным изменением объема при смещении ртути в узкой манометрической трубке. Таким образом, объем газа можно считать неизменным.

Подогревая воду в сосуде, окружающем колбу, ученый измерял температуру газа термометром, а давление — манометром.

Эксперимент показал, что давление газа увеличивается с увеличением температуры. Это связано с тем, что при нагревании молекулы газа движутся быстрее, из-за чего чаще ударяются о стенки сосуда.

С температурой все проще. Зависимость давления от температуры при постоянных объеме и массе будет линейной:

Эта зависимость называется законом Шарля в честь ученого, открывшего ее.

Основное уравнение МКТ

Основная задача молекулярно-кинетической теории газа заключается в том, чтобы установить соотношение между давлением газа и его микроскопическими параметрами: массой молекул, их средней скоростью и концентрацией. Это соотношение называется основным уравнением молекулярно-кинетической теории газа или кратко — основным уравнением МКТ.

В основе молекулярно-кинетической теории лежат три положения.

  1. Все вещества образованы из мельчайших частиц — молекул, которые состоят из атомов.

    Молекулы химического вещества могут быть простыми и сложными, то есть состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.

  2. Атомы и молекулы находятся в непрерывном хаотическом движении.

  3. Частицы взаимодействуют друг с другом силами, которые имеют электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Мы уже выяснили, что причина давления газа на стенки — это удары молекул. Давление напрямую зависит от количества молекул — чем их больше, тем больше ударов о стенки и тем больше давление. А количество молекул в единице объема — это концентрация. Значит, давление газа зависит от концентрации.

Также давление пропорционально квадрату скорости, так как чем больше скорость молекулы, тем чаще она бьется о стенку сосуда. Расчеты показывают, что основное уравнение молекулярно-кинетической теории для идеального газа имеет следующий вид.

Основное уравнение МКТ

p = nkT

или

p — давление газа [Па]

n — концентрация [м−3]

T — температура газа [К]

m0 — масса одной молекулы [кг]

v — средняя квадратичная скорость [м/с]

Коэффициент 1/3 обусловлен трехмерностью пространства: во время хаотического движения молекул все три направления равноправны.

Важный нюанс: средняя квадратичная скорость сама по себе не в квадрате! Ее формула указана выше, а в основном уравнении МКТ (да и не только в нем) она возведена в квадрат. Это значит, что формулу средней квадратичной скорости нужно подставлять не вместо v2, а вместо v — и потом уже возводить эту формулу в квадрат. Это часто провоцирует путаницу.

Мы знаем, что кинетическая энергия вычисляется по следующей формуле:

Кинетическая энергия

Ек = mv2/2

Ек — кинетическая энергия [Дж]

m — масса тела [кг]

v — скорость [м/с]

Для молекулы газа формула примет вид:

Средняя кинетическая энергия поступательного движения молекулы

Ек = m0v2/2

Ек — средняя кинетическая энергия поступательного движения молекулы [Дж]

m0 — масса молекулы [кг]

v — скорость молекулы [м/с]

Из этой формулы можно выразить m0v2 и подставить в основное уравнение МКТ. Подставим и получим, что давление идеального газа пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.

Основное уравнение МКТ

p — давление газа [Па]

n — концентрация [м−3]

E — средняя кинетическая энергия поступательного движения молекулы [Дж]

Хранение и транспортировка газов

Если нужно перевезти значительное количество газа из одного места в другое или если газ необходимо длительно хранить, его помещают в специальные прочные металлические сосуды. Из-за того, что при уменьшении объема увеличивается давление, газ можно закачать в небольшой баллон, но он должен быть очень прочным.

Сосуды, предназначенные для транспортировки газов, выдерживают высокие давления. Поэтому с помощью специальных насосов (компрессоров) туда можно закачать значительные массы газа, которые в обычных условиях занимали бы в сотни раз больший объем.

Поскольку давление газов в баллонах даже при комнатной температуре очень велико, их ни в коем случае нельзя нагревать. Например, держать под прямыми лучами солнца или пытаться сделать в них отверстие — даже после использования.

Карина Хачатурян

К предыдущей статье

120.9K

Механическая работа

К следующей статье

Электроемкость конденсатора

Получите индивидуальный план обучения физике на бесплатном вводном уроке

На вводном уроке с методистом

  1. Выявим пробелы в знаниях и дадим советы по обучению

  2. Расскажем, как проходят занятия

  3. Подберём курс

PhysBook:Электронный учебник физики — PhysBook

Содержание


  • 1 Учебники

  • 2 Механика


    • 2. 1 Кинематика

    • 2.2 Динамика

    • 2.3 Законы сохранения

    • 2.4 Статика

    • 2.5 Механические колебания и волны

  • 3 Термодинамика и МКТ


    • 3.1 МКТ

    • 3.2 Термодинамика

  • 4 Электродинамика


    • 4. 1 Электростатика

    • 4.2 Электрический ток

    • 4.3 Магнетизм

    • 4.4 Электромагнитные колебания и волны

  • 5 Оптика. СТО


    • 5.1 Геометрическая оптика

    • 5.2 Волновая оптика

    • 5.3 Фотометрия

    • 5.4 Квантовая оптика

    • 5. 5 Излучение и спектры

    • 5.6 СТО

  • 6 Атомная и ядерная


    • 6.1 Атомная физика. Квантовая теория

    • 6.2 Ядерная физика

  • 7 Общие темы

  • 8 Новые страницы

Здесь размещена информация по школьной физике:

  1. материалы из учебников, лекций, рефератов, журналов;
  2. разработки уроков, тем;
  3. flash-анимации, фотографии, рисунки различных физических процессов;
  4. ссылки на другие сайты

и многое другое.

Каждый зарегистрированный пользователь сайта имеет возможность выкладывать свои материалы (см. справку), обсуждать уже созданные.

Учебники

Формулы по физике – 7 класс – 8 класс – 9 класс – 10 класс – 11 класс –

Механика

Кинематика

Основные понятия кинематики – Прямолинейное движение – Криволинейное движение – Движение в пространстве

Динамика

Законы Ньютона – Силы в механике – Движение под действием нескольких сил

Законы сохранения

Закон сохранения импульса – Закон сохранения энергии

Статика

Статика твердых тел – Динамика твердых тел – Гидростатика – Гидродинамика

Механические колебания и волны

Механические колебания – Механические волны


Термодинамика и МКТ

МКТ

Основы МКТ – Газовые законы – МКТ идеального газа

Термодинамика

Первый закон термодинамики – Второй закон термодинамики – Жидкость-газ – Поверхностное натяжение – Твердые тела – Тепловое расширение


Электродинамика

Электростатика

Электрическое поле и его параметры – Электроемкость

Электрический ток

Постоянный электрический ток – Электрический ток в металлах – Электрический ток в жидкостях – Электрический ток в газах – Электрический ток в вакууме – Электрический ток в полупроводниках

Магнетизм

Магнитное поле – Электромагнитная индукция

Электромагнитные колебания и волны

Электромагнитные колебания – Производство и передача электроэнергии – Электромагнитные волны


Оптика.

СТО

Геометрическая оптика

Прямолинейное распространение света. Отражение света – Преломление света – Линзы

Волновая оптика

Свет как электромагнитная волна – Интерференция света – Дифракция света

Фотометрия

Фотометрия

Квантовая оптика

Квантовая оптика

Излучение и спектры

Излучение и спектры

СТО

СТО


Атомная и ядерная

Атомная физика. Квантовая теория

Строение атома – Квантовая теория – Излучение атома

Ядерная физика

Атомное ядро – Радиоактивность – Ядерные реакции – Элементарные частицы


Общие темы

Измерения – Методы решения – Развитие науки- Статья- Как писать введение в реферате- Подготовка к ЕГЭ — Репетитор по физике

Новые страницы

Запрос не дал результатов.

термодинамика — Рассчитать давление по закону идеального газа или $\rho gh$?

спросил

Изменено
7 лет, 9 месяцев назад

Просмотрено
2к раз

$\begingroup$

В сосуде давление газа на стенки можно рассчитать по закону идеального газа $\bigl(pV=NRT\bigr)$. Однако для столба воды или давления на земную поверхность из-за столба воздуха давление можно рассчитать как $P=F/A=\rho gh$.

Когда какую модель использовать или это два совершенно разных принципа?

Для жидкостного моста между двумя сферами давление воды будет функцией кинетического поведения (закон идеального газа) или веса ($\rho gh$)?

  • термодинамика
  • давление
  • идеальный газ

$\endgroup$

1

$\begingroup$

Вас интересует разница относительного давления между двумя точками или абсолютное давление?

В контейнере давление газа на стенки можно рассчитать с помощью закона идеального газа (pV=NRT). Однако для столба воды или давления на земную поверхность из-за столба воздуха давление можно рассчитать как P=F/A=ρgh.

Первый пример для абсолютного давления, а второй пример для относительного давления. Если передо мной стоит стакан с водой, разница давлений снизу вверх составляет около 1/100 от общего абсолютного давления.

Жидкости также имеют функцию состояния, аналогичную воздуху. Вы можете рассчитать абсолютное давление жидкости по ее температуре и плотности, просто это не очень точный расчет, так как это резко наклонная функция.

Аналогично можно использовать аналог ρgh для газов. Для постоянной гравитации я бы написал:

$$ \Delta P = \mu g \\
\mu = \int \rho dh $$

Это (в основном) применимо для расчета относительной разницы атмосферного давления между двумя городами на разных высотах. Если плотность постоянна, это то же самое, что и ваше приближение ρgh.

$\endgroup$

$\begingroup$

Вот это неполный ответ, но просто задуматься над некоторыми вопросами.

Предполагается, что в идеальном газе частицы не взаимодействуют друг с другом и не имеют протяженности (точечные частицы). В частности, для идеального газа вы отбрасываете гравитацию. В то время как закон Стевина (соотношение $\rho g h$) является прямым следствием того, что у вас есть жидкость в гравитационном поле.

$\endgroup$

$\begingroup$

Закон идеального газа получен без учета гравитационного поля. Кинетическое поведение газа намного сложнее, чем очень простой пример закона идеального газа.

Итак, отвечая на два ваших вопроса:

  1. Да, диапазон применения каждого уравнения разный.
  2. Используйте уравнение гидростатики, а не уравнение идеального газа. Во всяком случае, кинетическая теория здесь тоже верна, но сложнее, чем закон идеального газа.

$\endgroup$

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но никогда не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

термодинамика — Верно ли уравнение идеального газа для текущей жидкости?

спросил

Изменено
4 года, 10 месяцев назад

Просмотрено
2к раз

$\begingroup$

Предположения для идеального газа:

  1. газ состоит из большого числа молекул, находящихся в хаотическом движении и подчиняющихся законам движения Ньютона;

  2. объем молекул пренебрежимо мал по сравнению с объемом, занимаемым газом; и

  3. никакие силы не действуют на молекулы, за исключением упругих столкновений незначительной продолжительности.

Я в замешательстве: справедливо ли уравнение состояния идеального газа $PV=mRT$ для протекающих жидкостей (открытые системы) или только для закрытых систем?

Поскольку мы знаем, что для открытых систем имеем уравнение сохранения энергии:
$$ h + \frac{V^2}2 + gz = \text{const}. $$
Таким образом, в уравнении идеального газа должен быть член скорости, если уравнение идеального газа также справедливо для открытых систем. Пожалуйста, помогите мне понять это несоответствие.

  • термодинамика
  • идеальный газ

$\endgroup$

1

$\begingroup$

Примечание об обозначениях: я немного отклоняюсь от условных обозначений в вопросе, чтобы использовать стандарт обозначений, к которому я привык. Я использую $V$ для обозначения объема, в свою очередь я обозначаю скорость как $v$. Также я использую нижний регистр $p$ для давления.

Уравнение состояния идеального газа справедливо только в тепловом равновесии. Этого не может быть в случае открытой системы с чистым потоком (даже если она находится в устойчивом состоянии).

Однако, если мы рассмотрим частицу жидкости в сопутствующей ей системе отсчета, эта частица будет приблизительно находиться в тепловом равновесии, поэтому мы можем использовать наши результаты равновесия для этой частицы, и вот как мы вычисляем энтальпию $h$ на единицу массы, используемой в цитируемом вами обобщенном уравнении Бернулли (которое предполагает устойчивый, невязкий, адиабатический поток).

Back to top