Кпд двигателя на водороде: Водородный двигатель автомобиля — как работает и основные недостатки

Содержание

Водородный двигатель автомобиля — как работает и основные недостатки

Авто компании разрабатывают новые виды двигателей для автомобилей будущего. Кто-то ставит ставку на электромоторы, а кто-то разрабатывает водородные двигатели. Рассмотрим водородный двигатель и его преимущества.

Как работает

Автомобиль на водородном топливе имеет так называемый топливный элемент или по-научному — электрохимический генератор. Это своего рода «вечная» батарейка, внутри которой идет реакция окисления водорода и на выходе получается чистый водяной пар, азот и электричество. Т.е. выхлоп такого водородного автомобиля экологический чистый, в нем содержание углекислого газа CO2 равняется нулю.

Автомобиль с топливными элементами, по сути электромобиль. Только с более компактной батареей: ёмкость литий-ионного аккумулятора в 10 раз меньше, чем обычного электромобиля. Батарея нужна только в качестве буфера для хранения энергии, получаемой при рекуперативном торможении и для быстрого холодного старта.

Потому что главный источник энергии — блок топливных элементов — выходит на рабочий режим не сразу. На первых прототипах водородных машин для этого требовалось около полутора часов. На современных — не более 2 минут, чтобы начать превращение водорода и воздуха в водяной пар, азот и электроэнергию. Но на прогрев до рабочей температуры, когда КПД установки достигает 90%, уходит от 15 минут до часа в зависимости от окружающей температуры.

В баллонах хранится 5 кг водорода, обеспечивающие запас хода до 500 км. Полная заправка баллонов займет три минуты.

Главные недостатки

Главный недостаток — высокая себестоимость. Помимо электрохимического генератора, который при массовом производстве может стоить дешевле батарей для электромобилей, нужны еще прочные и легкие баки. Для этого используют дорогой углепластик.

Серьезный недостаток — энергетическая эффективность. Если использовать водород только как промежуточное звено в цепочке доставки энергии от электростанции к колесам автомобиля, то КПД составит не более 30% с учетом потерь на перекачку и охлаждение водорода перед заправкой. В отличие от 70-80% у электромобилей.

Если получать водород из попутного нефтяного газа, то КПД становится несравнимо выше — до 70%. Правда, ценой выбросов углекислого газа.

Где взять заправки

В Европе количество водородных заправок можно пересчитать по пальцам, у нас их вовсе нет. Инженеры для таких случаев изобрели бивалентный двигатель, который может одновременно работать на водородном топливе и бензине. Владелец данного автомобиля не будет зависеть от наличия на заправке водородного топлива.

  • Машины на водородном топливе — как есть

Лет через десять, когда количество водородных заправок в Европе возрастет, тогда водородомобили получат жизнь. Пока реалии не радуют. Взять хотя бы стоимость машины на чисто водородных элементах — она превышает стоимость обычного автомобиля почти в два раза. И на 20 процентов дороге гибридных версий.

Водородный транспорт — хорошая идея только в теории / Хабр

Я очень хочу потыкать острой палкой в идею об электрических автомобилях на водородных топливных элементах (ТЭ). Некоторые люди совершенно очарованы этой идеей. Как можно не очароваться? На вход подается водород, абсолютно «чистое» топливо, а на выходе получается только вода или пар, и никакого углекислого газа, оксидов азота, сажи, и т. д. Водородный двигатель — тихий и компактный. Это не тепловой двигатель, и поэтому на него не распространяются жесткие ограничения цикла Карно. Заправка очень быстрая и не сильно сложнее чем обычная бензиновая заправка.

Кроме того, если вы — нефтяная компания, и спрос на бензин и дизель начнет уменьшаться, вы только что обнаружили новое топливо, которое можно продавать! Вы спасены!

Если вы живете в частном доме и хотите потреблять меньше энергии, вы думаете что можете делать водород из воды используя электричество от солнечных панелей на крыше, убивая сразу двух зайцев: вы получаете топливо для вашей машины и запасаете излишки энергии от солнечной генерации, с помощью единственной магической технологии. Звучит потрясающе!

К сожалению, дьявол кроется в деталях, и он не то чтобы сильно прячется, если вы будете смотреть внимательно.

В моей предыдущей статье я обсуждал эффективность в энергетических циклах двигателей внутреннего сгорания и электрических автомобилей. Я буду ссылаться на результаты из этой статьи когда буду делать предположения об электрических автомобилях на топливных элементах (fuel cell electric vehicle, FCEV). Я буду делать аналогичные допущения и использовать похожие источники.

Дисклеймер: я упомянут в нескольких патентах компании Texaco о получении водорода из природного газа для подачи на протонообменную мембрану (ПОМ, ПЭМ) топливных элементов (теперь патенты принадлежат Chevron, которая поглотила Texaco). Я занимался водородом еще с институтских времен, и примерно каждый второй проект на протяжении десятилетий, которые я провел в компании Zeton, включал в себя водород или синтез-газ.

Однако, еще раз хочу четко сказать: водород это прекрасная идея — в теории. Но большая проблема с водородом заключается… в самой молекуле водорода. Никакие изобретения или технологии не решат эту проблему.

Давайте разбирать цепочку эффективности электрического транспорта на водородных топливных элементах этап за этапом, также как мы делали с двигателем внутреннего сгорания и электрическими машинами на аккумуляторах (battery electric vehicle, BEV).

Производство водорода

КПД самого производства водорода — примерно 70%, в лучшем случае, к сожалению. Я недавно [статья 2017 года — прим. перев.] разговаривал с Hydrogenics, большим производителем щелочных и ПЭМ-электролизеров. Эффективность их более дешевых щелочных электролизеров — примерно 60%, а эффективность ПЭМ-электролизеров — 70%, когда он работает на минимальном токе. (Вы можете делать гораздо больше водорода на этом же приборе просто увеличив ток, но жертвуя эффективностью.) Это достаточно близко к теоретическому пределу эффективности электролиза — ~83%, которая получается, если поделить низшую теплоту сгорания (HTC) получаемого водорода на энергию затрачиваемую на электролиз. Мы не вернем эту потерю в топливном элементе потому что мы не используем теплоту конденсации водяного пара.

Большинство производителей электролизеров указывают КПД в расчете на высшую теплоту сгорания (ВТС), то есть включая теплоту конденсации пара. В этом случае 70% (НТС) КПД электролизеров превращаются в примерно 83% (ВТС).

Проблема электролиза в том, что часть энергии очевидно идет на создание молекул кислорода. Это может быть полезно в больших системах, которые могут собирать и сжимать чистый кислород (который затем можно продавать), либо если водород используется не как топливо, а как сырье в технологическом процессе, и этот процесс также использует кислород. К сожалению, водородная заправка не будет использовать кислород, она будет просто выпускать его в воздух.

Поэтому давайте остановимся на 70% (НТС) КПД конвертации электричества в водород, предположительно, электричества от возобновляемых источников (ВИЭ). Если совсем строго, мы еще должны учесть 6% потерь в электросети от источника электричества до электролизера.

70% КПД электролиза почти совпадает с наивысшей доступной на данный момент эффективностью технологии получения водорода из природного газа, парового риформинга (паровой конверсии) метана (steam methane reforming, SMR). Большие установки повышают эффективность, утилизируя теплоту продуктов процесса и сжигая побочные газы после очистки водорода.

Максимально чистый водород нужен, чтобы увеличить эффективность и долговечность топливных элементов. Они очень чувствительны к угарному газу, который уменьшает эффективность платинового катализатора в топливном элементе (то есть, является каталитическим ядом). К сожалению, невозможно конвертировать углеводороды в водород, не получив на выходе также какое-то количество угарного газа. Более того, сам катализатор может преобразовать углекислый газ в угарный газ, поэтому водородное топливо должно быть полностью очищено от обоих газов. Даже инертные газы, такие как аргон и азот, уменьшают эффективность ПЭМ-топливного элемента, потому что надо позаботиться об их выводе на аноде. Поэтому реальные топливные элементы требуют очень чистый водород: посмотрите на спецификации ПЭМ-топливных элементов производства Ballard, Plug Power, и других.

К сожалению, эффективность паровой конверсии метана стремительно падает с уменьшением установки. Тепловые потери увеличиваются, что имеет особенно большое значение в таком высокотемпературном процессе как паровая конверсия. Вы быстро обнаружите это когда попробуете спроектировать процесс для относительно небольшой водородной заправки.

Доставка природного газа по трубопроводам к установке по паровой конверсии в водород и последующая доставка водорода от централизованной установки к заправкам скорее всего будет стоить больше чем 6% от энергии конечного водорода, но давайте будем щедрыми и примем эти потери тоже за 6% чтобы делать меньше подсчетов (хотя, в конечном счете, это все равно будет неважно). Таким образом, вне зависимости от того, начинаем мы с электричества или с метана, мы приходим к 70%*94% ~= 66% КПД производства водорода, без существенных возможностей для улучшения потому что мы уже близки к термодинамическим пределам.

Стоит отметить что КПД электролиза горячего пара может казаться очень высоким (даже выше 100%), например, при использовании твердооксидного топливного элемента в реверсе. Естественно, при этом не учитывается работа по испарению воды и нагреву пара. Никто не использует электролиз пара если у него нет а) источника «бесплатного» пара и б) процесса в котором используется горячий водород или горячий кислород или желательно оба газа. Кроме того, как всякие высокотемпературные устройства, паровые электролизеры «не любят» работать с перерывами, поэтому вам также нужен стабильный круглосуточный источник электричества, а возобновляемые источники — не стабильные.

Хранение водорода

Теперь нам надо хранить водород, и загвоздка опять в самой молекуле. Хотя плотность энергии водорода на единицу массы очень большая, даже в форме криогенной жидкости (при температуре 24 выше абсолютного нуля) водород имеет плотность всего 71 кг/м3. Поэтому единственная практичная на данный момент форма хранения водорода для небольших машин — это газ высокого давления. Любые способы увеличения объемной плотности хранения водорода или уменьшения давления (например, гидриды металлов, абсорбенты, органические носители, и т. д.) или сильно увеличивают массу бака, или увеличивают потери водорода во время хранения, или требуют энергии для извлечения водорода. Я бы не рассчитывал на некий магический прорыв в этой области: у нас было тридцать лет на исследования с того момента, как водород стал всерьез рассматриваться как топливо.

Про опасность водорода хорошо известно, и в моей статье не будет картинки с дирижаблем «Гинденбург»! На самом деле, уже достаточно давно научились безопасно обращаться с водородом в промышленности если использовать разные меры предосторожности. Но я не хочу, чтобы мои соседи даже думали о производстве водорода под давлением 400 или 600 атмосфер с помощью своих домашних солнечных панелей. Это кажется мне кошмарной идеей по многим причинам.

Чтобы сжать водород с давления ~20 атмосфер на выходе с установки по паровой конверсии из метана или с примерно атмосферного давления (на выходе из некоторых электролизеров) до 400 атмосфер надо потратить энергию, обычно электричество. К сожалению, мы вынуждены рассеивать тепло от сжатия водорода на достаточно низкой температуре чтобы сберечь элементы компрессора, и поэтому это тепло трудно как-то использовать. Более того, давление в баке на заправке может снизиться с 400 атмосфер только до 395 во время заправки одной машины, поэтому вся работа по сжатию делается при самом высоком коэффициенте сжатия [я не понимаю, что тут сказано — прим. перев.]. Бак на заправке должен быть очень большим. В противном случае, требования заправляющего компрессора или ограничения по переносу тепла могут уменьшить скорость заправки (ведь мы помним, что скорость заправки — чуть ли не главная причина, по которой нам интересен водород в качестве топлива для транспорта!).

На большом масштабе, с гигантскими компрессорными агрегатами, можно хранить водород под большим давлением теряя не больше 10% от теплоты сгорания (НТС) хранимого водорода на работу компрессоров, что, на самом деле, удивительно хорошо, учитывая вышесказанное. (Заметим, что политропный КПД самих компрессоров — это лишь малая часть этих потерь. Мы смотрим на другую меру эффективности.) К сожалению, когда мы уменьшаем размер компрессоров, эффективность улетает вниз. Многоступенчатый диафрагменный компрессор для автомобиля может потреблять до половины энергии сжимаемого водорода или даже больше. При уменьшении масштаба также растут капитальные расходы в расчете на единицу энергии проходящей через установку на протяжении ее жизненного цикла. Прискорбно, что транспортировка водорода на большие расстояния нереалистична по той же причине, по которой его тяжело хранить — свойства молекулы. [Тут автор не развивает мысль почему транспортировка водорода на большие расстояния нереалистична, но в другой статье он пишет, что доставка водорода по трубопроводам требует в три раза больше энергии, чем доставка природного газа, на единицу переносимой энергии — прим. перев.] Все мечты о «водородной экономике» предполагают малые и распределенные системы производства водорода, так что мы не должны гонять водород с места на место, что оставляет нам только один реалистичный вариант: электролиз.

Таким образом, у нас остается 70% (производство) * 94% (потери в электросети или на работу трубопровода) * 90% (хранение под высоким давлением) = 59% КПД от исходной энергии до бака автомобиля. Для сравнения, для бензина этот показатель — 80%. Конечно, мы не будем использовать водород в неэффективном двигателе внутреннего сгорания как замену бензину, особенно если водород получен из углеводородов: мы бы лучше просто сжигали эти углеводороды в ДВС напрямую.

Если нас заботят выхлопы парниковых газов, производство водорода из метана точно не решает проблему [см. недавнюю статью «Насколько чист «голубой» водород?» на эту тему — прим. перев.]. Мы бы лучше просто ездили на Приусах. Электролиз с использованием электричества из возобновляемых источников — это единственный возможный вариант.

Топливный элемент с протонообменной мембраной

Печально, но мы все еще не закончили терять энергию — далее идут потери в топливном элементе. Хотя это и не тепловой двигатель, топливный элемент все равно имеет собственные термодинамические пределы. Топливные элементы достигают эффективности в 50–60%, и это недалеко от теоретического предела в 83% для идеального топливного элемента.  

Давайте будем щедрыми и возьмем 60% как КПД топливного элемента. Реальные ТЭ которые можно купить имеют эффективность около 50% — лучше, чем у небольшого двигателя, примерно так же, как у судовых двигателей или стационарных скоростных двигателей, или у газовых турбин.

Вся цепочка, от источника энергии до колес

Учитывая эффективность электрического инвертора и мотора (90%), общая эффективность «от электростанции до колес» — 94%*70%*90%*60%*90% = 32%. Напомню, что по показателю «от скважины до колес», Приус достиг эффективности 30% на бензине, то есть мы «сделали» Приус, и это без вредных выхлопов. И с быстрой заправкой. Ура! Ура?…

Мой самодельный электрический автомобиль, «E-Fire», имеет эффективность 76.5%… и тоже не дает никаких выхлопов. [Источник этой оценки неясен: если автор берет такие же потери в инверторе, моторе, и электросети, его батарея должна иметь КПД 90%. — прим. перев.] несмотря на очень маленькую батарею по нынешним стандартам, всего 18. 5 кВч, этого хватает на мою дорогу до работы и обратно. Я уже проехал на этой машине 20 тыс. км. без парниковых выхлопов, и я никогда не ждал ее зарядки: я заряжаю ее один раз ночью, и один раз утром на работе. Эта машина не делает всего того, что делает машина с ДВС, не пытается, и не должна этого делать.

Капитальные затраты на водородный стек

Таким образом, электромобили на топливных элементах (FCEV) в лучшем случае примерно в 2.4 раза хуже чем лучшая доступная сейчас альтернативная технология, электромобили на аккумуляторах (BEV). Взамен мы получаем более быструю заправку и, возможно, немного большую дальность хода на одной заправке, и это все. Не слишком ли высока цена за немного большее удобство? Хотя, подождите, мы ведь даже не начали говорить о цене….

Водород это очень дорогое топливо, с любой точки зрения.

В 2.4 раза худшая эффективность транспорта на топливных элементах означает что мы должны установить в 2.4 раза больше генерирующих мощностей из возобновляемых источников. Сам по себе этот факт должен заставить сторонников водорода задуматься.

Мы также должны построить инфраструктуру по распределению водорода. Вы не будете заправляться водородом дома, это слишком огнеопасно. Это значит что кто-то должен заняться этой инфраструктурой как бизнесом, но никто не захочет это делать потому что на этом не получится заработать.

Наконец, давайте посмотрим на сам электромобиль на ТЭ. В нем, конечно, должен быть бак для водорода и топливные элементы. А также все остальные части обычных электромобилей, включая аккумулятор! Аккумулятор будет меньше, ближе по размеру к аккумуляторам в гибридах, но он все равно нужен чтобы было куда девать энергию от рекуперативного торможения, чтобы управлять потребностями в системе топливных элементов чтобы уменьшить ее стоимость. Батарея также нужна во время старта и выключения топливных элементов. Таким образом, электромобиль на ТЭ — это гибрид.

В дополнение ко всему вышесказанному, сами топливные элементы по-прежнему очень дороги. Хотя цены однозначно снизятся с началом массового использования и производства, также как сейчас снижаются цены на литий-ионные аккумуляторы, металлы платиновой группы (МПГ), такие как платина и палладий, используемые в катализаторах топливных элементов, не позволят ценам упасть слишком сильно. Уменьшите долю МПГ, и топливные элементы станут еще более чувствительными к примесям в водороде, и, я подозреваю, эффективность упадет. Замените МПГ на более дешевые металлы, такие как никель, и большая часть преимуществ топливных элементов пропадет: они должны будут работать при более высоких температурах, и т. д.

Toyota Mirai, электромобиль на топливных элементах

Означает ли это, что водород — это мертвая идея для персональных электромобилей? Одним словом, на мой взгляд, ДА. Я полностью согласен с Илоном Маском в этом вопросе. Разве что, уточнив, что мы говорим не о мире в котором электричество ничего не стоит, или его цена даже становится отрицательной потому что генерация из возобновляемых источников становится такой дешевой что не требует вообще никаких денежных вложений. Но я готов поспорить, что а) этого никогда не произойдет, б) даже если мы приблизимся к этой странной экономической ситуации, капитальные затраты и другие практические проблемы с электролизерами, компрессорами, резервуарами для хранения и топливными элементами все равно полностью убьют идею.

Сравнение двух реальных автомобилей которые можно купить (по крайней мере, в Калифорнии) показывает, что мои оценки оптимистичны в пользу водорода. Для автомобилей с аналогичными характеристиками и дальностью хода, водородный автомобиль потребляет в 3.2 раза больше энергии и стоит в 5.4 раза больше в расчете на проеханный километр:

Конечно, обе технологии будут улучшены в будущем, но расчеты выше по тексту задают пределы. Невозможно преодолеть законы термодинамики неким хитрым изобретением или принимая желаемое за действительное.

Означает ли все это, что топливные элементы вообще не нужны? Вовсе нет! Существуют устоявшиеся области в которых ПЭМ-топливные элементы имеют смысл, но это лишь те ситуации, где энергоэффективность гораздо менее важна, чем, например, быстрая заправка. Таким образом, Plug Power находит свою нишу на рынке складских вилочных погрузчиков, особенно на охлаждаемых складах.

Вилочный погрузчик на топливных элементах

То же самое относится к так называемым «power to gas» (P2G) схемам. Это совсем другая модель: они используют «избыточную» возобновляемую электроэнергию для производства водорода, который затем под низким давлением подмешивается в газовую сеть, где в конечном итоге используется для производства тепла, часто в устройствах, которые в конечном итоге рекуперируют тепло конденсации водяного пара (продукта горения водорода). Как средство хранения электроэнергии схемы P2G настолько смехотворно неэффективны, что о них даже не стоит говорить, но зато они требуют лишь небольших капитальных вложений и сокращают выбросы парниковых газов, когда водород вытесняет метан. Это не так уж и плохо, если только вы не сделаете вывод, что однажды мы ПОЛНОСТЬЮ заменим природный газ водородом… Это будет очень глупо.

Другие применения водорода на транспорте

На данный момент, в некоторых видах транспорта: самолеты, поезда, суда, аккумуляторы практически или совсем неприменимы. Главный вопрос в этих случаях стоит так: насколько мы заботимся о токсичных выбросах? Если они волнуют нас больше всего, водород — единственные решение. Но если мы больше думаем о парниковом эффекте, мы также можем использовать биотопливо как альтернативу водороду. [При сжигании биотоплива в воздух попадает углекислый газ, но этот углерод был извлечен из атмосферы самими растениями в течение предыдущего года, поэтому общий атмосферный баланс не нарушается — прим. перев.] Для самолетов биотопливо, скорее всего, — это единственное практическое решение до тех пор пока мы не изобретем что-то с гораздо большей плотностью энергии, чем литий-ионные аккумуляторы, возможно, перезаряжаемые металл-воздушные аккумуляторы. И хотя мы не сможем полностью заменить бензин и дизель на биотопливо, даже если полностью забудем об экономике (цифры по этому поводу см. на сайте www.withouthotair.com), если мы покроем 90% перевозок (в километрах, или тоннокилометрах) электричеством, мы можем производить достаточно биотоплива чтобы покрыть оставшиеся 10%, ПЛЮС все те другие виды транспорта, в которых в сейчас невозможно использовать аккумуляторы. Гораздо важнее избавиться от токсичных выхлопов в городах, чем на трассах, в море, или высоко над землей.

Очевидно, что использование водорода или электрохимии для уменьшения выбросов CO2 с целью получения жидких углеводородов значительно менее эффективно, чем сам водород [я не понимаю, что тут сказано — прим. перев.]. То же самое и с аммиаком, который кажется кому-то способом преодолеть некоторые недостатки водорода. Аммиак — ядовитый газ, и, опять же, производить его менее эффективно, чем водород. Мысль о заправке автомобилей аммиаком повергает меня в ужас, учитывая количество смертей, связанных с аммиаком в результате его использования в качестве хладагента и в сельском хозяйстве.

Так называемое «e-топливо» (e-fuel, power-to-liquid) — это, на самом деле, производная водородного топлива. Оно делается из углекислого газа, воды (продукт горения водорода), и электричества. При реверсе термодинамического процесса неизбежны потери. С учетом того, что потом мы используем это топливо в неэффективном ДВС, вся схема получается очень очень неэффективной.

Е-топливо — это способ использовать еще больше излишков энергии в тщетных попытках превратить водород в более эффективное (удобное) топливо. К сожалению, если мы не сможем производить достаточно биотоплива для того транспорта, в котором мы не можем использовать аккумуляторы, нам, возможно, придется сначала использовать топливные элементы, и только в самом крайнем случае — е-топливо. И мы будем горько плакать, глядя на его стоимость.

Настоящее будущее «зеленого» водорода

Сейчас более 96% водорода производится из ископаемого топлива либо целенаправленно (паровая или автотермальная конверсия метана), либо как побочный продукт при производстве нефти. Мы должны научиться производить водород очень эффективно из возобновляемого электричества, но не тратить его как автомобильное топливо, а использовать при производстве удобрений: аммиака и мочевины. Нам придется избавиться от гигантской инфраструктуры по производству и доставке углеводородов.

В продолжение темы, читайте мою статью: «Hydrogen from renewable energy — our future?» Или зеленый камуфляж?

Дисклеймер [от автора статьи, не переводчика]: все что я пишу в своих статьях — это мое личное мнение. Я пытаюсь всегда приводить ссылки на источники, когда могу. Скорее всего, в моих цифрах и рассуждениях есть ошибки. Я заранее извиняюсь за них. Если вы можете указать мне на них со ссылкой на хороший источник, я отвечу и исправлю текст. Мой работодатель, Zeton Inc., работает в совсем другой области, и не имеет ни интереса, ни даже позиции по поводу водорода. Мы проектируем и строим пилотные установки.

Как двигатели внутреннего сгорания могут способствовать нулевым выбросам

Статья (7 страниц)

Регулирующие органы ужесточают правила выбросов для дорожных грузовиков на многих крупнейших рынках мира (Иллюстрация 1). Начиная с 2030 года регулирующие органы в Европе потребуют от производителей сократить выбросы CO 2 для новых дорожных грузовиков на 30 процентов по сравнению с 2019 годом.уровни.
1

1.

«Сокращение выбросов: Совет принимает стандарты CO 2 для грузовых автомобилей», пресс-релиз Совета ЕС, 13 июня 2019 г., www.consilium.europa.eu.

Аудио

Прослушать эту статью

В Соединенных Штатах цель по сокращению выбросов к 2027 году на 46 процентов ниже уровня 2010 года. Пятнадцать штатов США, во главе с Калифорнией, имеют дополнительные требования, которые к 2030 году потребуют, чтобы 30 процентов продаваемых грузовиков были с нулевым уровнем выбросов.
2

2.

«Стандарты выбросов парниковых газов и стандарты эффективности использования топлива для двигателей и транспортных средств средней и большой мощности», Федеральный реестр , 15 сентября 2011 г., govinfo.gov; «Стандарты выбросов парниковых газов и стандарты эффективности использования топлива для двигателей и транспортных средств средней и большой мощности, этап 2», Федеральный реестр , 25 октября 2016 г. , govinfo.gov.

Точно так же китайские регулирующие органы требуют от OEM-производителей сократить выбросы большегрузных автомобилей на 24 процента с 2021 года по сравнению с 2012 годом. Вероятны дополнительные долгосрочные цели, учитывая, что Китай недавно присоединился к растущей группе стран с целями нулевых выбросов на или до 2060 года.

Экспонат 1

Мы стремимся предоставить людям с ограниченными возможностями равный доступ к нашему веб-сайту. Если вам нужна информация об этом контенте, мы будем рады работать с вами. Пожалуйста, напишите нам по адресу: [email protected]

  1. Женщины на рабочем месте 2022

  2. То, чего хотят рабочие, меняется. Это может быть хорошо для правительства

  3. Декарбонизация Индии: путь к устойчивому росту

  4. Экономика титана: использование возможностей в переходе к энергетике

  5. Почему плохая стратегия — это «социальная зараза»

Грузовые автомобили повышенной проходимости

традиционно подвергались меньшему контролю со стороны регулирующих органов; однако OEM-производители в
внедорожные пространства ожидают растущего давления со стороны клиентов на декарбонизацию. За последние два года крупные горнодобывающие компании поставили перед собой амбициозные цели по обезуглероживанию, стремясь к охвату 1 и 2.
3

3.

Область 1 включает все прямые выбросы от деятельности организации, а область 2 включает косвенные выбросы.

CO 2 нейтральность. Например, Anglo American и Fortescue объявили о своих целях по достижению углеродной нейтральности уровня 1 и 2 к 2040 году в 2019 и 2020 годах соответственно. Компании BHP, Rio Tinto, Teck и Vale планируют достичь этого рубежа к 2050 году. Приблизительно 30 процентов выбросов парниковых газов (ПГ) категории 1 и 2 на шахтах вызваны дизельными двигателями, в основном от горнодобывающей техники, такой как самосвалы, грузовики, погрузчики, бульдозеры и экскаваторы. Сокращение этих выбросов до нуля потребует массового перехода на автомобили с нулевым уровнем выбросов в горнодобывающем секторе.

В то время как игроки в сфере строительства и сельского хозяйства отстают от горнодобывающих компаний,
решений с нулевым уровнем выбросов в этих секторах также растет. Для строительных транспортных средств нормативы качества воздуха на уровне города усиливают правила обезуглероживания и направляют клиентов.
до экскаваторов, погрузчиков, грейдеров и автопогрузчиков с нулевым уровнем выбросов. В условиях растущей обеспокоенности общества устойчивостью сельскохозяйственного сектора давление со стороны потребителей вполне может привести к быстрому переходу на сельскохозяйственные тракторы и опрыскиватели с нулевым уровнем выбросов.

Четыре технологии трансмиссии с нулевым уровнем выбросов используются для большегрузных дорожных и внедорожных транспортных средств

Существует четыре технологии с нулевым уровнем выбросов для транспортных средств: электромобили на аккумуляторных батареях (BEV), электромобили на водородных топливных элементах (FCEV), водородные двигатели внутреннего сгорания (h3-ICE) и двигатели внутреннего сгорания, работающие на биотопливе или синтетическом топливе (если используется устойчивый источник углерода). Гибридные и газовые двигатели представляют собой промежуточные технологии для сокращения выбросов в среднесрочной перспективе, но сами по себе они не могут обеспечить нулевой уровень выбросов.

Четыре технологии с нулевым уровнем выбросов имеют разные преимущества и недостатки, что приводит к разным уровням пригодности для разных типов транспортных средств (Иллюстрация 2).

Экспонат 2

Мы стремимся предоставить людям с ограниченными возможностями равный доступ к нашему веб-сайту. Если вам нужна информация об этом контенте, мы будем рады работать с вами. Пожалуйста, напишите нам по адресу: [email protected]

CO 2 выбросы. Хотя мы называем все четыре технологии нулевыми выбросами, выбросы CO 2 , образующиеся в процессе производства электроэнергии, водорода или синтетического топлива, могут значительно различаться. Хотя BEV являются углеродно-нейтральными, если заряжаются исключительно от возобновляемых источников энергии, их использование в настоящее время приводит к высоким выбросам углерода при зарядке от сети в большинстве регионов (учитывая высокую углеродоемкость глобальной сети). Выбросы углерода при производстве водорода также сильно различаются, но их легче контролировать. Например, «зеленый» водород можно производить из 100% солнечной и ветровой энергии в регионах, богатых возобновляемыми источниками энергии, и доставлять его на любую заправочную станцию. Углеродоемкость для биотоплива и синтетического топлива зависит от источников биомассы и углерода соответственно.

Качество воздуха. В то время как BEV и FCEV не производят никаких выбросов в выхлопной трубе, двигатели h3-ICE по-прежнему выделяют оксиды азота (NOx), которые требуют последующей обработки, аналогичной той, что применяется для дизельных двигателей (биотопливо и синтетическое топливо выделяют NOx и твердые частицы). Некоторые производители двигателей h3-ICE утверждают, что условия эксплуатации двигателя обеспечивают гораздо более низкое образование NOx, чем для дизельных двигателей, и, таким образом, их влияние можно считать нулевым. Будут ли эти двигатели пригодны для городских условий или для подземных горных работ, будет зависеть от конкретных уровней выбросов и пороговых значений, разрешенных местными правилами загрязнения воздуха.

Эффективность. КПД «бак-колесо» варьируется от 75–85 % для BEV до приблизительно 50 % для FCEV и примерно от 40 до 45 % для двигателей внутреннего сгорания.
4

4.

Сегодняшние двигатели внутреннего сгорания на водороде по-прежнему имеют более низкий КПД, чем ведущие дизельные двигатели (которые могут достигать до 45% КПД между баком и колесом), но после оптимизации они способны достигать более высокого КПД. Метрика «бак-колесо» отражает эффективность (использование топлива и образующиеся выбросы) от точки зарядки или заправки до слива во время движения; метрика «от скважины до колеса» также включает относительную эффективность производства и поставки различных источников энергии (бензин, дизельное топливо, электричество, водород, природный газ), включая транспортировку до точки зарядки или топливного насоса.

На уровне «от скважины к колесу» различия еще более выражены: учитывая потери при преобразовании при производстве водорода из электричества и синтетического топлива из водорода, эффективность падает примерно до 35 процентов для FCEV, около 30 процентов для h3-ICE и около 20 процентов. процентов на синтетическое топливо. Полная эффективность для BEV зависит от того, где производится возобновляемая энергия (поскольку более длинные линии электропередачи означают более высокие потери) и
используется ли быстрая зарядка.

В целом показатели эффективности являются приблизительными и различаются в зависимости от стиля вождения: двигатели внутреннего сгорания становятся более эффективными при более высоких нагрузках (стимул к уменьшению размера двигателя в дизельных автомобилях), тогда как FCEV наиболее эффективны при низких нагрузках (мотив для топливной экономичности). -увеличение размеров клеток и гибридизация).

Хотите узнать больше о нашей автомобильной и сборочной практике?

Капитальные затраты на трансмиссию. Капитальные затраты следуют обратному порядку эффективности: высокая эффективность BEV влечет за собой дорогие батареи, в то время как менее эффективные водород и биотопливо/синтетическое топливо могут сжигаться в простых двигателях внутреннего сгорания, которые во многом идентичны современным дизельным двигателям — на самом деле, они могут быть даже менее дорогой, чем дизельные двигатели, из-за более низких требований к очистке выхлопных газов (хотя для разработки технологии необходимы дальнейшие исследования и разработки). Тем временем топливные элементы снова приземляются между ними. Таким образом, оптимальный компромисс между первоначальными капитальными затратами и текущим расходом топлива, который минимизирует совокупную стоимость владения (TCO), существенно различается в зависимости от типа транспортного средства и варианта использования. Например, размер и вес автомобиля определяют требуемую трансмиссию и количество потребляемого топлива. Схема вождения и маршрут, например время, затрачиваемое на ускорение, определяют эффективность трансмиссии и требуемый запас хода. Не менее важно, как региональные и местные рыночные условия формируют картину оптимизации совокупной стоимости владения, включая доступность и стоимость электроэнергии, водорода и биотоплива, а также необходимую инфраструктуру для подзарядки или дозаправки.

Другие ограничения. Наряду с эффективностью и капитальными затратами на совокупную стоимость владения различными силовыми агрегатами влияют дополнительные факторы: батареям требуется больше времени для перезарядки, чем любому другому топливу, будь то водород (для топливных элементов или сжигание) или биотопливо и синтетическое топливо. Это может привести к сокращению времени безотказной работы, что может повлиять на совокупную стоимость владения в случаях использования, требующих круглосуточной работы. И батареи, и водород требуют жертв в плане полезной нагрузки и/или места: батареи тяжелые, а топливные элементы и h3-ICE требуют больших баков. Таким образом, транспортные средства, которые особенно ограничены по полезной нагрузке или пространству, могут быть ограничены более энергоемким биотопливом или синтетическим топливом.

Следовательно, h3-ICE может быть жизнеспособным вариантом трансмиссии в различных условиях, включая карьерные самосвалы (Иллюстрация 3).

Экспонат 3

Мы стремимся предоставить людям с ограниченными возможностями равный доступ к нашему веб-сайту. Если вам нужна информация об этом контенте, мы будем рады работать с вами. Пожалуйста, напишите нам по адресу: [email protected]

Сжигание водорода — это зарождающееся решение, но оно может заполнить важную нишу за счет использования устоявшихся технологий и цепочек поставок

Среди четырех технологий с нулевым уровнем выбросов сжигание водорода все еще находится в зачаточном состоянии, несмотря на (неоднородную) историю, восходящую к двигателю де Риваза 1806 года, который работал на водородно-кислородной смеси. Долгое время двигатели внутреннего сгорания на водороде игнорировались, так как очень высокая стоимость водорода делала трансмиссию неэкономичной. Однако сегодня некоторые автопроизводители, поставщики комплектующих и стартапы пересматривают возможность сжигания водорода в качестве дополнительного компонента своих будущих портфелей силовых агрегатов, наряду с батареями и топливными элементами.

Несмотря на впечатляющие разработки, технологии аккумуляторов и топливных элементов еще не готовы удовлетворить требования очень высокой мощности, необходимые для суровых условий, которым подвергаются многие большегрузные автомобили (особенно в сегменте внедорожников). Например, карьерным самосвалам требуется мощность в несколько мегаватт, они работают круглосуточно и подвергаются сильным вибрациям и нагреву, а также воздействию грязи в воздухе. Двигатели внутреннего сгорания удовлетворяли этим требованиям на протяжении десятилетий, и переход с дизельного топлива на водород мог бы стать простым способом обезуглероживания этих двигателей с относительно небольшими требованиями к дальнейшим техническим инновациям.

Повышение рентабельности аккумуляторных электромобилей за счет снижения структурных затрат

Даже там, где аккумуляторы и топливные элементы технически осуществимы, сжигание водорода может занять нишу. Низкие капитальные затраты на двигатели внутреннего сгорания, снижение цен на водород и относительно высокий КПД, достигаемый двигателями h3-ICE при высоких нагрузках, создают условия, при которых сжигание водорода может быть конкурентоспособным решением по совокупной стоимости владения (Иллюстрация 4). Более того, поскольку двухтопливные двигатели внутреннего сгорания могут работать на водороде, сжиженном природном газе (СПГ) или дизельном топливе (или на смеси водорода и газа), в зависимости от их наличия, они могут способствовать обезуглероживанию тех сегментов транспортных средств, в которых снабжение водородом и инфраструктура еще не достигли полной покрытие.

Экспонат 4

Мы стремимся предоставить людям с ограниченными возможностями равный доступ к нашему веб-сайту. Если вам нужна информация об этом контенте, мы будем рады работать с вами. Пожалуйста, напишите нам по адресу: [email protected]

Помимо этих соображений, h3-ICE предлагают другие преимущества для OEM-производителей автомобилей и поставщиков компонентов: они используют современные инженерные ноу-хау и рабочие места, опираются на существующие цепочки поставок и производственные мощности в автомобильной промышленности и не создают устойчивости и целостности. проблемы, связанные с поставкой и переработкой драгоценных металлов или редкоземельных элементов.

Сжигание водорода и водородные топливные элементы дополняют друг друга, поскольку они процветают в одной и той же экосистеме

Одной из проблем, связанных с h3-ICE, является их предполагаемая конкуренция с водородными топливными элементами. Однако, несмотря на то, что есть некоторые приложения, в которых эти две технологии могут конкурировать, более вероятно, что обе они могут помочь увеличить долю водорода в будущем составе силовых агрегатов и способствовать успеху друг друга.

Для обоих силовых агрегатов наличие станций заправки водородом и стоимость водорода на
насос являются ключевыми факторами, которые определят успех и вызывают наибольшую озабоченность сегодня.
Однако для обоих силовых агрегатов требуется (в основном) одинаковая инфраструктура.
5

5.

Двигатели внутреннего сгорания на водороде требуют более низкого уровня чистоты водорода, чем топливные элементы. Соответственно, они могут использовать водород, предусмотренный для FCEV, но дополнительно использовать менее дорогой водород в системе заправки двойного класса, где это возможно.

; таким образом, каждый автомобиль h3-ICE поможет снизить затраты на водородные топливные элементы и наоборот. Точно так же обе силовые установки используют одну и ту же технологию водородного бака, что составляет значительную долю общих затрат на силовую установку. Предоставление OEM-производителям и поставщикам резервуаров возможности амортизировать НИОКР и капиталовложения в отношении большего количества транспортных средств поможет снизить кривую затрат для всех транспортных средств, работающих на водороде, и поддержит конкурентоспособность обоих решений. Наконец, некоторые игроки активно разрабатывают гибридные решения с водородными двигателями внутреннего сгорания, топливными элементами и батареями, чтобы максимизировать эффективность при переменных профилях нагрузки.

Достижение нулевого уровня выбросов в транспортных сегментах во всем мире является огромной проблемой; тем не менее, h3-ICE могут играть свою роль в нескольких приложениях, предоставляя дополнительные решения для FCEV и BEV.

Преимущества

h3-ICE включают меньшие потери полезной нагрузки и требования к пространству, более быстрое время дозаправки по сравнению с грузовиками BEV, более низкие затраты и более высокие допуски на тепло и вибрацию. Этими преимуществами могли бы воспользоваться различные сегменты транспортных средств, в том числе следующие:

  • легковые автомобили, такие как эвакуаторы
  • транспортных средств средней грузоподъемности, таких как среднемагистральные
    и пожарные машины
  • большегрузные автомобили, такие как бетоновозы
  • горнодобывающая и строительная техника, такая как гусеничные бульдозеры, экскаваторы и самосвалы
  • сельскохозяйственные транспортные средства, такие как уборочная техника и тракторы

Несколько игроков, в том числе OEM-производители автомобилей, поставщики двигателей, инженерно-сервисные компании и стартапы h3-ICE, уже исследуют сжигание водорода в рамках своих предложений по нулевым выбросам на дорогах и внедорожных транспортных средствах. Важно отметить, что они сопоставляют этот потенциал с дополнительными ресурсами НИОКР, необходимыми для разработки технологии аккумуляторов и топливных элементов. В частности, Китай набирает обороты в отношении h3-ICE. Будущий портфель силовых агрегатов будет сложным, но добавление к нему автомобилей с водородным двигателем может стоить затраченных усилий.

Что эффективнее? Водород или аккумулятор?

Но есть и эмоциональные проблемы: Страх перед дальностью действия и быстрая зарядка. Авторы исследования убеждены, что обе эти проблемы будут решены и больше не будут сдерживать распространение электромобилей на фазе вытягивания с 2023/2025 гг. Диапазоны будут увеличиваться, больше точек зарядки, в том числе точек быстрой зарядки, сведет к минимуму страх оказаться в затруднительном положении. Наконец, есть дискуссия о фактическом CO 2 экономия: Поскольку электричество, используемое для производства электромобилей, все еще «грязное», по крайней мере, не везде, электромобиль сегодня имеет сравнительно большой «рюкзак» при его производстве. Исследования подсчитали, что он экономит больше CO 2 , чем двигатель внутреннего сгорания только после более чем 100 000 километров пробега (производство и эксплуатация). Согласно исследованию, это тоже изменится в пользу электромобилей в течение следующих нескольких лет: больше зеленой электроэнергии в производстве электромобилей и аккумуляторов постепенно сделает этот «первоначальный рюкзак» меньше, а электромобиль будет экономить больше. СО 2 , быстрее. Компания Horváth & Partners также столкнулась с критикой многих сторонников водорода за то, что следует принимать во внимание так называемое темное затишье в работе батареи. Темное затишье означает время, когда электричество не может быть выработано из-за темноты и/или штиля. Для этого к соответствующей дополнительной потребности добавлялась первичная потребность батареи в энергии.

Остается самая интересная часть исследования: какая энергия имеет наибольшую эффективность и является наиболее рентабельной для вождения электромобилей? Аккумулятор или водород?
В электромобилях с батарейным питанием только восемь процентов энергии теряется во время транспортировки, прежде чем электричество накапливается в батареях транспортных средств. Когда электрическая энергия, используемая для привода электродвигателя, преобразуется, теряется еще 18 процентов. Это дает электромобилю с батарейным питанием уровень эффективности от 70 до 80 процентов, в зависимости от модели.

В электромобиле, работающем на водороде, потери значительно больше: 45 процентов энергии уже теряется при производстве водорода путем электролиза. Из оставшихся 55 процентов исходной энергии еще 55 процентов теряются при преобразовании водорода в электричество в автомобиле. Это означает, что электромобиль с водородным двигателем достигает КПД только от 25 до 35 процентов, в зависимости от модели. Для полноты картины: при сжигании альтернативных видов топлива эффективность еще хуже: всего 10-20 процентов общей эффективности.

«В дополнение к очень реальному потенциалу зеленого водорода в настоящее время существует опасная реклама», — предупреждают эксперты из консалтинговой компании Boston Consulting Group (BCG) в новом исследовании, цитируемом Handelsblatt. К таким же выводам приходит и исследование Horváth&/Partners.

Авторы исследования пришли к выводу, что вместо того, чтобы тратить миллиарды на видение водородного общества, инвестиции в эту многообещающую технологию должны быть сосредоточены на приложениях, в которых они также имеют экономический смысл. «Мы считаем, что существует большой потенциал, если зеленый водород будет продвигаться в приложениях, в которых он действительно может закрепиться в долгосрочной перспективе. Прежде всего в промышленности, а также в сфере тяжелых грузов, воздушных и морских перевозок», — говорит Франк Клоуз, соавтор исследования.

Вывод ясен: электромобили на топливных элементах имеют много преимуществ (дальность пробега, быстрая заправка, отсутствие тяжелой батареи на борту), но один решающий недостаток: они сравнительно неэффективны – как с точки зрения экономичности, так и с точки зрения стоимости. «Ни одна устойчивая экономика не может позволить себе использовать в два раза больше возобновляемой энергии для автомобилей на топливных элементах вместо автомобилей с батарейным питанием», — говорит Дитмар Фоггенрайтер, руководитель исследования. Водород можно было использовать только в нишах, в грузовиках и автобусах и на больших расстояниях. Решающую роль здесь играют вес батареи, запас хода и время заправки. Она чрезвычайно возрастает с ростом емкости, что делает аккумуляторы неинтересными даже для грузовых автомобилей. Кроме того, существующие заправочные станции для грузовиков могут быть преобразованы в сеть водородных заправочных станций с управляемыми усилиями из-за их меньшего количества.

И что от этого выигрывает потребитель? Ясно одно: электромобили с водородным двигателем будут становиться все более дорогими в эксплуатации, чем автомобили с батарейным питанием, не только с точки зрения покупки, но и с точки зрения эксплуатации. Двойная потребность в первичной энергии для транспортных средств с водородным двигателем по сравнению с транспортными средствами с батарейным питанием отразится на потребительских ценах. Водители уже платят от девяти до двенадцати евро за 100 километров за автомобили с водородным двигателем, но только от двух до семи евро за 100 километров (в зависимости от цен на электроэнергию в отдельных странах) за электромобили с батарейным питанием, в зависимости от индивидуальных особенностей.

Back to top