Основные элементы трансмиссии автомобиля: Трансмиссия автомобиля – назначение, устройство

Содержание

Трансмиссия автомобиля: устройство, принцип работы, классификация

С тех пор, как автомобили перестали быть «самоходными телегами», началось стремительное развитие каждого узла и элемента. Так появилась и усовершенствовалась трансмиссия автомобиля, о которой все слышали, но мало кто серьезно вникал в суть того, что она собой представляет.

Все компоненты трансмиссии развивались, постепенно на первое место вышел вопрос управляемости и комфорта, а затем и продолжительности срока эксплуатации самого двигателя. Так что современная трансмиссия – это сочетание максимально эффективных решений передачи движения.

Содержание

  1. Что такое трансмиссия автомобиля и для чего она нужна?
  2. Устройство трансмиссии автомобиля
  3. Принцип работы трансмиссии
  4. Классификация трансмиссий
  5. Механические
  6. Автоматические
  7. Гидравлические
  8. Гидромеханические
  9. Электромеханические
  10. Переднеприводные
  11. Заднеприводные
  12. Полноприводные
  13. Основные неисправности
  14. Заключение

Что такое трансмиссия автомобиля и для чего она нужна?

Автомобильная трансмиссия – это комплекс устройств, передающих крутящий момент от коленвала двигателя на ведущие колёса. Помимо просто передачи, трансмиссия может изменять его значение, направление и распределение.

Устройство трансмиссии автомобиля

Для чего такие сложности? В данном случае одна из функций трансмиссии – продлить срок эксплуатации двигателя, снимая с него лишние нагрузки. Например, вместо постоянного изменения режима работы мотора коробка передач меняет передаточное число крутящего момента. А сцепление, которое тоже считается одним их элементов трансмиссии, предохраняет коробку передач и двигатель от рывковых нагрузок.

Принцип и конструкция трансмиссии постепенно усложнялись, поскольку нужно не просто передавать вращение, а делать это «с умом», чтобы эффективно использовать возможности двигателя.

Устройство трансмиссии автомобиля

Рассмотрим, благодаря чему усилие, родившееся в недрах двигателя, попадает на колёса автомобиля. Основные узлы трансмиссии – это сцепление, КПП, карданная передача, дифференциал, ШРУСы.

Сцепление.

Работа сцепления

Задача сцепления – создать легко размыкаемую связь между двигателем и следующим элементом трансмиссии. При переключении передач сцепление отключает мотор от КПП, чтобы уберечь механизмы от резких нагрузок. Затем эта связь восстанавливается. Конструкция сцепления позволяет проделывать это раз за разом, без лишних усилий со стороны водителя.

Коробка передач.

Работа механической коробки передач

Независимо от типа («автомат», «механика», «робот», «вариатор») назначение у всех КПП одинаковое: изменяя передаточное число, менять силу и направление крутящего момента. Таким образом, двигатель работает в одном режиме, без постоянного ускорения и замедления, а автомобиль движется с такой скоростью, которая нужна водителю.

Также коробка передач переключает движение на задний ход или вообще разрывает связь двигателя остальных элементов трансмиссии. Но если сцепление предназначено для размыкания этой связи на короткий срок, КПП может стоять на нейтральной передаче долгое время.

Карданная передача.

Работа карданной передачи

От КПП передача крутящего момента идет на вторичный вал, который связан с валом главной передачи. Поскольку эти валы расположены под определенным углом, в механизме задействован карданный шарнир.

Главная передача.

Работа главной передачи

У главной передачи две функции: понизить скорость вращения и передать крутящий момент на ведущий мост. Для этой цели используется гипоидная передача, которая одновременно понижает скорость вращения и изменяет направление его подачи.

Дифференциал.

Работа дифференциала

Задача дифференциала – распределить скорость вращения по полуосям ведущего моста в зависимости от дорожной ситуации. Работает он в паре с главной передачей. Когда автомобиль движется по прямой, оба колеса крутятся с одинаковой скоростью. В поворотах колесо на внутренней дуге вращается медленней, а на внешней – быстрее, именно благодаря дифференциалу. То есть дифференциал выборочно меняет скорость вращения полуосей или блокируется, чтобы принудительно заставить оба колеса вращаться с одинаковой скоростью.

ШРУС.

Работа ШРУСа

Последний узел, влияющий на характеристики крутящего момента – шарнир равных угловых скоростей. Его задача – обеспечить передачу оборотов с полуоси на колесо, независимо от углового положения самого колеса. Регулировка скорости в поворотах осуществляется дифференциалом, и ШРУС должен передавать ее без искажений и рывков.

Принцип работы трансмиссии

На видео, выше, можно наглядно отследить, как трансмиссия автомобиля передает вращение коленвала двигателя на колёса ведущей оси. Пошагово этот процесс можно представить так.

  1. Коленвал двигателя соединен с маховиком, который, в свою очередь, подключен к сцеплению. В стандартном режиме сцепление соединено с маховиком, так что коробка передач постоянно подключена. Перед переключением передачи сцепление размыкает связь между валом коробки и маховиком двигателя, а после переключения – восстанавливает ее. Это может происходить в автоматическом режиме или при управлении самого водителя.
  2. КПП меняет передаточное число для изменения скорости движения. Это намного легче, чем постоянно менять режим работы двигателя, особенно при движении по городу. Также коробка передач переключает направление вращения для движения назад и может размыкать связь между первичным и вторичным валом (нейтральная передача).
  3. От КПП крутящий момент переходит на главную передачу, через карданный вал или напрямую. Главная передача понижает скорость вращения, которая слишком большая для колёс, и передает крутящий момент на дифференциал.
  4. Дифференциал распределяет скорость вращения между колесами ведущей оси или, в зависимости от компоновки автомобиля, между осями (раздаточная коробка или межосевой дифференциал в полноприводных автомобилях).
  5. От полуосей крутящий момент наконец-то доходит до колёс. Чтобы при поворотах или проезду по неровностям колесо продолжало вращаться с нужной скоростью, между полуосью и ступицей установлен ШРУС, который передает крутящий момент под углом.

Классификация трансмиссий

За период развития автомобиля инженеры разработали несколько вариантов трансмиссии. Сегодня по способу передачи и изменения крутящего момента используется пять основных видов: механическая, гидромеханическая, гидравлическая, электромеханическая и автоматическая. А по типу привода бывают: переднеприводные, заднеприводные и полноприводные трансмиссии.

Механические

Самая распространенная на легковых автомобилях – механическая трансмиссия. В ней вся работа осуществляется только механическими элементами: различными видами зубчатых, планетарных, фрикционных передач и т.д. Причем это относится не только к МКПП, но и ко всем остальным узлам.
По своему КПД, долговечности и простоте ремонта механическая трансмиссия пока что опережает остальные типы.

Автоматические

Под автоматической трансмиссией чаще всего понимают коробку передач, которая сама регулирует изменение передаточного числа. Яркие примеры – вариатор для бесступенчатой механической регулировки, а также АКПП для гидромеханических систем.

Гидравлические

Это особый вид трансмиссии, в которой все элементы передают крутильный момент за счет гидравлических устройств. В автомобилях такие системы не используются, их можно встретить разве что в строительной и авиационной технике.

Как ни странно, гидравлические устройства более компактны, чем механические. Кроме того, элементы гидравлической трансмиссии могут находиться на значительном расстоянии друг от друга – сжатие жидкости при передаче энергии дает много возможных вариантов для компоновки отдельных элементов. Однако сама рабочая жидкость должна быть в технически идеальном состоянии.

Гидромеханические

В гидромеханической трансмиссии отдельные элементы будут работать на принципе гидравлической передачи энергии движения. Самый распространенный пример – трансмиссия с автоматической коробкой передач, где функции сцепления выполняет гидротрансформатор. Жидкостная передача движения в гидротрансформаторе используется для снижения ударных нагрузок и уменьшения крутильных колебаний (в механическом сцеплении для этого используется двухмассовый маховик и демпферы на ведомом диске).

Еще одно устройство, применяемое в гидромеханической трансмиссии – вискомуфта, которая до недавнего времени устанавливалась на полноприводные автомобили. В ней жидкость служит не для передачи момента вращения, а для блокировки, но это всё равно гидромеханическое устройство.

Электромеханические

Это новый вид трансмиссии, который вышел «в массы» благодаря распространению электрокаров, поскольку для ее работы нужен тяговый (не стартерный) аккумулятор, а в электромобилях он уже есть на месте.
Плюсом электромеханической трансмиссии является довольно быстрая реакция на изменения крутящего момента за счет использования электромоторов. А также удобство размещения отдельных частей и узлов: поскольку принцип действия позволяет разнести элементы на большие расстояния, а значит, скомпоновать их более удобно, чем это можно было бы сделать с другими видами трансмиссий.

Переднеприводные

Здесь все просто, крутящий момент от двигателя полностью передается на передний привод автомобиля. Передается момент через коробку передач, главную передачу и полуоси на передние колеса автомобиля.

Заднеприводные

Здесь же ведучим приводом автомобиля будет задняя ось. Крутящий момент передается также, только с добавлением еще одного елемента — карданного вала между коробкой передач и главной передачей.

Полноприводные

Тут с названия все ясно. Момент передается на обе оси вто или инной пропорции одновременно. Здесь еще добавляются такие элементы как раздаточная коробка и межосевой дифференциал. «Раздатка» как раз служит для передачи мощности на оси автомобиля. А межосевой дифференциал — для распределения мощности между осями. Также, за типом подключения полный привод бывает 3 типов.

  1. Постоянный полный привод.

    Постоянный полный привод

  2. Подключаемый.

    Подключаемый полный привод

  3. Автоматически-подключаемый.

    Автоматический полный привод

Основные неисправности

Всё, что работает, может и выходить из строя, ничего с этим не сделаешь. И компоненты трансмиссии тоже подвержены поломкам в той или иной степени. Основные неисправности компонентов трансмиссии имеют свои характерные особенности:

  1. Механическое сцепление можно назвать расходником. Чаще всего в нём выходит из строя ведомый диск, так что при появлении таких проблем как проскальзывание, нечеткая работа, скрежет и т.д. диск меняют, а остальные компоненты осматривают на предмет выработки. Срок службы сцепления во многом зависит от манеры вождения.
  2. Коробка передач – самый сложный и дорогостоящий узел во всей трансмиссии. Самая частая причина ее неисправности – несвоевременная замена трансмиссионной жидкости, которая во время работы постепенно деградирует и перестает выполнять свои функции, и вместо защиты механизма начинает с удвоенной силой его изнашивать. Признаками неисправности коробки являются шум при работе, в том числе при установке в нейтральное положение, нечеткое переключение передач или вообще невозможность их переключить, утечка масла из коробки.
  3. Карданный вал – штука достаточно прочная, но там, где есть шарнир, есть и его износ. Проблемы с карданным шарниром проявляются скрипом и вибрацией во время движения.
  4. Поломки главной передачи и дифференциала вызваны, как правило, двумя причинами: утечкой масла и неадекватными нагрузками. При недостаточном уровне смазки ускоряется выработка шестерен, в них появляются зазоры, а во всём механизме – вибрация. В свою очередь масло утекает через изношенные сальники. Механические неисправности проявляются шумом во время работы или характерным постукиванием в начале движения.
  5. ШРУСы, несмотря на большую нагрузку, выходят из строя редко. Их главный враг – вода, которая попадает в механизм через порванные пыльники. Если владелец автомобиля следит за состоянием ходовой и вовремя меняет расходные материалы, он может никогда в жизни не узнать, как хрустит изношенный ШРУС. Если же пыльник порвался, это стопроцентная гарантия близкой замены шарнира, даже если с ним пока всё в порядке.

Заключение

В целом, трансмиссия автомобиля – система достаточно живучая, особенно если речь идет о механической. И как бы банально это ни звучало, главное условие ее долгой и счастливой жизни – всего лишь регулярное ТО. Это не значит, что через каждые 10 тысяч километров нужно менять масло в коробке передач, но проверять состояние всех технических жидкостей, прокладок и защитных элементов нужно при каждом заезде на СТО. Эта несложная услуга позволит сэкономить деньги на дорогом и сложном ремонте.

Трансмиссия автомобиля

Установить ДВС под капот автомобиля, присоединить к коленчатому валу устройство сцепления с колёсами и поехать не получится – двигатель просто заглохнет. Почему? Двигателю автомобиля не хватит мощности за доли секунды раскрутить колеса до рабочих оборотов двигателя, а это примерно 2000 об\мин, помешает вес автомобиля и сила трения, возникающая при сцеплении колес с покрытием дороги. Выход? Установить промежуточный механизм, который понизит крутящий момент двигателя, до необходимых оборотов и передаст его на ведущие колеса. Вот этот механизм, состоящий из нескольких узлов, и называется трансмиссией.

Основным назначением трансмиссии является передача, регулирование пошагово, распределение по ведущим колесам крутящего момента от маховика двигателя. Условно, трансмиссию, по способу передачи можно поделить на:

  • механическую,
  • электрическую,
  • гидрообъемную,
  • комбинированную.

Самая распространенная, это механическая трансмиссия. На ее основе и рассмотрим работу узлов.

 

В состав трансмиссии входят несколько узлов:

  1. Сцепление —  предназначено для «мягкого» присоединения маховика к первичному валу коробки передач и передачи крутящего момента. Сцепление состоит из трех элементов – корзина сцепления, диск сцепления и выжимной подшипник.
  2. Коробка передач — устройство, преобразующее крутящий момент. Предназначена для дальнейшей передачи крутящего момента к карданному валу или непосредственно к главной передаче, с возможностью его изменения (пошагово). Усилие двигателя передается посредством вторичного вала.  Коробки передач бывают механические и автоматические.
  3. Карданный вал (для заднеприводных авто), устройство передачи крутящего момента от вторичного вала коробки передач к главной передаче.
  4. Главная передача, дифференциал – в совокупности составляют «мост», который предназначен для передачи силы двигателя через приводные валы (полуоси) к колёсам, а также распределения усилия между колесами. Для заднего привода «мост» располагается в задней части автомобиля и имеет (в некоторых случаях) общий корпус с полуосями. Соответственно и система смазки общая. Для переднего привода «мост» совмещен в одном корпусе с коробкой передач.
  5. Приводной вал (полуось) – представляет собой металлический стержень из высоколегированной стали и устройством зацепления с дифференциалом и шарниром равных угловых скоростей (ШРУС). Это могут быть проточенные шлицы или устройство крепления крестовин.
  6. Шарнир равных угловых скоростей (ШРУС) – предназначен для подачи силы вращения на ведущие колеса. Есть несколько видов ШРУСов: шариковый и трипоид.
  7. Раздаточный механизм – устройство распределения усилия двигателя по ведущим колесам, применяется в автомобилях с колесной формулой 4х4. «Раздатка» может быть размещена как в одном корпусе с коробкой передач, так и отдельным узлом.

 

Трансмиссия переднеприводного автомобиля

У переднеприводных и заднеприводных автомобилей существуют различия в системе трансмиссии. На автомобилях, где ведущими являются передние колёса (передний привод), трансмиссия со всеми её узлами установлена под капотом. Что касается коробки передач, то в неё входит ещё и главная передача с дифференциалом. Поэтому в данном случае из картера коробки передач выходят валы привода к передним колёсам. На переднеприводных транспортных средствах, система трансмиссии состоит из таких узлов как:

  1. коробка передач;
  2. сцепление;
  3. валы привода передних колёс;
  4. шарниры равных угловых скоростей;
  5. дифференциал;
  6. главная передача.

Отличительной особенностью трансмиссии переднего привода, является размещение главной передачи и дифференциала непосредственно в картере коробки передач. Ну и передний мост в данном случае является ведущим, с управляемыми колёсами.

 

Трансмиссия заднеприводного автомобиля

Заднеприводная трансмиссия включает в себя следующие взаимосвязанные элементы:

  1. коробку передач;
  2. сцепление;
  3. главную передачу;
  4. дифференциал;
  5. карданную передачу;
  6. полуоси.

Стоит отметить, что на заднеприводных автомобилях коробка передач устанавливается на более мягкие опоры, что позволяет снизить уровень вибрации и создаёт дополнительный комфорт. Трансмиссия автомобиля при заднем приводе характеризуется тем, что наиболее массовым вариантом расположения КПП, является её блокировка вместе со сцеплением к заднему мосту посредством карданного вала. Такой вариант приводит к концентрации центра масс в район передней оси. Следует отметить, что вариант автомобилей с задним приводом считается классическим, и трансмиссия в данном случае более проста по своей конструкции и в эксплуатации.

Трансмиссия работает следующим образом: на маховик, через фрикционные накладки диска сцепления, жестко крепится корзина сцепления своей рабочей поверхностью. В диске изготовлено шлицевое отверстие, куда направляется первичный вал коробки передач. Когда сцепление отпущено, диск плотно зажимается между маховиком и «корзиной» и крутится вместе с ними, приводя в действие первичный вал. При нажатии на педаль сцепления, в действие приводится выжимной подшипник, который нажимает на лепестки корзины и освобождает диск сцепления, в этот момент работает двигатель «вхолостую».

Далее первичный вал посредством шестерен передач с разным передаточным числом приводит в действие вторичный вал. Переключая передачи можно регулировать передаточное число, соответственно обороты вторичного вала изменяются.

Хвостовик коробки передач (для заднего привода) соединен с карданным валом, далее крутящий момент поступает на главную передачу и распределяется на колеса с помощью дифференциала и полуосей.

Вторичный вал коробки передач (для переднего привода) непосредственно соединен с главной передачей и дифференциалом. К дифференциалу подсоединены полуоси, на них соответственно ШРУСы через которые крутящий момент передается на колеса.

Для полноприводных автомобилей крутящий момент передается через раздаточный механизм, который имеет один выход хвостовика для подачи на кардан. Полноприводные авто могут обеспечиваться блокировкой моста, т.е. отключение перераспределения по полуосям крутящего момента.

В этой статье мы рассмотрели, что такое трансмиссия, ее устройство и принцип работы.


Share

Twitter

Поделиться

Система автомобильной трансмиссии и ее компоненты

В этой статье вы подробно узнаете, что такое автомобильная трансмиссия, компоненты системы трансмиссии и ее требования.

Содержание

  • Что такое система автомобильной трансмиссии?
  • Требования к системе передачи.
  • Компоненты системы трансмиссии
    • 1. Сцепление:
    • 2. Коробка передач:
    • 3. Карданный вал:
    • 4. Дифференциал:
    • 5. Ведущая ось:

Что такое автомобильная трансмиссия?

Двигатель внутреннего сгорания вырабатывает мощность, которая передается на опорные катки.

Выход от двигателя возможен в виде вращения коленчатого вала. Это вращательное движение передается на опорные катки.

Трение между дорогой и поверхностью колеса делает возможным движение автомобиля. Эту функцию выполняет трансмиссионная система.

Автомобильная трансмиссия состоит из нескольких компонентов. Эти компоненты работают вместе, чтобы плавно и эффективно передавать вращательное движение от коленчатого вала на опорные катки.

Внезапное изменение состояния с состояния покоя на движение или наоборот нежелательно. Это может быть неудобно или даже опасно для пассажиров автомобиля.

Поэтому вращательное движение коленчатого вала должно передаваться постепенно, а не резко. Другой аспект трансмиссии заключается в том, что движение от коленчатого вала не должно передаваться сразу после запуска двигателя.

Нежелательно, чтобы после запуска двигателя автомобиль начинал движение. Движение должно передаваться только «по желанию»

Вращательное движение коленчатого вала создает крутящий момент, а передача этого крутящего момента на опорные колеса создает движущую силу или тяговое усилие, вызывающее движение колес по дороге .

При трогании с места требуется большое тяговое усилие. Двигатель выдает почти такой же крутящий момент. Этот крутящий момент должен быть увеличен, чтобы создавалось достаточное тяговое усилие.

Это требует введения «рычага» между двигателем и опорными катками.

Вариация рычага необходима, потому что, если один и тот же рычаг используется для подъема и движения по ровной дороге, максимально возможная скорость будет чрезмерно низкой.

Большое плечо подразумевает большое снижение скорости между двигателем и колесами, и на вполне умеренной дороге обороты двигателя будут очень высокими.

Но при высоких оборотах двигателя крутящий момент двигателя падает, так что доступное тяговое усилие будет меньше, что приведет к снижению скорости движения.

На правильно обслуживаемой дороге комфортная крейсерская скорость для автомобиля может составлять примерно 50 километров в час, а при диаметре колеса 30 см он будет иметь скорость вращения около 1060 об/мин.

При частоте вращения двигателя около 3500 об/мин система автомобильной трансмиссии должна будет снизить 3500 об/мин на двигателе до примерно 1060 об/мин на колесе (соотношение 3,3:1). Это соотношение может варьироваться в зависимости от объема двигателя и технических характеристик двигателя.

В то время как характер трансмиссии не сильно зависит от изменений в форме «вагонной единицы», так что трансмиссия 4-колесного транспортного средства аналогична трансмиссии заднеприводного транспортного средства, расположение трансмиссии будет быть разными в обоих случаях.

Ось задних опорных катков, на которую обычно передается движение, перпендикулярна осевой линии автомобиля.

Следовательно, привод между двигателем и опорными катками повернут на 90 градусов.

Если автомобиль движется по круговой траектории, внутреннее и внешнее колеса будут проходить круги разного радиуса. Таким образом, внутреннее и внешнее колеса проходят разные расстояния.

Поскольку автомобиль движется как единое целое, за один и тот же период времени ему приходится преодолевать разные расстояния.

В большинстве автомобилей двигатели устанавливаются в передней части рамы тележки. Обычно движение передается на опорные катки с задней стороны.

Расстояние между ними довольно значительное. Движение требуется передать через это расстояние. Также задняя ось крепится к раме через рессоры.

Из-за неровного покрытия дороги ось двигается вверх-вниз, а рессоры прогибаются. Взаимное расположение двигателя и коробки передач, а также система автомобильной трансмиссии должны быть в состоянии это воспринять.

Посмотрите видео, где подробно сравнится автоматическая и механическая коробки передач.

Требования к системе передачи.

Таким образом, система трансмиссии должна отвечать следующим требованиям:

1. Позволяет двигателю оставаться отсоединенным от опорных катков. Их следует подключать только «по желанию».

2. Позволяет двигателю во время работы подключаться плавно и постепенно, без рывков, к опорным каткам.

3. Включить рычаг между двигателем и опорными катками. Этот рычаг должен быть переменным, чтобы справляться с различными условиями, такими как старт с места, движение с постоянной скоростью или подъем в гору.

4. Включить снижение скорости двигателя.

5. Поверните привод на 90 градусов.

6. Должен обеспечивать работу внутренних и внешних опорных катков с разной скоростью при движении транспортного средства по криволинейной траектории.

7. Должен обеспечивать относительное движение двигателя и опорных катков при их перемещении вверх и вниз из-за неровностей дорожного покрытия.

Компоненты системы трансмиссии

Система трансмиссии состоит из следующих компонентов:

1. Сцепление.

2. Коробка передач.

3. Карданный вал.

4. Дифференциал.

5. Ведущая ось.

1. Сцепление:

Этот компонент позволяет двигателю оставаться отсоединенным от опорных катков.

Вращательное движение коленчатого вала не передается опорным каткам. Это позволяет передавать движение по желанию водителя автомобиля.

Сцепление также позволяет постепенно передавать движение, так что автомобиль начинает двигаться плавно. Работает по принципу трения.

2. Редуктор:

Состоит из нескольких пар зубчатых колес. Они передают движение от коленчатого вала через сцепление на разных скоростях.

Обеспечивает необходимый рычаг между двигателем и опорными катками. Этот рычаг является переменным, чтобы справиться с различными условиями, возникающими во время движения транспортного средства.

3. Карданный вал:

Третий компонент автомобильной трансмиссии, передающий движение от коробки передач к дифференциалу. Расстояние между ними может быть большим, и, следовательно, это тонкий и длинный стержень, соединяющий их.

4. Дифференциал:

Одним из требований системы трансмиссии является поворот движения на 90 градусов, так как оси карданного вала и ведущей оси находятся под прямым углом друг к другу. Это осуществляется за счет дифференциала через колесно-шестеренчатую компоновку.

Еще одна функция, которую выполняет дифференциал, — изменение скоростей внутренних и внешних колес при повороте автомобиля.

5. Ведущая ось:

Ось, на которую передается движение от коленчатого вала двигателя, называется ведущей осью. Другая ось воспринимает только нагрузку транспортного средства и поэтому называется мертвой осью или просто осью.

Движение обычно передается на заднюю ось, но может передаваться на переднюю ось или на обе оси. Когда движение передается на обе оси, это называется полным приводом.

Наконец, движение передается на опорные катки на двух концах ведущей оси.

Колеса вращаются, и трение между их поверхностью и поверхностью дороги делает возможным движение автомобиля по дороге.

Это все для автомобильной трансмиссии и компонентов трансмиссионной системы. Я надеюсь, вам понравится. И пожалуйста, не забудьте поделиться. Спасибо!

Компоненты трансмиссии | Mister Transmission

Вы когда-нибудь задумывались, что находится внутри современной автоматической коробки передач? В этой статье описываются и информируются о пакетах фрикционов, односторонних муфтах, гидротрансформаторах и многом другом.

Современная автоматическая трансмиссия состоит из многих компонентов и систем, которые предназначены для совместной работы в симфонии умных механических, гидравлических и электрических технологий, которые с годами превратились в то, что многие люди, склонные к механике, считают формой искусства. Мы пытаемся использовать простые, общие объяснения, где это возможно, для описания этих систем, но из-за сложности некоторых из этих компонентов вам, возможно, придется использовать некоторую умственную гимнастику, чтобы визуализировать их работу.

Основные компоненты, из которых состоит автоматическая коробка передач, включают:

  • Планетарные передачи, представляющие собой механические системы, обеспечивающие различные передаточные числа переднего и заднего хода.
  • Гидравлическая система, в которой используется специальная трансмиссионная жидкость, подаваемая под давлением масляным насосом через корпус клапана для управления муфтами и лентами для управления планетарными передачами.
  • Уплотнения и прокладки используются для удержания масла там, где оно должно быть, и предотвращения его утечки.
  • Гидротрансформатор, действующий как сцепление, позволяющий автомобилю остановиться на передаче при работающем двигателе.
  • Регулятор и модулятор или трос дроссельной заслонки контролируют скорость и положение дроссельной заслонки, чтобы определить момент переключения.
  • Компьютер, который управляет точками переключения на новых автомобилях и управляет электрическими соленоидами для переключения потока масла на соответствующий компонент в нужный момент.

Планетарные передачи

Автоматические коробки передач содержат множество передач в различных комбинациях. В механической коробке передач шестерни скользят вдоль валов, когда вы перемещаете рычаг переключения передач из одного положения в другое, задействуя шестерни различных размеров по мере необходимости, чтобы обеспечить правильное передаточное число. Однако в автоматической коробке передач шестерни никогда физически не перемещаются и всегда включают одни и те же передачи. Это достигается за счет использования планетарных передач.

Базовая планетарная передача состоит из солнечной шестерни, зубчатого венца и двух или более планетарных шестерен, находящихся в постоянном зацеплении. Планетарные шестерни соединены друг с другом через общее водило, которое позволяет шестерням вращаться на валах, называемых «шестернями», которые прикреплены к водилу.

Одним из примеров использования этой системы является соединение зубчатого венца с входным валом, идущим от двигателя, соединение водила планетарной передачи с выходным валом и блокировка солнечной шестерни, чтобы она не могла двигаться. В этом сценарии, когда мы поворачиваем зубчатый венец, планеты будут «ходить» вдоль солнечной шестерни (которая удерживается неподвижно), заставляя водило планетарной передачи вращать выходной вал в том же направлении, что и входной вал, но с меньшей скоростью, вызывая понижающая передача (аналогично автомобилю на первой передаче).

Если мы разблокируем солнечную шестерню и соединим вместе любые два элемента, это заставит все три элемента вращаться с одинаковой скоростью, так что выходной вал будет вращаться с той же скоростью, что и входной вал. Это похоже на автомобиль, который находится на третьей или высшей передаче. Другой способ, которым мы можем использовать планетарную передачу, — это заблокировать водило планетарной передачи от движения, а затем подать мощность на зубчатый венец, который заставит солнечную шестерню вращаться в противоположном направлении, давая нам заднюю передачу.

На рисунке справа показано, как описанная выше простая система будет выглядеть в реальной трансмиссии. Первичный вал соединен с зубчатым венцом (темно-серый), Выходной вал соединен с водилом планетарной передачи (светло-серый), который также соединен с «многодисковым» пакетом сцепления. Солнечная шестерня соединена с барабаном (оранжевым), который также соединен с другой половиной пакета сцепления. Барабан снаружи окружен лентой (синего цвета), которую при необходимости можно затянуть вокруг барабана, чтобы предотвратить вращение барабана с прикрепленной солнечной шестерней.

В данном случае пакет фрикционов используется для блокировки водила планетарной передачи с солнечной шестерней, заставляя их вращаться с одинаковой скоростью. Если бы и пакет сцепления, и лента были отпущены, система была бы в нейтральном положении. Поворот входного вала повернет планетарные шестерни против солнечной шестерни, но поскольку солнечную шестерню ничто не удерживает, она просто будет вращаться свободно и не окажет никакого влияния на выходной вал. Чтобы перевести устройство на первую передачу, применяется лента, удерживающая солнечную шестерню от движения. Для переключения с первой на высшую передачу ремень освобождается и включается сцепление, в результате чего выходной вал вращается с той же скоростью, что и входной вал.

Возможны многие другие комбинации с использованием двух или более планетарных пар, соединенных различными способами для обеспечения различных скоростей переднего и заднего хода, используемых в современных автоматических коробках передач.

Некоторые из хитроумных механизмов переключения передач, встречающиеся в четырех-, а теперь пяти-, шести- и даже семиступенчатых автоматах, достаточно сложны, чтобы заставить технически проницательного человека закружиться в голове, пытаясь понять поток мощности через коробку передач при переключении с первой передачи через высшую передачу, в то время как автомобиль разгоняется до скорости шоссе. На более новых автомобилях бортовой компьютер отслеживает и контролирует эти переключения, так что они почти незаметны.

Пакеты сцепления

Пакет сцепления состоит из чередующихся дисков, которые устанавливаются внутри барабана сцепления. Половина дисков стальные и имеют шлицы, которые входят в канавки на внутренней стороне барабана. Другая половина имеет фрикционный материал, прикрепленный к их поверхности, и имеет шлицы на внутренней кромке, которые соответствуют канавкам на внешней поверхности соседней ступицы. Внутри барабана есть поршень, который активируется давлением масла в нужный момент, чтобы сжать пакет сцепления вместе, так что два компонента блокируются и вращаются как один.

Обгонная муфта

Обратная муфта (также известная как «кулачковая» муфта) — это устройство, позволяющее такому компоненту, как зубчатый венец, свободно вращаться в одном направлении, но не в другом. Этот эффект аналогичен эффекту велосипеда, когда педали будут вращать колесо при вращении педалей вперед, но будут свободно вращаться при вращении педалей назад.

Обычно муфта свободного хода используется на первой передаче, когда рычаг переключения передач находится в положении движения. Когда вы начинаете ускоряться с места, коробка передач включается на первой передаче. Но вы когда-нибудь замечали, что происходит, если вы отпускаете газ, пока он все еще находится на первой передаче? Автомобиль продолжает двигаться по инерции, как если бы вы были на нейтральной передаче. Теперь переключитесь на пониженную передачу, а не на драйв. Когда вы отпустите газ в этом случае, вы почувствуете, как двигатель замедляет вас, как в стандартной машине с переключением передач. Причина этого в том, что в режиме Drive используется одностороннее сцепление, тогда как в режиме Low используется пакет сцепления или лента.

Ленты

Лента представляет собой стальную ленту с фрикционным материалом, прикрепленным к внутренней поверхности. Один конец ленты закреплен на корпусе трансмиссии, а другой конец соединен с сервоприводом. В нужный момент гидравлическое масло под давлением подается в сервопривод, чтобы стянуть ленту вокруг барабана и остановить вращение барабана.

Преобразователь крутящего момента

В автоматических коробках передач преобразователь крутящего момента заменяет сцепление на автомобилях со стандартным переключением передач. Это необходимо для того, чтобы двигатель продолжал работать, когда автомобиль останавливается. Принцип работы преобразователя крутящего момента подобен подключенному к стене вентилятору и нагнетанию воздуха в другой вентилятор, не подключенный к сети. Если вы схватите лопасть отключенного от сети вентилятора, вы сможете удержать его от вращения, но как только вы отпустите, он начнет ускоряться, пока не приблизится к скорости работающего вентилятора. Разница с гидротрансформатором заключается в том, что вместо воздуха он использует масло или трансмиссионную жидкость, если быть точнее.

Гидротрансформатор представляет собой большую гидравлическую муфту в форме пончика (диаметром от 10 до 15 дюймов), которая устанавливается между двигателем и коробкой передач. Он состоит из трех внутренних элементов, которые вместе передают мощность на трансмиссию. Три элемента гидротрансформатора — это насос, турбина и статор. Насос установлен непосредственно на корпусе гидротрансформатора, который, в свою очередь, привинчен непосредственно к коленчатому валу двигателя и вращается со скоростью двигателя. Турбина находится внутри корпуса и соединена непосредственно с входным валом трансмиссии, обеспечивающей мощность для движения транспортного средства. Статор крепится к односторонней муфте, так что он может свободно вращаться в одном направлении, но не в другом. На каждом из трех элементов установлены ребра, которые точно направляют поток масла через гидротрансформатор.

При работающем двигателе трансмиссионная жидкость втягивается в секцию насоса и выталкивается наружу под действием центробежной силы, пока не достигнет секции турбины, которая запускает ее вращение. Жидкость продолжает круговое движение обратно к центру турбины, где она входит в статор. Если турбина движется значительно медленнее, чем насос, жидкость соприкасается с передней частью ребер статора, которые вдавливают статор в одностороннюю муфту и предотвращают его вращение. Когда статор остановлен, жидкость направляется ребрами статора, чтобы снова войти в насос под «помогающим» углом, обеспечивая увеличение крутящего момента. Когда скорость турбины достигает скорости насоса, жидкость начинает ударяться о лопасти статора с обратной стороны, заставляя статор вращаться в том же направлении, что и насос и турбина. При увеличении скорости все три элемента начинают вращаться примерно с одинаковой скоростью.

С 80-х годов для повышения экономии топлива преобразователи крутящего момента оснащались муфтой блокировки (не показана), которая блокирует турбину и насос, когда скорость автомобиля достигает примерно 45–50 миль в час. Эта блокировка управляется компьютером и обычно не включается, если коробка передач не находится на 3-й или 4-й передаче.

Гидравлическая система

Гидравлическая система представляет собой сложный лабиринт каналов и трубок, по которым трансмиссионная жидкость под давлением подается ко всем частям трансмиссии и гидротрансформатора. Диаграмма слева — простая схема 3-ступенчатого автомата 60-х годов. Более новые системы намного сложнее и сочетаются с компьютеризированными электрическими компонентами. Трансмиссионная жидкость служит ряду целей, в том числе: управление переключением передач, общая смазка и охлаждение трансмиссии. В отличие от двигателя, который использует масло в первую очередь для смазки, каждый аспект работы трансмиссии зависит от постоянной подачи жидкости под давлением. Это похоже на систему кровообращения человека (жидкость даже красная), где даже несколько минут работы при недостатке давления могут быть вредными или даже фатальными для жизни трансмиссии. Для поддержания нормальной рабочей температуры трансмиссии часть жидкости направляется по одной из двух стальных трубок в специальную камеру, погруженную в антифриз в радиаторе. Жидкость, проходящая через эту камеру, охлаждается и затем возвращается в трансмиссию через другую стальную трубу. В типичной трансмиссии между трансмиссией, гидротрансформатором и бачком охладителя находится в среднем десять литров жидкости. Фактически, большинство компонентов трансмиссии постоянно смазываются жидкостью, включая пакеты сцепления и ленты. Поверхности трения на этих деталях предназначены для правильной работы только тогда, когда они покрыты маслом.

Масляный насос

Масляный насос коробки передач (не путать с насосным элементом внутри гидротрансформатора) отвечает за создание всего давления масла, необходимого в коробке передач. Масляный насос установлен в передней части картера коробки передач и напрямую соединен со ступицей корпуса гидротрансформатора. Поскольку корпус гидротрансформатора напрямую соединен с коленчатым валом двигателя, насос будет создавать давление всякий раз, когда двигатель работает, пока имеется достаточное количество трансмиссионной жидкости. Масло поступает в насос через фильтр, расположенный в нижней части масляного поддона коробки передач, и проходит по всасывающей трубке непосредственно к масляному насосу. Затем масло под давлением направляется к регулятору давления, корпусу клапана и остальным компонентам по мере необходимости.

Блок клапанов

Блок клапанов является центром управления автоматической коробкой передач.

Корпус клапана содержит множество каналов и проходов, которые направляют гидравлическую жидкость к многочисленным клапанам, которые затем активируют соответствующий пакет сцепления или ленточный сервопривод для плавного переключения на соответствующую передачу для каждой дорожной ситуации. Каждый из множества клапанов в корпусе клапана имеет определенное назначение и назван в честь этой функции. Например, клапан 2-3 переключения активирует переключение со 2-й на 3-ю передачу на повышение или клапан переключения 3-2 передачи, который определяет, когда должно происходить переключение на пониженную передачу.

Самый важный клапан, которым вы можете управлять напрямую, это ручной клапан. Ручной клапан напрямую соединен с рукояткой переключения передач и закрывает и открывает различные проходы в зависимости от того, в каком положении находится переключатель передач. Например, когда вы переводите переключатель передач в режим Drive, ручной клапан направляет жидкость в пакет сцепления ( s), который активирует 1-ю передачу. Он также настраивается для контроля скорости автомобиля и положения дроссельной заслонки, чтобы определить оптимальное время и усилие для переключения с 1 на 2 передачу. В трансмиссиях, управляемых компьютером, у вас также будут электрические соленоиды, которые установлены в корпусе клапана, чтобы направлять жидкость к соответствующим пакетам сцепления или ремням под управлением компьютера, чтобы более точно контролировать моменты переключения.

Компьютерное управление

Компьютер использует датчики на двигателе и трансмиссии для определения таких параметров, как положение дроссельной заслонки, скорость автомобиля, частота вращения двигателя, нагрузка на двигатель, положение выключателя стоп-сигналов и т. д., чтобы контролировать точные моменты переключения, а также степень мягкости или твердый сдвиг должен быть. Некоторые компьютеризированные трансмиссии даже изучают ваш стиль вождения и постоянно адаптируются к нему, чтобы каждое переключение происходило именно тогда, когда вам это нужно.

Из-за компьютерного управления спортивные модели выпускаются с возможностью ручного управления трансмиссией, как будто это рычаг переключения передач, что позволяет водителю выбирать передачи вручную. На некоторых автомобилях это достигается путем пропускания рычага переключения передач через специальную заслонку, а затем касания его в одном или другом направлении, чтобы по желанию переключаться на более высокую или более низкую передачу. Компьютер отслеживает это действие, чтобы убедиться, что водитель не выберет передачу, которая может привести к превышению скорости двигателя и его повреждению.

Еще одним преимуществом этих «умных» коробок передач является то, что они имеют режим самодиагностики, который может обнаружить проблему на ранней стадии и предупредить вас с помощью светового индикатора на приборной панели. Затем технический специалист может подключить тестовое оборудование и получить список кодов неисправностей, которые помогут определить источник проблемы.

Регулятор, вакуумный модулятор, трос дроссельной заслонки

Эти три компонента важны для некомпьютеризированных трансмиссий. Они обеспечивают входные данные, которые сообщают коробке передач, когда переключать передачи.

Регулятор подсоединен к выходному валу и регулирует гидравлическое давление в зависимости от скорости автомобиля. Это достигается за счет центробежной силы, которая вращает пару шарнирных грузов против возвратных пружин. По мере того, как грузы вытягиваются дальше от пружин, большее давление масла проходит мимо регулятора, чтобы воздействовать на клапаны переключения, которые находятся в корпусе клапана, которые затем сигнализируют о соответствующих переключениях.

Конечно, не только скорость автомобиля определяет время переключения передач, но и нагрузка на двигатель. Чем больше нагрузка на двигатель, тем дольше трансмиссия будет удерживать передачу перед переключением на следующую.

Существует два типа устройств, предназначенных для контроля нагрузки двигателя: трос дроссельной заслонки и вакуумный модулятор. Передача будет использовать одно или другое, но, как правило, не оба этих устройства. Каждый из них работает по-своему, чтобы контролировать нагрузку на двигатель.

Трос дроссельной заслонки просто отслеживает положение педали газа через кабель, идущий от педали газа к дроссельной заслонке в корпусе клапана.

Вакуумный модулятор контролирует разрежение в двигателе с помощью резинового вакуумного шланга, подсоединенного к двигателю. Вакуум двигателя очень точно реагирует на нагрузку двигателя: высокий вакуум создается, когда двигатель находится под небольшой нагрузкой, и уменьшается до нуля, когда двигатель находится под большой нагрузкой. Модулятор прикреплен к корпусу трансмиссии снаружи и имеет вал, проходящий через корпус и прикрепленный к дроссельному клапану в корпусе клапана. Когда двигатель находится под небольшой нагрузкой или без нагрузки, на модулятор воздействует высокий вакуум, который перемещает дроссельную заслонку в одном направлении, позволяя трансмиссии переключаться раньше и плавнее. По мере увеличения нагрузки на двигатель разрежение уменьшается, что приводит к перемещению клапана в другом направлении, что приводит к более позднему и более жесткому переключению передач.

Уплотнения и прокладки

Автоматическая коробка передач имеет множество уплотнений и прокладок для контроля потока гидравлической жидкости и предотвращения ее утечки. Есть два основных внешних уплотнения: переднее уплотнение и заднее уплотнение. Переднее уплотнение герметизирует место крепления гидротрансформатора к картеру трансмиссии. Это уплотнение позволяет жидкости свободно перемещаться от гидротрансформатора к трансмиссии, но предотвращает утечку жидкости. Заднее уплотнение предотвращает утечку жидкости через выходной вал.

Уплотнение обычно изготавливается из неопрена (аналогично неопрену в щетке стеклоочистителя) и используется для предотвращения утечки масла через движущиеся части, такие как вращающийся вал. В некоторых случаях неопреновому соединению помогает пружина, которая удерживает неопрен в тесном контакте с вращающимся валом.

Back to top