Обозначение переменного напряжения: AC, DC — что это такое?

Содержание

определение, в чём отличие AC от постоянного значения

Простой способ визуализировать различие между постоянным и переменным токами — построить графики зависимости их направления от времени. Первый будет выглядеть как прямая, а второй как волнообразная линия. Один цикл этой кривой и есть графическая основа того, как обозначается переменный ток на схемах и пиктограммах (~), а аббревиатура AC (Alternating Current) устоялась как общепризнанный термин в текстах.

  • Обозначения DC и AC
  • Идеи Эдисона
  • Победа Теслы
  • Ренессанс электрической войны

Обозначения DC и AC

Все проводники имеют свободные электроны, способные перемещаться в присутствии разности потенциалов. Этот поток заряженных частиц в замкнутом контуре называется электрическим током. Если электрический заряд движется только в одном направлении, то это явление называется постоянным электрическим током, его обозначение «—» или DC (Direct Current).

Определение переменного тока можно вывести от обратного: это будет движение зарядов, меняющих своё направление на периодической основе. Колебания АС могут принимать самые разнообразные формы, например:

  • пилообразную;
  • квадратную;
  • треугольную;
  • синусоидальную.

Синусоидальный AC ток — это тот тип энергии, который транспортируется по современным электрическим сетям. Его огромное преимущество для энергосистем в том, что он позволяет достаточно просто изменять передаваемое напряжение с помощью трансформаторов, а такую форму волны легко генерировать. Эти качества позволяют экономить огромное количество денег и материальных ресурсов при производстве и передаче электроэнергии на значительные расстояния.

Проиллюстрировать выгоды от использования АС энергокомпаниями можно на следующем примере. Допустим, что в качестве генерирующей мощности есть электростанция, которая способна производить 1 млн ватт энергии.

Для наглядности удобно будет рассмотреть 2 способа её транспортировки:

  1. Передать по сетям 1 млн ампер с напряжением 1 вольт.
  2. Транспортировка тока силой в 1 ампер и напряжением 1 млн вольт.

Главное отличие заключается в следующем: во втором случае для передачи энергии потребуется проводник небольшой толщины, в то время как в первом — без кабеля с огромным сечением не обойтись. Поэтому энергетические компании преобразуют сгенерированную энергию в AC с очень высоким напряжением для транспортировки, а затем понижают в непосредственной близости от потребителей.

Ещё одним преимуществом AC для энергокомпаний является превосходство в надёжности и простоте генераторов переменного тока в сравнении с динамо. Кроме того, AC обладает такими преимуществами:

  • позволяет эксплуатировать сравнительно более эффективные, простые и надёжные электрические машины;
  • не разрушает коммутационные устройства.

Вся электроника и цифровая техника потребляет DC. Как правило, генерация постоянного тока производится с помощью электрохимических и гальванических элементов. Это сравнительно дорогие способы получения электричества, поэтому существует немало конструкций устройств, преобразующих AC в DC, основанных на предотвращении протекания тока в обратном направлении и выпрямлении синусоиды с помощью фильтров.

В комбинации с трансформаторами выпрямители позволяют получать из сети DC требуемых параметров и высокого качества.

Идеи Эдисона

Современную жизнь невозможно представить без электричества. Для того чтобы оно служило в гражданских и промышленных целях, его необходимо не только произвести, но и доставить потребителю. Первым, кто решил производить электроэнергию в большом объёме и транспортировать её на заводы, в офисы и домашние хозяйства, был американский предприниматель Томас Эдисон — один из самых влиятельных изобретателей мира.

Для реализации своей идеи он спроектировал и испытал паровые генераторы постоянного тока, счётчики электрической энергии и элементы распределительных сетей. Провести первую электрификацию освещения было в то время непросто. Владельцы газовых компаний рассматривали Эдисона как опасного конкурента, способного поставить существование их предприятий под угрозу. Но изобретателя ничто не могло остановить. Ни колоссальная стоимость прокладки кабелей в тротуарах, ни аварии во время испытаний не помешали ему в сентябре 1882 г. запустить первую осветительную сеть из пяти тысяч ламп.

Через 5 лет работало уже более 50 электростанций Эдисона. Несмотря на большой успех изобретателю не удалось расширить географию своих электрических сетей на весь мир. Жители районов, в которых находились электростанции, жаловались на дым и копоть, и добились закрытия производств Эдисона. Таким образом, первое поколение угольных электростанций со временем прекратило свою работу, уступив место тысячам новым, генерирующим AC.

Победа Теслы

Бо́льшая часть раннего распределяемого электричества была постоянным током, а стандартов для потребителей не существовало. Например, дуговые лампы нуждались в нескольких тысячах вольт, а лампы накаливания Эдисона требовали 110 В, трамваи Сименса работали от 500 В, а промышленные двигатели на предприятиях могли в разы отличаться по напряжению.

Электрические компании вынуждены были создавать и содержать одновременно несколько генерирующих линий для различного класса нагрузок. Можно сказать, что для повсеместного использования сетей DC было два серьёзных препятствия:

  • близость генераторов к нагрузкам;
  • сложности с обеспечением разнообразия напряжений.

Хорватский учёный Тесла, работавший с Эдисоном, считал, что использование переменного тока в электрических сетях может решить эти проблемы. Их разногласия относительно перспектив переменного напряжения закончились тем, что исследователь АС продолжил свои работы уже с конкурентом Эдисона — Джорджем Вестингаузом. Тесла не открыл переменный ток, но был изобретателем синхронного генератора и асинхронного двигателя, а также автором патентов, касающихся работы многофазных устройств.

Преимущества AC для генерации и транспортировки были очевидны, но Эдисон, вместо того, чтобы признать это, оставался твёрд в продвижении DC и пытался дискредитировать своих конкурентов. Он начал популяризировать идеи о том, что АС смертоносен для животных и людей. Например, Эдисон даже стал изобретателем электрического стула на переменном токе с целью получить основания для пропагандистской компании, посвящённой опасности АС.

Несмотря на то что антирекламная кампания прошла успешно и дала ощутимые плоды, радость победы для Эдисона была недолгой. В 1892 г. немецкий физик Поллак изобрёл механический выпрямитель, с помощью которого стало возможным заряжать электрические батареи, и существование транспортировки DC потеряло своё последнее оправдание. Уже в 1893 году Чикагская мировая ярмарка была освещена от сети АС, что стало началом триумфа переменного тока в XX веке, а конкурентные события между изобретателями вошли в историю как «война токов».

Ренессанс электрической войны

Рост использования источников возобновляемой энергии в XXI веке привёл к появлению децентрализованных электросетей небольшого масштаба с потреблением электричества практически на месте производства. Для таких энергосистем преимущества AC не имеют никакого значения, поэтому применение в них постоянного тока оправдано.

Современная высокопроизводительная электроника осуществила прогресс в преобразовании энергии и позволяет трансформировать постоянный ток в диапазонах напряжений до 800 тыс. вольт с большей эффективностью, чем в электрических машинах АС. Эти инновации стали основой для строительства высоковольтных линий постоянного тока (HVDC) для передачи избыточной солнечной или ветровой энергии из одних регионов в другие. Строительство HVDC обходится приблизительно вдвое дороже традиционных, но из-за низких потерь и экологичности всей системы подобные инвестиции оправданы.

Всё большее количество электроприборов требуют постоянного тока. Компьютеры, светодиодное освещение и другие электронные устройства нуждаются в преобразовании и выпрямлении сетевого электричества. В ближайшие годы ожидается рост количества электрических транспортных средств. Современные распределительные системы DC способны со временем исключить в быту преобразователи напряжения и легко интегрировать в бытовые и промышленные сети фотоэлектрические элементы и накопительные батареи.

Передача высоковольтного DC в настоящее время уже проверенная и отработанная технология в таких странах, как Германия и Китай. Но для практической повсеместной реализации остаётся ещё много нерешённых вопросов. Как обе технологии будут сосуществовать? Что будет эффективными мерами безопасности? Какие технические и юридические мероприятия потребуются для перехода на постоянный ток? Преимущества и масштабы подобных изменений настолько значительны, что, видимо, речь идёт о смене парадигмы.

Обозначение постоянного и переменного тока на схемах

Каждый домашний мастер и начинающий электрик при выполнении электромонтажных работ пользуется специальными схемами. Для того чтобы правильно прочитать любую из них, необходимо знать все значки и символы, в том числе обозначение постоянного и переменного тока. Эта символика присутствует на корпусах большинства современных измерительных аппаратов, позволяющих определять значение всех основных электрических параметров.

Как обозначаются различные токи

По своим специфическим качествам электрический ток разделяется на два основных типа:

  • Постоянный ток. Обозначается прямой линией (—). Кроме того, используются символы DC – Direct Current, которые переводятся как постоянный ток.
  • Переменный ток. Известен под собственным обозначением в виде змейки (~) и символов АС, означающих Alternating Current.

Отличительной особенностью постоянного тока является его направленность. Он протекает лишь в одном определенном направлении, условно принимаемое от положительного контакта «+» к отрицательному контакту «-». От этого свойства и происходит наименование этого тока DC, который присутствует в солнечных панелях, всех типах сухих батареек и аккумуляторах, предназначенных для питания маломощных потребителей.

В некоторых технологических процессах, таких как дуговая электросварка, электролиз алюминия или электрифицированный железнодорожный транспорт, необходим постоянный ток DC с высоким значением силы. Чтобы его создать, необходимо выпрямить переменный или воспользоваться любым из генераторов постоянного тока.

Переменный ток AC, в отличие от постоянного, способен к изменению своего направления и величины. Существует параметр, известный как мгновенное значение переменного тока, определяемое в конкретный момент времени. Частота, с которой изменяется направление тока, составляет 50 Гц, то есть данная перемена происходит 50 раз в течение одной секунды.

Переменный ток AC может быть однофазным или трехфазным. В первом случае необходимо только два провода: основной и дополнительный, он же обратный. Именно по основному проводнику протекает электрический ток, а обратный считается нулевым проводом.

Трехфазное переменное напряжение вырабатывается соответствующим генератором тока AC. В этом процессе участвуют три обмотки, каждая из которых является своеобразной однофазной электрической цепью. Между собой они сдвинуты по фазе под углом 120 градусов. Благодаря данной системе электроэнергией могут быть обеспечены сразу три сети, независимые друг от друга. Для этого понадобится уже порядка шести проводов – трех прямых и трех обратных.

При необходимости дополнительные провода возможно соединить между собой и получить в итоге общий проводник, называемый нулевым или нейтральным. В этом случае проводники переменного тока на схемах обозначаются символами L1, L2, L3, а нулевой провод – буквой N.

Обозначения токов в измерительных приборах

Общепринятое обозначение постоянного и переменного тока нашло свое отражение в различных измерительных приборах, в том числе и на мультиметре. Вся необходимая символика наносится на лицевую панель того или иного устройства. Это позволяет измерить именно тот параметр, который необходим в данный момент.

Например, если на шкале выставлено положение АС, в этом случае можно проводить измерение значения переменного тока. Как правило, такие приборы предназначены для работы в электросетях с обычными напряжениями 220 или 380 вольт. Существуют модели с рабочими режимами в пределах 600 В и выше.

Если же мультиметр выставлен напротив отметки DC, то рабочий режим аппарата станет соответствовать постоянному току. В этом положении замеряется ток на аккумуляторах, батарейках и других источниках питания, вырабатывающих постоянный ток. В данном режиме требуется непременно соблюдать полярность полюсов. Диапазон измерений обычно составляет от нуля до нескольких тысяч вольт, в зависимости от характеристик конкретной модификации устройства.

Мультиметр: назначение, виды, обозначение, маркировка, что можно измерить мультиметром

Топ лучших мультиметров

Проверка светодиода мультиметром (тестером) на исправность

Токоизмерительные клещи: назначение, принцип работы, как пользоваться

Как измерить силу тока мультиметром — инструкция с видео

Как пользоваться мультиметром пошаговая инструкция

Символы мультиметра и их значение

Если вам нужен мультиметр для проверки электрического оборудования в доме, очень важно знать, что означают все эти символы на циферблате.

На заре появления электричества лаборанты могли измерять электрический ток в цепи с помощью амперметра (гальванометра) и напряжение с помощью вольтметра. Отсюда они могли рассчитать сопротивление.

В 1920 году британский почтовый инженер Дональд Макади изобрел AVOmeter, который измерял все три величины (A = амперы, V = вольты, O = омы). Вскоре после этого электрики, работающие в полевых условиях, получили несколько портативных версий этого изобретения.

Современные мультиметры выполняют те же функции, что и AVOmeter, но они более сложны и могут выполнять множество других тестов. В зависимости от модели мультиметр может сказать вам, исправен ли диод или конденсатор, различить переменный и постоянный ток и измерить температуру провода. Функции обозначаются символами, расположенными вокруг циферблата.

Домовладельцам, занимающимся электромонтажными работами своими руками, не нужны те же функциональные возможности, что и специалистам по электронике, поэтому мультиметры, продаваемые в хозяйственных магазинах, менее сложны, чем те, что продаются в магазинах электроники. Даже в этом случае символы могут быть трудными для расшифровки. Вот краткое изложение электрических терминов и символов, которые вы найдете на базовом мультиметре для домашнего использования, и их значение.

На этой странице

Символы мультиметра, которые необходимо знать

Напряжение

Family Handyman

Мультиметры могут измерять напряжение постоянного тока (DC) и напряжение переменного тока (AC), поэтому им необходимо отображать более одного напряжения символ. На некоторых старых моделях напряжение переменного тока обозначено как В переменного тока. В наши дни производители чаще всего помещают волнистую линию над буквой V, чтобы обозначить переменное напряжение.

Для обозначения напряжения постоянного тока принято размещать пунктирную линию со сплошной линией над ней над буквой V. Чтобы получить показания напряжения в милливольтах (одна тысячная вольта), установите циферблат в положение мВ.

  • «V» с волнистой линией над ним = напряжение переменного тока.
  • «В» с одним пунктирным и одним сплошным над ним = напряжение постоянного тока.
  • «мВ» с одной волнистой линией или парой линий, одной пунктирной и одной сплошной, над ней = милливольты переменного или постоянного тока.

Ток

Семейный мастер на все руки

Как и напряжение, ток может быть переменным или постоянным. Поскольку единицей тока является ампер или ампер, его символом является А.

  • «А» с волнистой линией над ним = переменный ток.
  • «A» с двумя линиями, пунктирной и сплошной, над ней = постоянный ток.
  • мА = миллиампер.
  • мкА (µ — греческая буква мю) = микроампер (миллионные доли ампера).

Сопротивление

Семейный мастер на все руки

Мультиметр измеряет сопротивление, пропуская через цепь небольшой электрический ток. Символом единицы сопротивления, ома, является греческая буква омега (Ω). Измерители не различают сопротивление постоянному и переменному току, поэтому над этим символом нет линий.

На измерителях с параметрами выбора диапазона можно выбрать шкалу в килоомах (1000 Ом) и шкалу в мегаомах (один миллион Ом), которые представляют собой кОм и МОм соответственно.

  • Ом = Ом.
  • кОм = килоомы.
  • МОм = мегаом.

Непрерывность цепи

С помощью мультиметра проверьте наличие разрыва в электрической цепи. Счетчик измеряет сопротивление, и есть только два результата. Либо цепь разорвана (разомкнута), и в этом случае метр показывает бесконечное сопротивление, либо цепь не повреждена (замкнута), и в этом случае метр показывает 0 (или близко к этому).

Поскольку есть только две возможности, некоторые измерители издают звуковой сигнал при обнаружении непрерывности. Эта функция обозначена в настройках циферблата серией скобок увеличивающегося размера, обращенных влево, как боковая версия символа беспроводного приема на ноутбуке.

Тесты диодов и емкости

Семейный мастер на все руки

Специалисты по электронике чаще используют тесты диодов и емкости, чем электрики или домовладельцы. Но если у вас есть счетчик с этими функциями, полезно знать, что означают символы.

Функция проверки диодов выглядит как стрелка, указывающая на центр знака плюс. Когда эта функция выбрана, измеритель сообщит вам, работает ли диод (общий электронный компонент, который преобразует переменный ток в постоянный).

Функция емкости напоминает правую скобку справа от вертикальной линии. Оба пересекаются горизонтальной линией. Конденсаторы — это электронные устройства, которые накапливают заряд, и измеритель может измерять заряд.

Функция температуры измеряет температуру проводов цепи. Обозначается термометром.

Гнезда и кнопки

Семейный мастер на все руки

С каждым мультиметром поставляются два провода: черный и красный. Некоторые счетчики имеют три гнезда, а некоторые четыре. Гнезда, в которые вы подключаете провода, зависят от того, что вы тестируете.

  • COM — это обычный разъем, и он единственный черный. Вы всегда подключаете черный провод к этому гнезду.
  • A — это разъем, к которому подключается красный провод, если вы измеряете большой ток до 10 ампер.
  • мАОм является разъемом для любых других измерений, включая чувствительные измерения тока, напряжения, сопротивления и температуры, если измеритель имеет только три разъема.
  • мАмкА — разъем для чувствительных измерений тока (менее одного ампера), если счетчик имеет четыре разъема.
  • — разъем для всех других измерений, кроме тока.

В верхней части дисплея счетчика, над циферблатом, вы обычно найдете две кнопки, одну слева и одну справа.

  • Смена. Для экономии места производители могут назначать две функции некоторым положениям циферблата. Вы получаете доступ к функции, отмеченной желтым цветом, нажав кнопку Shift, которая обычно тоже желтая и может быть отмечена или не отмечена.
  • Удержание. Нажатие этой кнопки фиксирует текущее показание для дальнейшего использования.

Ручной и автоматический выбор диапазона

Старый аналоговый мультиметр со стрелкой должен иметь несколько настроек диапазона. Если бы у измерителя был только большой диапазон, его нельзя было бы использовать для чувствительных измерений, потому что стрелка почти не отклонялась бы. С другой стороны, если бы у измерителя был только небольшой диапазон, любое измерение, превышающее этот диапазон, независимо от того, какое оно было бы, отклонило бы стрелку до максимума.

Цифровые мультиметры со светодиодными дисплеями были представлены в 1970-х годах, и сегодня большинство мультиметров являются цифровыми. У некоторых все еще есть настройки диапазона, которые вы выбираете с помощью циферблата. Но все чаще измеритель выбирает диапазон автоматически.

Поскольку эти мультиметры не имеют настроек диапазона (которые могут занимать до 18 положений шкалы), мультиметры с автоматическим диапазоном могут иметь больше функций, чем мультиметры с ручной настройкой диапазона.

Примечание. Сохраните руководство пользователя мультиметра для справки. Храните руководство и мультиметр в чистоте и сухости в пластиковом пакете для хранения в морозильной камере с застежкой-молнией объемом в литр или галлон.

Символы мультиметра — ElectronicsHub

Когда вы имеете дело с электрическими цепями и приборами, мультиметр является обязательным устройством. Однако не многие люди легко знакомятся с мультиметром. Это потому, что слишком много символов и кнопок для работы. Иногда это может сбить с толку, и это помешает вам правильно использовать устройство и получить точные результаты. В этой статье мы объясним все символы мультиметра, чтобы вы могли правильно работать с устройством.

Краткое описание

Что такое мультиметр?

Мультиметр — это электронное устройство для измерения различных параметров электричества. Электрик использует мультиметр для проверки различных аспектов электрических цепей и приборов. Различные аспекты включают измерение тока в амперах, напряжения в вольтах и ​​сопротивления в омметрах.

На рынке доступны мультиметры двух типов; аналоговый и цифровой мультиметр . Цифровые мультиметры более популярны, так как они более точны в показаниях. В основном мультиметр состоит из четырех компонентов.

  1. Экран дисплея , где вы видите измерение.
  2. Кнопки для управления устройством.
  3. Поверните ручку , чтобы выбрать единицу измерения.
  4. Входные порты для ввода измерительных проводов, которые проводят тестирование.

Какие единицы измерения у мультиметра?

Если вы впервые пользуетесь мультиметром, вы обязательно будете в шоке. Несмотря на то, что он измеряет ток, напряжение и сопротивление, вы нигде не найдете ключевых слов. Эти ключевые слова представлены в единицах измерения: А (ампер), В (вольт), Ом (Ом) соответственно. Эти блоки также имеют подблоки для более эффективного представления измерений. Единицы измерения следующие:

  • К за килограмм , что означает 1000 раз.
  • М для мега или миллиона , что означает 10 00 000 раз.
  • м для милли , что означает 1/1000.
  • (µ) для микро , что означает 1/млн.

Как прочитать символы на мультиметре?

Стандартный мультиметр имеет следующие символы.

1. Кнопка удержания

После того, как вы сняли показания, вы нажимаете кнопку удержания, когда вам нужно сохранить/зафиксировать измерение на экране. Если вы не нажмете кнопку, измерение исчезнет с экрана, как только вы отсоедините измерительный провод от тестируемого объекта. Это полезно, когда вы хотите видеть измерения на экране в течение некоторого времени в соответствии с вашими требованиями.

2. Кнопка Min/Max

Эта кнопка сохраняет минимальное и максимальное значение измерения во время использования мультиметра. Стандартный мультиметр подаст звуковой сигнал, как только текущее измерение превысит сохраненное минимальное/максимальное значение. В некоторых цифровых мультиметрах на экране отображается минимальное/максимальное значение вместе с текущим измерением.

3. Кнопка диапазона

Мультиметр поставляется с различными диапазонами измерения. С помощью этой кнопки вы можете внести изменения из текущего диапазона, чтобы заранее установить другие в соответствии с доступностью. Это зависит от объектов, которые вы тестируете, нужен ли вам узкий или широкий диапазон.

4. Функциональная кнопка

Вы нажимаете эту кнопку, когда вам нужно активировать дополнительные функции символов набора номера. Вы увидите эти функции символов вокруг циферблата, выделенных желтым текстом. На самом деле, желтая кнопка на мультиметре — это функциональная кнопка, и она не всегда может быть снабжена надписью «функция».

5. Напряжение переменного тока

Обозначается заглавной буквой V с волнистой линией наверху. Символ обозначает напряжение. Вы должны переместить циферблат к этому символу, когда хотите измерить напряжение объекта. Его следует использовать при измерении напряжения переменного тока.

SHIFT: Hertz

Рядом с символом V вы увидите символ Hz желтого цвета. Как указывалось ранее, это второстепенная функция, и вы можете использовать ее, нажав функциональную кнопку. Символ измеряет частоту объекта в герцах.

6. Напряжение постоянного тока

Обозначается заглавной буквой V с тремя дефисами и прямой линией сверху. Символ означает напряжение. Просто переместите циферблат к этому символу, когда вы хотите измерить напряжение объекта. Его следует использовать при измерении напряжения постоянного тока.

7. Милливольты переменного тока

Обозначается мВ с тремя дефисами и прямой линией вверху, символ обозначает милливольты. Его следует использовать только при измерении напряжения переменного тока очень малых величин, предпочтительно в цепи меньшего размера.

SHIFT: милливольты постоянного тока

Удерживая циферблат на символе милливольт переменного тока и нажимая функциональную кнопку, вы можете измерять милливольты постоянного тока для небольшой цепи. Его символ находится рядом с символом мВ желтого цвета.

8. Сопротивление

Обозначается как Ω (омега), символ обозначает сопротивление. Вам нужно переместить циферблат на этот символ, если вы хотите измерить сопротивление объекта. Его второстепенная функция также помогает вам узнать, цел ли предохранитель.

9. Непрерывность

Обозначается символом звуковой волны, его функция заключается в определении наличия непрерывности между двумя точками. Таким образом, вы можете определить, есть ли обрыв или короткое замыкание. Это очень важная функция при поиске неисправности в цепи и устранении неполадок.

10. Проверка диодов

Рядом со значком непрерывности вы найдете стрелку со знаком плюс. Чтобы использовать этот символ, вы должны навести циферблат на символ непрерывности и нажать функциональную кнопку. Этот символ помогает узнать, хороший диод или плохой.

11. Переменный ток

Обозначается заглавной буквой V с волнистой линией наверху. Символ обозначает ток. Его следует использовать при измерении переменного тока.

12. Постоянный ток

Обозначается заглавной буквой V с тремя дефисами и прямой линией сверху. Символ обозначает ток. Его следует использовать при измерении постоянного тока.

13. Переключатель включения/выключения

Используется для включения и выключения экрана.

14. Auto-V/LoZ

Эта функция доступна только в некоторых мультиметрах. Это предотвращает ложные измерения.

15. Общий разъем

Используйте этот разъем для всех тестов, но только с черным щупом.

16. Токовый разъем

Используйте этот разъем для измерения тока с помощью клещей или красного щупа.

Back to top