Содержание
Измерение дымности отработавших газов дизельных двигателей
СОДЕРЖАНИЕ:
- Проведение измерений в режиме свободных ускорений
- Проведение измерений в режиме максимальной частоты вращения
Для автомобилей с дизельными двигателями, находящимися в эксплуатации, действует ГОСТ 21393-75 «Автомобили с дизелями. Дымность отработавших газов. Нормы и методы измерений. Требования безопасности» с изменением №2. Стандарт распространяется на автомобили и автобусы с дизельными двигателями.
Основным нормируемым параметром дымности является натуральный показатель ослабления светового потока K м-1, вспомогательным – коэффициент ослабления светового потока N %. Натуральный показатель ослабления светового потока K, м-1 – величина, обратная толщине слоя отработавших газов, проходя через который поток излучения от источника света ослабляется в «е» раз (е=2,178 – основание натуральных логарифмов).
Коэффициент ослабления светового потока N, % представляет собой степень ослабления светового потока вследствие поглощения и рассеивания света отработавшими газами при прохождении ими рабочей трубы дымомера. Пересчет значений К в N приведены в таблице.
Пересчет значений натурального показателя ослабления светового потока в коэффициент ослабления светового потока (для N, приведенного к шкале дымомера с эффективной базой 0,43 м).
К, м-1 | 0,0 | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,7 | 0,9 | 1,2 |
N, % | 0,0 | 4 | 8 | 11 | 15 | 20 | 25 | 31 | 40 |
К, м-1 | 1,4 | 1,6 | 1,9 | 2,5 | 2,8 | 3,5 | 4,0 | 4,6 | ∞ |
N, % | 45 | 50 | 56 | 66 | 70 | 78 | 81 | 86 | 100 |
Показатели ослабления светового потока K м-1 и коэффициент ослабления светового потока N %. определяются на холостом ходу: на режиме свободного ускорения, а также при максимальной частоте вращения.
Измерения производятся на неподвижно стоящем автомобиле с исправной системой выпуска отработавших газов и после подготовки дымомера к работе.
- Установить оптический детектор на выхлопную трубу проверяемого автомобиля (ДО-1) или подключить гибкий шланг измерительного зонда к основному прибору (MDO2-LON) и закрепить зонд на выхлопной трубе. Подключить датчик температуры масла (MDO2-LON).
- Подключить датчик частоты вращения коленчатого вала к двигателю.
- Запустить двигатель и дождаться его прогрева до рабочей температуры. Установить минимальную частоту вращения вала двигателя.
Проведение измерений в режиме свободных ускорений
Перед началом измерений должна быть выполнена серия из шести повторений цикла изменения частоты вращения вала дизеля от минимальной до максимальной, который осуществляется путем быстрого, но плавного нажатия на педаль подачи топлива (до упора) с интервалом не менее 7 и не более 15 с. Затем производится серия из не менее чем четырех измерений следующего типа. Быстро, но не резко нажимают на педаль управления подачей топлива и удерживают ее в нажатом положении 2…3 с, поддерживая постоянную частоту вращения, ограничиваемую регулятором ТНВД. При этом измеряется пиковое значение натурального показателя ослабления светового потока К, частота вращения, ограниченная регулятором, и частота вращения при холостом ходе.
При каждом последующем измерении фиксируют пиковое значение натурального показателя ослабления светового потока К, когда четыре последовательных значения показателя располагаются в зоне шириной 0,25 м-1 по шкале К, но не образуют убывающую последовательность. За результат измерения принимают среднее арифметическое значение результатов этих четырёх измерений. Пример: пусть при проведении испытаний получены следующие значения по шкале К при проведении проверки на режиме свободных ускорения для двигателя без наддува 1,15; 1,0; 0,8; 1,0. Несмотря на то, что максимальная величина К не превышает допустимого значения 1,2, разница между значениями 1,15 и 0,8 превышает значение 0,25 м-1, а это значит что данный автомобиль не проходит тестовую проверку.
Проведение измерений в режиме максимальной частоты вращения
Измерения на этом режиме производятся не позднее, чем через 60 с после испытаний на режиме свободного ускорения. Плавно нажимают на педаль управления подачей топлива и удерживают ее в нажатом положении 2…3 с.. При этом частота вращения коленчатого вала двигателя будет поддерживаться регулятором частоты вращения ТНВД. Дымность измеряют не ранее, чем через 10 секунд после впуска ОГ в прибор. Измерение считают достоверным, если значения дымности расположены в зоне шириной не более 6 % по шкале N. За результат измерения следует принимать среднее арифметическое значение крайних показаний дымности.
Предельно допустимые показатели дымности при испытаниях автомобилей с дизелями по ГОСТ 21393-75 с изменениями №2 указаны в таблице:
Таблица. Допустимые нормы дымности для автомобилей с дизельными двигателями
Режим измерения дымности | Предельно допустимое значение показателя Кдоп. | Предельно допустимое значение показателя Nдоп.,% |
Свободное ускорение для автомобилей с дизелями: без наддува с наддувом Максимальная частота вращения | 1,2 1,6 0,4 | 40 50 15 |
При контрольных проверках дымности ОГ при эксплуатации (на дороге) нормы Кдоп., указанные в таблице, для режима свободного ускорения могут быть превышены, но не более чем на 0,5 м-1.
Показания по дымности и содержанию оксида углерода и углеводородов в отработавших газах изменяются в зависимости от атмосферного давления, поэтому при проверках необходимо учитывать поправочный коэффициент на отклонение атмосферного давления от нормального. Коэффициент изменяется по прямолинейной зависимости от 1,21 при атмосферном давлении 650 мм рт. ст. до 0,92 при давлении 800 мм рт. ст.
Ошибка 404: страница не найдена!
ТЕЛЕФОН ДОВЕРИЯ ПО НАРУШЕНИЯМ ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ: 8 (3842) 34-08-31, 8 (3842) 34-23-03 В Сибирском управлении Ростехнадзора имеются вакансии: государственный инспектор, главный государственный инспектор, заместитель начальника отдела. Информация о вакансиях по тел. (3842) 71-63-20 доб. 42-17
К сожалению, запрошенный вами документ не найден. Возможно, вы ошиблись при наборе адреса или перешли по неработающей ссылке. Для поиска нужной страницы, воспользуйтесь картой сайта ниже или перейдите на главную страницу сайта. Поиск по сайтуКарта сайта
|
Полное руководство по измерению света
В этом новом руководстве вы узнаете все, что вам нужно знать об измерении света.
Важно понимать различные термины, используемые для характеристики света. Это руководство охватывает все: от измерения света в электромагнитном спектре до понимания воспринимаемой человеческим глазом яркости, интенсивности света и инструментов, используемых для измерения света.
Погрузимся в…
Хотите узнать больше об измерении освещенности? Получите бесплатную версию в формате PDF
Получите версию в формате PDF, чтобы сохранить ее на рабочем столе и читать в удобное для вас время.
(Электронная почта не требуется):
Содержание
Глава 1: Единицы измерения света – Общие термины измерения освещенности
90 014 Глава 2: Радиометрия — Сколько света
Глава 3: Фотометрия — Как вы видите свет (человеческое восприятие)
Глава 4. Спектрометрия . Измерение длины волны
Глава 5. Способы измерения света . Как измерить интенсивность света
Глава 6. Инструменты для измерения света 04
Глава 1:
Единицы света
(Общие термины измерения света)
В светотехнической промышленности используются несколько различных единиц измерения света, в зависимости от того, какая информация необходима.
Ниже приведены некоторые из наиболее распространенных единиц и терминов:
Поток (световой поток) — происходит от латинского слова «Fluxus», что означает поток, поток — это количество энергии, излучаемой светом в секунду. измеряется в люменах (лм) .
Когда дело доходит до освещения, необходимо учитывать Вт (Вт) (потребляемая энергия) и люмен (лм) (яркость). Или потребление электроэнергии по сравнению со светоотдачей. Люмены взвешиваются для человеческого восприятия, а ватты — нет.
- Люмен (лм) — Единица светового потока в системе СИ, это единица светового потока.
- Ватт (Вт) — Единица измерения электрической мощности, это радиометрическое измерение.
Сила света — Количество видимого света, излучаемого в единицу времени на единицу телесного угла
- Кандела (кд) — Основная единица силы света в системе СИ. Это единица силы света источника света в определенном направлении. 1 люмен = 1 кандела x стерадиан (единица телесного угла в системе СИ). 92 = 1 нит
- Nit (nt) — название, данное единице яркости
.
Для облегчения понимания представьте себе лампу, излучающую свет.
- Свет от лампы измеряется в люменах (мера силы света)
- Свет, падающий на поверхность, выражается в люксах
- Человеческий глаз воспринимает это визуально с точки зрения яркости или яркости, которая измеряется в канделах
Глава 2
Радиометрия — Сколько света
Что такое радиометрия
В целом, радиометрия — это наука об измерении электромагнитного излучения. Что касается оптики, то это относится к обнаружению и измерению световых волн в оптической части электромагнитного спектра (инфракрасный, видимый и ультрафиолетовый). Радиометрия включает также характеристику распределения абсолютной мощности излучения.
Почему важна радиометрия
Радиометрия охватывает широкий спектр потребностей в восприятии и измерении света.
Вот несколько общих применений:
[Источник]
4 Обычно используемые геометрические описания в радиометрии
Фундаментальная единица радиометрии называется Radiant Flux .
1. Лучистый поток / Мощность — Выражаемый в ваттах лучистый поток можно определить как общую оптическую мощность источника света. Его также можно определить как скорость потока лучистой энергии. Вы можете думать об этом как об общем количестве света, излучаемого лампочкой.
2. Интенсивность излучения — Интенсивность излучения, также измеряемая в ваттах, представляет собой количество потока, испускаемого через известный телесный угол.
3. Излучение — Измеряемое в ваттах на квадратный метр, излучение представляет собой измерение лучистого потока на известной площади поверхности.
4. Излучение — Измеряется в ваттах на квадратный метр Стерадиан, излучение является мерой интенсивности излучения, излучаемого с единицы площади источника.
Глава 3:
Фотометрия — как вы видите свет
(видимый свет)
Что такое фотометрия
Фотометрия – это подмножество радиометрии, применимое только к видимой части электромагнитного спектра. В то время как радиометрия фокусируется на измерении энергии излучения с точки зрения абсолютной мощности, фотометрия учитывает реакцию человеческого глаза и фокусируется на измерении света с точки зрения воспринимаемой яркости.
Фотометрия – это «наука об измерении интенсивности света, где «свет» относится к полному интегральному диапазону излучения, к которому чувствителен глаз».
Фотометрия отличается от радиометрии, в которой обнаруживается и измеряется каждая отдельная длина волны в электромагнитном спектре, включая ультрафиолетовое и инфракрасное излучение». https://www.photonics.com/a25119/Photometry_The_Answer_to_How_Light_Is_Perceived
Почему важна фотометрия
Фотометрия измеряет видимый свет с точки зрения человека.
Общие области применения фотометрии:
Как и в случае с радиометрией, применение фотометрии также разнообразно. Он используется в ряде отраслей для проверки интенсивности света, излучаемого дисплеями, приборными панелями, приборами ночного видения и многим другим.
Основной единицей фотометрии является люмен. Фотометрия состоит из четырех основных понятий:
1. Световой поток — Измеряемый в люменах, световой поток — это измерение общей воспринимаемой мощности, излучаемой во всех направлениях источником света.
2. Сила света Измеряется в канделах. Сила света — это количество света, излучаемого источником в определенном направлении.
3. Освещенность — Измеряется в люменах на единицу площади, освещенность относится к количеству света, падающего на поверхность. Освещенность также может выражаться в фут-канделях.
4. Яркость — Яркость, измеряемая в канделах на квадратный метр или нит, представляет собой общий свет, излучаемый или отраженный от поверхности в заданном направлении. Он показывает, насколько ярко мы воспринимаем результат взаимодействия падающего света и поверхности.
Изображение предоставлено: JC Walker, Light Sources — Technology and Applications [CC Attribution-ShareAlike 3.0]
Глава 4:
Спектрометрия — Измерение длины волны
Спектрометрия известна наукой и использованием спектрометров для измерения и анализа. Это изучение взаимодействий между светом и веществом, а также реакций и измерений интенсивности излучения и длины волны 9. 0015 .
На приведенной ниже диаграмме показано, как спектрометрия используется для анализа образца. Образец показан на шаге 2. Спектрометрию также можно использовать для анализа длин волн, присутствующих в данном источнике света. В этом случае между источником и дифракционной решеткой не будет образца.
i Mage Credit: Publiclaboratory Спектрометрическая диаграмма [CC BY 2.0] (https://creativecommons.org/licenses/by/2.0/), с flickr
Спектрометрия использует:
В статье, написанной ATA Scientific Instruments, Что такое спектрометрия и для чего она используется, они подробно описывают современные способы использования спектроскопии:
- В астрономии мы можем использовать уникальные спектры для определения химического состава космических объектов. .
- Мы также можем использовать его для определения свойств космических объектов: главным образом их температуры, а также их скорости.
- Он применяется для скрининга метаболитов, а также для анализа и улучшения структуры лекарств.
Биомедицинское использование света включает диагностические и терапевтические применения. Узнайте больше о спектроскопии в биомедицинских службах.
Спектрорадиометрия — это «измерение световой энергии на отдельных длинах волн в пределах электромагнитного спектра. Оно может быть измерено по всему спектру или в определенном диапазоне длин волн».
Спектрорадиометрия. В KonicaMinolta.us: Радиометрия, спектрорадиометрия и фотометрия Получено с: https://sensing.konicaminolta.us/learning-center/light-measurement/radiometry-spectroradiometry-photometry/
Две основные концепции спектрорадиометрии:
Спектральное излучение — яркость поверхности на единицу частота или длина волны. Единицей СИ для спектральной яркости является ватт на квадратный метр, стерадиан нанометр.
Спектральная освещенность — освещенность поверхности на единицу частоты или длины волны. Единицей СИ для спектральной освещенности является ватт/кубический метр.
Глава 5:
Как измерить интенсивность света
Расчет интенсивности света зависит от источника света и направления, в котором он излучает свет. Количество света, падающего на поверхность, называется освещенностью и измеряется в люксах.
Science написал пошаговую статью/эксперимент о том, как рассчитать интенсивность света с интенсивностью света вокруг лампочки, излучающей свет одинаково во всех направлениях. В заключении уточнялось, что «интенсивность света в вашей точке на сфере равна количеству ватт, излучаемому лампочкой, деленному на площадь поверхности сферы». Полные расчеты можно найти здесь.
В фотометрии сила света является мерой мощности излучения, излучаемой объектом в определенном направлении и зависит от длины волны излучаемого света.
Что имеет наибольшее значение с точки зрения измерения интенсивности света , так это фактическое количество люменов, падающих на конкретную поверхность.
Измерение уровня освещенности
Как отмечалось выше, поток — это общий световой поток. В ваттах относится абсолютная мощность, а в люменах взвешиваются для человеческого восприятия.
В чем разница между яркостью и освещенностью
«Яркость — это количество света, отраженного от освещаемой поверхности».
Освещенность измеряется как количество света, падающего на поверхность.
Яркость — это то, что мы измеряем от поверхности, на которую падает свет.
Top Light Co сказала, что это лучшее…
Думайте об этом так – IL-Luminance, IL, I = падающий свет. Освещенность измеряет падающий свет. Яркость — это то, что покидает поверхность — L = уход. Освещенность измеряет инцидент, яркость измеряет то, что уходит.
Глава 6:
Какие инструменты используются для измерения освещенности
1. Фотометр
Фотометр — это прибор, измеряющий интенсивность света. Его можно определить как прибор, измеряющий видимый свет.
Фотометры двух типов:
1. Измерители яркости — определяют выходную мощность источника света в видимом диапазоне
Измерения яркости используются для таких продуктов, как светофоры и задние фонари автомобилей.
2. Измерители освещенности — измеряют видимую энергию, падающую на поверхность объекта.
Измерители яркости и колориметры
2. Интегрирующая сфера
«Интегрирующая сфера собирает электромагнитное излучение от источника, полностью внешнего по отношению к оптическому устройству, обычно для измерения потока или оптического ослабления».
Основы и приложения интегрирующей сферы
3. Спектрометр
«Основная функция спектрометра состоит в том, чтобы принимать свет, разбивать его на спектральные компоненты, оцифровывать сигнал как функцию длины волны, считывать его и показать его через компьютер».
Спектрометр
4. Экспонометр
Экспонометр — это устройство, используемое для измерения уровня освещенности . Уровень освещенности — это количество света, измеренное в плоскости.
Заключение
Существует множество терминов и технологий, используемых, когда речь идет об мощности света и его измерении. Это ключ к пониманию того, как все эти уникальные аспекты объединяются.
Понимание измерения света помогает нам, как поставщику решений для освещения, соответствовать требованиям к яркости и однородности ваших конкретных приложений.
Сила света | физика | Британика
- Развлечения и поп-культура
- География и путешествия
- Здоровье и медицина
- Образ жизни и социальные вопросы
- Литература
- Философия и религия
- Политика, право и правительство
- Наука
- Спорт и отдых
- Технология
- Изобразительное искусство
- Всемирная история
- В этот день в истории
- Викторины
- Подкасты
- Словарь
- Биографии
- Резюме
- Популярные вопросы
- Инфографика
- Демистификация
- Списки
- #WTFact
- Товарищи
- Галереи изображений
- Прожектор
- Форум
- Один хороший факт
- Развлечения и поп-культура
- География и путешествия
- Здоровье и медицина
- Образ жизни и социальные вопросы
- Литература
- Философия и религия
- Политика, право и правительство
- Наука
- Спорт и отдых
- Технология
- Изобразительное искусство
- Всемирная история
- Britannica объясняет
В этих видеороликах Britannica объясняет различные темы и отвечает на часто задаваемые вопросы. - Britannica Classics
Посмотрите эти ретро-видео из архивов Encyclopedia Britannica. - Demystified Videos
В Demystified у Britannica есть все ответы на ваши животрепещущие вопросы. - #WTFact Видео
В #WTFact Britannica делится некоторыми из самых странных фактов, которые мы можем найти. - На этот раз в истории
В этих видеороликах узнайте, что произошло в этом месяце (или любом другом месяце!) в истории.
- Студенческий портал
Britannica — это главный ресурс для учащихся по ключевым школьным предметам, таким как история, государственное управление, литература и т. д. - Портал COVID-19
Хотя этот глобальный кризис в области здравоохранения продолжает развиваться, может быть полезно обратиться к прошлым пандемиям, чтобы лучше понять, как реагировать сегодня. - 100 женщин
Britannica празднует столетие Девятнадцатой поправки, выделяя суфражисток и политиков, творящих историю.