Принцип работы энергоаккумулятора: Что такое энергоаккумулятор

Содержание

Как устроен энергоаккумулятор?

Исправность тормозной системы автомобиля (в том числе и грузового) – это залог его безопасной эксплуатации, ведь в противном случае транспортное средство становится неуправляемым. Одним из самых ответственных и важных элементов тормозной системы любого грузовика с пневматическим приводом есть энергоаккумулятор. С устройством и конструкцией данной детали в основном знакомы дальнобойщики, а остальные водители, как правило, ничего о ней не знают. Вот как раз для них мы и попытаемся пролить свет на этот вопрос.

  • 1. Что такое энергоаккумулятор?
  • 2. Принцип работы энергоаккумулятора
  • 3. Установка энергоаккумулятора
  • 4. Выбор энергоаккумулятора

1. Что такое энергоаккумулятор?

Итак, энергоаккумулятор – это составляющая часть привода стояночной или вспомогательной тормозной (пневматической) системы грузовых автомобилей и автобусов. Он предназначается для управления работой тормозных колодок путем давления, создаваемого в пневмосистеме рабочего контура или посредством воздействия пружины при работе в условиях режима стояночной системы.

На подавляющем большинстве современных грузовиков устанавливаются тормозные камеры с пружинным энергоаккумулятором, обладающим классической конструкцией, разработанной еще в 50-х годах ХХ столетия. Этот тип строения, в сравнении с другими, принято считать наиболее надежным и долговечным, каким он себя и зарекомендовал. Однако, опыт эксплуатации таких устройств в тяжелых условиях, выявил характерные слабые стороны подобных механизмов: низкую коррозийную стойкость, слабую защищенность внутреннего пространства от попадания влаги и грязи, низкий уровень износостойкости уплотнителя. Все эти факторы отрицательно сказываются на рабочей стабильности описанного агрегата и могут привести к полному его рабочему отказу.

Данный узел занимается накоплением энергии сжатой пружины, а в случае необходимости освобождает ее. Как правило, энергоаккумулятор монтируется на тормозную камеру и состоит из силовой пружины, корпуса, поршня, толкателя и винта-оси. Пружина может «развивать» усилие в 1-2 тонны, после чего посредством поршня и толкателя оказывает давление на шток привода тормозов. В момент, когда из подпоршневого пространства, при помощи крана управления «ручником», выходит сжатый воздух, который и удерживает пружину в сжатом состоянии, включается стояночный тормоз. Как только он сработал, сжатый воздух начинает поступать в подпоршневое пространство.

Винт-ось предназначен для «ручного» отключения тормоза, которое выполняется через сжатие пружины стандартным, накидным ключом. Иногда такая необходимость может возникать при транспортировке машины, особенно если в ресивере, из-за неисправности мотора или компрессора, а также в случае утраты герметичности пневмосистемы, отсутствует сжатый воздух.

2. Принцип работы энергоаккумулятора

Когда срабатывает рабочая тормозная система, сжатый воздух начинает поступать в наддиафрагменную полость. В свою очередь, прогибаясь от давления, диафрагма воздействует на диск, перемещает шток и поворачивает регулировочный рычаг с разжимным кулачком механизма торможения. Процесс торможения средних и задних колес проходит по тому же сценарию, что и торможение передних. В момент включения стояночного тормоза воздух, находящийся под поршнем энергоаккумулятора, выходит из-под него, пружина разжимается и поршень смещается вправо. Затем, посредством диафрагмы, толкатель начинает оказывать свое воздействие на шток, который, в свою очередь, перемещается и поворачивает регулировочный рычаг.

В результате выполнения всех действий автомобиль затормаживается. Когда же стояночная тормозная система выключается, сжатый воздух подается под поршень устройства, который, смещаясь влево, сжимает пружину и позволяет штоку тормозной камеры вернуться в изначальное положение. Конечно, тут не обходится без влияния возвратной пружины энергоаккумулятора.

В случае аварийного торможения транспортного средства, когда нет возможности применить систему аварийного оттормаживания, нужно вывернуть винты соответствующего устройства, которое отвечает за выполнение указанной задачи.

3. Установка энергоаккумулятора

Тормозные камеры, вместе с пружинным энергоаккумулятором, монтируются на кронштейны разжимных кулаков и крепятся к ним посредством двух гаек, навинченных на болты крепления камер. Зона крепления камер должна предоставлять достаточно места для подсоединения шлангов и трубопроводов, которые подводят сжатый воздух, а также для удобства регулирования камер и их монтажа или демонтажа. Обратите внимание! В процессе эксплуатации устройства необходимо периодически проверять надежность крепления камер к кронштейнам – момент затяжки гаек крепления всегда должен находиться в пределах 18-21 кгс-м.

Процесс установки энергоаккумулятора не отличается особой сложностью и предусматривает выполнение следующих действий:

1) Сначала необходимо снять тормозные камеры и установить энергоаккумуляторы на предназначенные для них места;

2) Тормозные шланги для подачи воздуха над диафрагмой подключаются к соответствующим выходам устройства;

3) Теперь необходимо установить и запитать рессивер. С него подают воздух на ускорительный клапан и на ручку «ручника», а с нее тянут трубку на ускорительный клапан в верхнюю часть;

4) Дальше остается только подать воздух в верхнюю часть энергоаккумулятора, туда, где размещены пружины.

Существует несколько рекомендаций, касающихся сборки описанного аппарата. Во-первых, процесс сборки должен выполняться в таких условиях, которые бы исключали возможность попадания на детали стружки, абразивной пыли и прочих агрессивных загрязняющих веществ. Также помните о надписи на фланце, которая гласит, что пружина напряжена. Во-вторых, все трущиеся детали следует смазать тонким слоем специально подобранной смазки (например, ЦИАТИМ-221). В-третьих, особую осторожность стоит проявлять при сборке резиновых деталей, так как есть вероятность их повреждения.

Если на них присутствуют порезы, риски или другие дефекты, поврежденный элемент нужно сразу заменить. В-четвертых, подключать камеру следует в соответствии с инструкцией, приведенной в технической документации конкретного транспортного средства, причем винт оттормаживания должен быть закручен до упора. После того как механизм собран и установлен на свое место, к нему трижды подают и выпускают воздух, находящийся под давлением.

4. Выбор энергоаккумулятора

Существует достаточно большой выбор энергоаккумуляторов, среди которых выделяют устройства с разными параметрами (16/24, 20/20, 20/24, 24/30), агрегаты, предназначенные для прицепов, обладающих осями BPW, SAF, ROR и для полуприцепов — Koegel, Schmitz, Krone, Fruehauf, оборудованных дисковыми и барабанными тормозами. Энергоаккумулятор, как и тормозную камеру, можно устанавливать на грузовые транспортные средства марок SCANIA, MAN, DAF, Mercedes, IVECO, RENAULT, КАМАЗ и МАЗ. Многие водители практикуют установку энергоаккумуляторов, к примеру, предназначенных для МАЗов, на машины типа КАМАЗ, или наоборот: с КАМАЗА на МАЗ.

Подобные действия можно оправдать лишь отчасти, если, например, нужно как-то доехать в определенное место, а родной агрегат вышел из строя. Правда, на эту тему можно спорить бесконечно: одни утверждают, что параметры у них общие, а значит, и нет никакой проблемы, в то время как другие вспоминают об изменении штатной конструкции автомобиля, чего, исходя из правил ПДД, ни в коем случае нельзя делать. В общем, лучше всего, когда все находится на своих местах, тогда и лишних проблем не будет, и в выборе энергоаккумулятора Вы не ошибетесь.

Устройство энергоаккумулятора КАМАЗ | ГРУЗОВИК.БИЗ

Тормозная система автомобилей КАМАЗ

Автомобили этого производителя, помимо тормозной системы, оснащённой пневматическим приводом, имеют также стояночную и запасную тормозные системы, оборудованные пружинными энергоаккумуляторами, которые устанавливаются на заднем ведущем мосту, а также на среднем ведущем мосту. Также на них установлена вспомогательная система тормозов.

Энергоаккумулятор удерживает машину заторможенной на стоянке, играя роль стояночной системы тормозов, в автоматическом режиме затормаживая движущееся авто при повреждении трубопроводов, входящих в состав пневматического привода тормозов, либо отказе компрессора.

Как работает энергоаккумулятор на КАМАЗе

Схема энергоаккумулятора КАМАЗ подразумевает его крепление к тормозной камере заднего ведущего моста и среднего ведущего моста с образованием общего тормозного устройства, которое включает тормозную камеру и цилиндр энергоаккумулятора. Тормозная камера имеет корпус, состоящий из 2-х половин. Между этими половинами находится прорезиненная диафрагма. Ниже диафрагмы размещён опорный диск из металла, который соединяется со штоком. Под этим диском расположена пружина конической формы.

 

Шток соединён с рычагом, входящим в разжимной кулак тормозных колодок, будучи закрыт чехлом из резины, который предотвращает проникновение грязи и пыли. Цилиндр энергоаккумулятора содержит установленный герметично поршень из стали с уплотнением. Поршень испытывает воздействие мощной силовой пружины, которая стремится к удержанию его в самой нижней позиции, что отвечает заторможенному состоянию авто. Внизу в поршень установлена опорная шайба, а также запрессована труба из стали, в которую, в свою очередь, вставлен толкатель, имеющий уплотнитель. Верхняя часть тормозной камеры трубы имеет кольцевое уплотнение.

В трубе установлено устройство, которое осуществляет механическое растормаживание колёс для отведения машины к безопасному месту либо её буксирования в случае неисправности тормозного привода. Устройство включает винт из стали, который ввёрнут в бобышку, которая приварена к верху цилиндра, а также упорное стопорное кольцо, которое запирает подшипник с кольцом из резины и обоймами на винтовом хвостовике. Находящаяся сверху полость цилиндра посредством трубы соединяется с полостью камеры под диафрагмой, сообщающейся с атмосферой.

Принцип работы энергоаккумулятора КАМАЗ

  1. Во время движения авто при условии исправности привода сжатый воздух идёт из баллонов через трубопроводы и штуцер внутрь цилиндра энергоаккумулятора, действуя на поршень, который вследствие этого поднимается, сжимая пружину.
  2. Поршень при подъёме уводит трубу с толкателем. Пружина тормозной камеры действует на диафрагму, а также на диск, поднимая их.
  3. С диском происходит подъём также штока, что приводит к прекращению действия на разжимной кулак, а также на рычаг, позволяя стяжным пружинам стягивать колодки таким образом, чтобы между тормозным барабаном и колодками появился зазор. Благодаря этому колёса осуществляют свободное вращение.
  4. Во время торможения машины, осуществляемого тормозной системой, воздух в сжатом состоянии идёт через трубопровод в полость тормозной камеры над диафрагмой, прогибая последнюю и действуя посредством диска на шток, выдвигающийся и поворачивающий рычаг с разжимным кулаком, прижимающим тормозные колодки к барабанам.
  5. В этот момент между колодками и барабанами появляется сила трения, что ведёт к остановке авто. После отпускания тормозной педали происходит выход воздуха в наружную атмосферу, диафрагма со штоком принимают первоначальное положение, происходит растормаживание колёс, машина может двигаться дальше.

Энергоаккумулятор КАМАЗ: для чего нужен

Устройство энергоаккумулятора КАМАЗ в разборе предусматривает, что во время движения машины и использования рабочей тормозной системы происходит непрерывное поступление сжатого воздуха внутрь цилиндра энергоаккумулятора, пружина удерживается в сжатом положении, накапливая кинетическую энергию. Если тормозной пневматический привод либо компрессор неисправен и это повлекло утечку воздуха, последний не будет идти внутрь цилиндра энергоаккумулятора, тогда как присутствующий в нём воздух покинет его, благодаря чему пружина распрямится и будет действовать на поршень и опускать его.

Поршень, в свою очередь, будет воздействовать торцом на разжимной кулак и шток. Этот кулак в ходе поворачивания прижмёт тормозные колодки заднего моста и среднего моста к барабанам. Между барабаном и колодками появится сила трения, удерживающая авто в заторможенном положении. Поскольку энергоаккумулятор срабатывает весьма оперативно, машина может остановиться прямо на проезжей части и перекрыть движение на ней. Потому имеется аварийная система растормаживания, наполняющая цилиндры энергоаккумуляторов воздухом, идущим в сжатом состоянии из баллона.

Категории статей

  • Все статьи
  • Эксплуатация и ремонт
  • Обзор техники
  • Практические советы
  • Сервис и компоненты
  • Сравнение техники
  • Тест-драйвы
  • Аккумуляторы | Power & Motion

    Скачать эту статью в формате . PDF

    Аккумуляторы обычно устанавливаются в гидравлических системах для накопления энергии и сглаживания пульсаций. Как правило, в гидравлической системе с аккумулятором можно использовать насос меньшего размера, поскольку аккумулятор накапливает энергию насоса в периоды низкой нагрузки. Эта энергия доступна для мгновенного использования и высвобождается по запросу со скоростью, во много раз превышающей ту, которую может обеспечить только насос.

    Рис. 1. Поперечный разрез типичных аккумуляторов баллонного и поршневого типа. Нажмите на изображение для увеличения.

    Аккумуляторы также могут действовать как поглотители перенапряжения или пульсации, подобно тому, как воздушный купол используется в пульсирующих поршневых или роторных насосах. Аккумуляторы амортизируют гидравлический удар, уменьшая удары, вызванные быстрой работой или внезапным запуском и остановкой силовых цилиндров в гидравлическом контуре.

    Существует четыре основных типа аккумуляторов: грузоподъемный поршневой, диафрагменный (или баллонный), пружинный и гидропневматический поршневой. Тип с грузом был использован первым, но он намного больше и тяжелее по своей вместимости, чем современные поршневые и баллонные типы. Как утяжеленные, так и пружинные сегодня встречаются нечасто. Гидропневматические аккумуляторы, рис. 1, наиболее часто используются в промышленности.

    Функции

    Аккумулятор энергии — Гидропневматические аккумуляторы содержат газ в сочетании с гидравлической жидкостью. Жидкость обладает небольшими динамическими свойствами накопления мощности; типичные гидравлические жидкости могут быть уменьшены в объеме только примерно на 1,7% при давлении 5000 фунтов на квадратный дюйм. (Однако эта относительная несжимаемость делает их идеальными для передачи мощности, обеспечивая быструю реакцию на потребность в мощности.) Поэтому, когда высвобождается только 2% от общего содержащегося объема, давление оставшегося масла в системе падает до нуля.

    С другой стороны, газ, являющийся партнером гидравлической жидкости в аккумуляторе, может быть сжат до небольших объемов при высоком давлении. Потенциальная энергия хранится в сжатом газе и высвобождается по требованию. Такую энергию можно сравнить с энергией поднятого копра, готового передать свою огромную энергию свае. В аккумуляторе поршневого типа энергия сжатого газа оказывает давление на поршень, разделяющий газ и гидравлическую жидкость. Поршень, в свою очередь, выталкивает жидкость из цилиндра в систему и туда, где будет выполняться полезная работа.

    Поглощение пульсаций — Насосы, конечно же, генерируют необходимую мощность для использования или накопления в гидравлической системе. Многие насосы обеспечивают эту мощность пульсирующим потоком. Поршневой насос, обычно используемый из-за его способности работать с высоким давлением, может создавать пульсации, вредные для системы высокого давления. Аккумулятор, правильно расположенный в системе, существенно смягчит эти колебания давления.

    Амортизация ударов — Во многих гидравлических системах ведомый элемент гидравлической системы внезапно останавливается, создавая волну давления, которая проходит обратно через систему. Эта ударная волна может развивать пиковое давление, в несколько раз превышающее нормальное рабочее давление. Это может вызвать неприятный шум или даже отказ системы. Газовая подушка аккумулятора, правильно расположенная в системе, минимизирует этот удар.

    Примером этого применения является поглощение ударов, вызванных внезапной остановкой погрузочного ковша гидравлического фронтального погрузчика. Без гидроаккумулятора ковш весом более 2 тонн может полностью оторвать от земли задние колеса погрузчика. Сильный удар по раме и мосту трактора, а также износ оператора можно преодолеть путем добавления в гидравлическую систему соответствующего гидроаккумулятора.

    Дополнительный насос — Аккумулятор, способный накапливать энергию, может дополнять гидравлический насос при подаче энергии в систему. Насос запасает потенциальную энергию в аккумуляторе в периоды простоя рабочего цикла. Аккумулятор передает эту резервную мощность обратно в систему, когда цикл требует аварийной или пиковой мощности. Это позволяет системе использовать насос гораздо меньшего размера, что приводит к экономии затрат и энергии.

    Поддержание давления — Изменения давления происходят в гидравлической системе, когда жидкость подвергается повышению или понижению температуры. Также может быть падение давления из-за утечки гидравлической жидкости. Аккумулятор компенсирует такие изменения давления, подавая или получая небольшое количество гидравлической жидкости. Если основной источник питания выйдет из строя или будет остановлен, аккумулятор будет действовать как вспомогательный источник питания, поддерживая давление в системе.

    Дозирование жидкости — Аккумулятор может использоваться для дозирования небольших объемов жидкостей, таких как консистентные смазки и масла, по команде.

    Эксплуатация

    При правильном размере и предварительной зарядке аккумуляторы обычно циклически переключаются между стадиями (d) и (f), рис. 2. Поршень не соприкасается с какой-либо крышкой в ​​поршневом аккумуляторе, а камера не соприкасается с тарелкой и не сжимается. так что он становится деструктивно сложенным в верхней части своего тела.

    Производители указывают рекомендуемое давление предварительной зарядки для своих аккумуляторов. В приложениях для накопления энергии баллонный аккумулятор обычно предварительно заряжен до 80% минимального давления в гидравлической системе, а поршневой аккумулятор — до 100 фунтов на квадратный дюйм ниже минимального давления в системе. Предварительное давление определяет, сколько жидкости останется в аккумуляторе при минимальном давлении в системе.

    Рис. 2. Шесть стадий работы аккумуляторов: этап (а), аккумулятор пуст – нет заряда газа; стадия (б) — аккумулятор предварительно заправлен сухим азотом; стадия (c), давление в системе превышает давление предварительного наддува, и гидравлическая жидкость поступает в аккумулятор; этап (d), пики давления в системе, максимальное количество жидкости попало в аккумулятор, и открывается система сброса давления; этап (e), давление в системе падает, давление предварительной заправки вытесняет жидкость из аккумулятора в систему; и стадия (f), давление в системе достигает минимума, необходимого для совершения работы.

    Правильная предварительная зарядка подразумевает точное заполнение газовой стороны аккумулятора сухим инертным газом, таким как азот, при отсутствии гидравлической жидкости на жидкостной стороне. Затем зарядка аккумулятора начинается, когда гидравлическая жидкость поступает на сторону жидкости, и происходит только при давлении, превышающем давление предварительной зарядки. Во время зарядки газ сжимается для накопления энергии.

    Правильное давление предварительной зарядки является наиболее важным фактором продления срока службы аккумулятора. Тщательность, с которой должна выполняться и поддерживаться предварительная зарядка, является важным фактором при выборе типа аккумулятора для приложения, при прочих равных условиях. Если пользователь небрежно относится к настройкам давления газа и предохранительного клапана или регулирует давление в системе без соответствующей регулировки давления предварительной зарядки, срок службы может сократиться, даже если был выбран правильный тип аккумулятора. Если был выбран неправильный аккумулятор, преждевременный выход из строя почти неизбежен.

    Монтажное положение

    Оптимальное монтажное положение для любого гидроаккумулятора — вертикальное, гидравлическим портом вниз. Поршневые модели могут быть горизонтальными, если жидкость содержится в чистоте. Когда твердые загрязнения присутствуют или ожидаются в значительном количестве, горизонтальная установка может привести к неравномерному или ускоренному износу уплотнения. Максимальный срок службы может быть достигнут в горизонтальном положении с несколькими поршневыми уплотнениями для балансировки параллельной поверхности поршня.

    Рис. 3. Аккумулятор, установленный горизонтально, может привести к неравномерному износу камеры и улавливанию жидкости от гидравлического клапана.

    Баллонный аккумулятор также может быть установлен горизонтально, рис. 3, но неравномерный износ баллона, поскольку он трется о корпус во время плавания в жидкости, может сократить срок службы. Степень повреждения зависит от чистоты жидкости, частоты циклов и степени сжатия (определяемой как максимальное давление в системе/минимальное давление в системе). В экстремальных случаях жидкость может задерживаться в стороне от гидравлического конца, что снижает производительность или может удлинить камеру, что приведет к преждевременному закрытию тарелки.

    Размеры и мощность

    Доступные размеры и емкости также влияют на выбор типа аккумулятора. Поршневые аккумуляторы определенной емкости часто поставляются с различными диаметрами и длинами, таблица 1. Кроме того, конструкции поршней могут быть изготовлены с нестандартной длиной за небольшую надбавку к цене или без нее. Аккумуляторы для баллонов предлагаются только одного размера на емкость, при этом доступно меньшее количество емкостей.

    Таблица 1. Относительная производительность, аккумулятор на 10 галлонов
    Сжатие
    Коэффициент
    1/2
    Давление в системе, psi Рекомендуемая предварительная заправка, psi Выход, гал
    максимум 1 минимум 2 камера 3 поршень 4 камера 5 поршень 6
    1,5
    2,0
    3 000
    3 000
    2 000
    1 500
    1 600
    1 200
    1 900
    1 400
    2,53
    3,80
    3,00
    4,41
    3,0
    6,0
    3 000
    3 000
    1000
    500
    800
    900
    400
    5,06
    5,70
    6,33

    Высокая производительность поршневого аккумулятора может сделать его лучшей альтернативой в ограниченном пространстве. В таблице 1 приведены выходные параметры поршневых и баллонных аккумуляторов емкостью 10 галлонов, работающих в изотермическом режиме в качестве вспомогательных источников энергии в диапазоне минимальных давлений в системе. Различия в предварительном давлении в столбцах 3 и 4 (определяемом 80% минимального давления в системе для моделей с баллоном, на 100 фунтов на квадратный дюйм ниже минимального для поршневых моделей) приводят к существенной разнице в выходных данных в столбцах 5 и 6.

    Чтобы предотвратить чрезмерную деформацию баллона и повышение температуры баллона, также обратите внимание в Таблице 1, что гидроаккумуляторы баллона должны иметь коэффициент сжатия более 3:1.

    Составные компоненты

    Рис. 4. Поршневые аккумуляторы в сочетании с газовыми баллонами.

    Несмотря на то, что конструкции с диафрагмой не доступны вместимостью более 40 галлонов, поршневые конструкции в настоящее время поставляются вместимостью до 200 галлонов в одной емкости. Экономичность и доступное место для установки побудили инженеров рассмотреть возможность установки нескольких компонентов. Два из них могут охватывать большинство высокопроизводительных приложений.

    Установка на рис. 4 состоит из нескольких газовых баллонов, обслуживающих один поршневой аккумулятор через газовый коллектор. Аккумуляторная часть должна быть такого размера, чтобы поршень не ударял по крышкам во время цикла. Одним из недостатков этой конструкции является то, что выход из строя одного уплотнения может привести к осушению газовой системы. Поскольку газовые баллоны часто дешевле, чем аккумуляторы, одним из преимуществ такой установки может быть более низкая стоимость.

    Рис. 5. Несколько аккумуляторов могут быть объединены в коллекторы для обеспечения больших потоков в системе.

    Некоторые гидроаккумуляторы поршневой или баллонной конструкции могут быть установлены на гидравлическом коллекторе, рис. 5. При использовании поршневых аккумуляторов поршень с наименьшим трением будет двигаться первым и иногда может опускаться на гидравлическую крышку. В медленных или редко используемых системах это несущественно.

    Установки газовых баллонов

    Рис. 6. Небольшой аккумулятор может выполнять эту работу, если он удаленно подключен к вспомогательному газовому баллону.

    Удаленное хранилище газа обеспечивает гибкость в больших и малых системах, рис. 6. Концепция газового баллона обычно описывается простой формулой: размер аккумулятора минус требуемый выход жидкости равняется размеру газового баллона. Например, приложение, требующее аккумулятора на 30 галлонов, может потребовать только от 8 до 10 галлонов выходной жидкости. Таким образом, это приложение может быть удовлетворено аккумулятором на 10 галлонов и газовым баллоном на 20 галлонов.

    Аккумулятор, используемый с удаленным хранилищем газа, обычно имеет порт того же размера на газовом конце, что и на гидравлическом конце, чтобы обеспечить беспрепятственный поток газа в газовый баллон и из него. Газовый баллон имеет аналогичный порт на одном конце и клапан для заправки газа на другом. Эти аккумуляторы, состоящие из двух частей, могут быть сконфигурированы или изогнуты под любым углом, чтобы соответствовать доступному пространству.

    Концепция газового баллона подходит как для баллонных, так и для поршневых аккумуляторов. Обратите внимание, что для баллонных аккумуляторов требуется специальное устройство, называемое 9.0178 переходный барьер на газовом конце для предотвращения выдавливания баллона в трубопровод газового баллона.

    Опять же, размер поршневого аккумулятора должен быть таким, чтобы поршень не опустился на дно в конце цикла. Конструкции баллонов должны иметь такие размеры, чтобы предотвратить наполнение более чем на 85% или опорожнение более чем на 85%. Скорость потока между барьером переноса мочевого пузыря и его газовым баллоном будет ограничена горловиной трубки барьера переноса. Из-за этих недостатков бутылочные/баллонные аккумуляторы следует зарезервировать для специальных применений.

    Скорость потока и время отклика

    В таблице 2 приведены максимальные скорости потока для репрезентативных размеров и типов аккумуляторов. Более крупные стандартные конструкции мочевого пузыря ограничены 220 галлонами в минуту, хотя скорость может быть увеличена до 600 галлонов в минуту с использованием дорогостоящего порта с высокой пропускной способностью. Тарелка контролирует скорость потока; чрезмерный поток приводит к преждевременному закрытию тарелки. Несколько аккумуляторов, установленных на общем коллекторе, необходимы для достижения расхода более 600 галлонов в минуту.

    Таблица 2. Максимально рекомендуемый расход аккумулятора
    Поршень
    , внутренний диаметр, дюйм
    Баллон
    вместимость
    гал/мин при 3000 psi
    Поршень Баллон 901 98
    Стандартный Высокий расход
    2
    4
    6
    1 кварта
    1 галлон
    2½ галлона
    100
    400
    800
    60
    150
    220


    600
    7
    9
    12
    больше 2½ галлона 1 200
    2 000
    3 400
    220
    220
    220
    600
    600
    600

    Допустимые значения расхода для поршневых аккумуляторов обычно превышают значения для баллонных аккумуляторов. Поток ограничивается скоростью поршня, которая не должна превышать 10 футов/сек во избежание повреждения уплотнения поршня. В условиях высоких скоростей высокие температуры контакта с уплотнением и быстрая декомпрессия азота, проникшего в материал уплотнения, могут вызвать вздутие, трещины и ямки в резине.

    Баллонные аккумуляторы быстрее реагируют на изменения давления в системе, чем поршневые, по двум причинам:

    1. Резиновые баллоны не должны преодолевать статическое трение, которое должно преодолевать уплотнение поршня, и 2. Масса поршня преодолевает его. не надо разгонять и тормозить.
    Однако на практике разница в отклике может быть не такой большой, как принято считать, и, вероятно, незначительной в большинстве приложений.

    Амортизация

    Рис. 7. Тестовая схема для создания и измерения ударных волн в системе.

    Испытания, проведенные в Университете Висконсина в Мэдисоне, показывают, что для контроля шока не обязательно требуется аккумулятор мочевого пузыря. При номинальном расходе системы 30 галлонов в минуту в испытательном контуре (рис. 7) направленный регулирующий клапан с внутренним управлением, расположенный на расстоянии 118 футов от насоса, закрывается, создавая удар. При движении ударной волны от клапана обратно по гидравлическим линиям, поворотам и различным ограничениям некоторая часть ее энергии расходуется на ускорение массы жидкости в линиях.

    Рис. 8. График показывает результаты испытаний ударной волной.

    С 1¼ дюйма. трубки, настройка предохранительного клапана на 2750 фунтов на квадратный дюйм и отсутствие аккумулятора в контуре, осциллограмма A , рис. 8, показывает скачок давления на 385 фунтов на квадратный дюйм выше настройки предохранительного клапана. Добавление поршневого аккумулятора на 1 галлон к клапану снижает переходный процесс до 100 фунтов на квадратный дюйм по сравнению с настройкой предохранительного клапана, кривая B . Замена баллонного аккумулятора емкостью 1 галлон снижает переходный процесс до 78 фунтов на квадратный дюйм по сравнению с настройкой предохранительного клапана, кривая 9. 0178 C , всего на 22 фунта на кв. дюйм лучше, чем защита поршневого типа.

    Рис. 9. Результаты второго испытания с использованием трубок меньшего диаметра.

    Второй аналогичный тест с 5/8-дюйм. трубки и настройка предохранительного клапана на 2650 фунтов на кв. дюйм приводит к скачку давления на 2011 фунтов на кв. дюйм по сравнению с настройкой предохранительного клапана без аккумулятора, кривая A , рис. 9. Поршневой аккумулятор демпфирует переходный процесс до 107 фунтов на кв. дюйм по сравнению с настройкой предохранительного клапана, кривая B , в то время как баллонный аккумулятор демпфирует переходный процесс до 87 фунтов на квадратный дюйм по сравнению с настройкой предохранительного клапана, кривая С . Разница между типами аккумуляторов в гашении удара снова была незначительной.

    Сервооборудование

    Еще одно распространенное заблуждение гласит, что для всех сервоприложений требуется баллонный аккумулятор. Опыт показывает, что лишь небольшому проценту сервоприводов требуется время отклика 25 мс или меньше, т. е. область, в которой разница в отклике между поршневыми и баллонными аккумуляторами становится существенной. Баллонные аккумуляторы следует использовать для приложений, требующих ответа менее 25 мс, и любой тип, когда отклик 25 мс или более является адекватным.

    Настройка и техническое обслуживание: предварительная зарядка

    На только что отремонтированных баллонных аккумуляторах внутренний диаметр кожуха следует смазать системной жидкостью перед предварительной зарядкой. Эта жидкость действует как подушка, смазывает и защищает мочевой пузырь, когда он раскручивается и разворачивается. Когда начинается предварительная зарядка, начальное давление азота 50 фунтов на квадратный дюйм следует вводить медленно.

    Рис. 10. Звездообразный разрыв на конце камеры (а) может указывать на потерю эластичности материала камеры из-за охрупчивания от холодного газообразного азота во время предварительной зарядки. Если мочевой пузырь вдавлен под тарелку (b), мочевой пузырь может выдержать С-образный разрез от тарелки.

    Несоблюдение этих мер предосторожности может привести к немедленному отказу мочевого пузыря. Азот под высоким давлением, быстро расширяющийся и, следовательно, холодный, мог направиться по всей длине складчатого пузыря и сконцентрироваться на дне. Охлажденная хрупкая резина, быстро расширяющаяся, может разорваться в виде звезды, рис. 10(а). Баллон также мог оказаться под тарельчатым клапаном, в результате чего на дне баллона образовался С-образный разрез, рис. 10(b).

    Жидкостная сторона поршневых аккумуляторов должна быть пустой во время предварительной зарядки, чтобы объем газовой стороны был максимальным. Незначительные повреждения, если таковые имеются, могут иметь место во время предварительной зарядки.

    Слишком высокое давление предварительной зарядки или снижение минимального давления в системе без соответствующего снижения давления предварительной зарядки может привести к проблемам в работе или повреждению аккумуляторов. При чрезмерном предварительном давлении поршневой аккумулятор будет циклически переключаться между стадиями (e) и (b), рис. 2, и поршень окажется слишком близко к гидравлической торцевой крышке. Поршень может опуститься при минимальном давлении в системе, что приведет к снижению производительности и, в конечном итоге, к повреждению поршня и его уплотнения. Часто можно услышать опускание поршня; звук служит предупреждением о надвигающихся проблемах.

    Слишком высокий предварительный заряд в баллонном аккумуляторе может привести баллон в сборку тарелки при переключении между стадиями (e) и (b), рис. 2. Это может привести к усталостному разрушению узла пружины и тарелки или защемлению и разрежьте мочевой пузырь, если мешок застрянет под тарелкой, когда ее принудительно закроют. Слишком высокое давление предварительной зарядки является наиболее распространенной причиной отказа мочевого пузыря.

    Слишком низкое давление предварительной зарядки или повышение давления в системе без компенсирующего увеличения давления предварительной зарядки также может вызвать проблемы в работе с возможным повреждением аккумулятора. Без предварительного заряда поршневого аккумулятора поршень, скорее всего, войдет в крышку газового наконечника и, вероятно, останется там. Одиночный контакт вряд ли приведет к повреждению.

    Для баллонных аккумуляторов слишком низкая предварительная зарядка или ее отсутствие могут иметь серьезные последствия. Мочевой пузырь может вдавиться в верхнюю часть оболочки, а затем может выдавиться в газовый клапан и проколоться. Одного такого цикла достаточно, чтобы разрушить мочевой пузырь. Поэтому поршневые аккумуляторы более устойчивы к неправильной предварительной зарядке.

    Скачать эту статью в формате .PDF

     

    Принцип работы гидроаккумулятора — Stuffworking.com0003

    Последнее обновление: 11 марта 2020 г.

    Гидравлический аккумулятор

    В гидравлической системе энергия может передаваться посредством давления. Иногда, однако, также необходимо сохранить гидравлическую энергию на короткое время. Таким образом мы используем гидроаккумулятор. Точно так же, как мы накапливаем энергию, сжимая пружину или надувая воздушный шар, мы можем таким же образом накапливать энергию в аккумуляторе. Мы используем давление для хранения энергии как в пружине, так и в воздушном шаре. Ниже в каком-то абзаце вы можете найти принцип работы гидроаккумулятора.

    принцип работы гидроаккумулятора

    Гидроаккумулятор используется для накопления гидравлической энергии за счет противодавления газа, пружины или веса. Следовательно, мы можем классифицировать аккумулятор следующим образом.

    1. Газовый аккумулятор с предварительной заправкой
    2. Подпружиненный аккумулятор.
    3. Весовой аккумулятор.

    1. Принцип работы предварительно заряженного газового гидроаккумулятора

    Рис. 2 Заряженный аккумулятор

    Предварительно заряженный газовый аккумулятор заряжается нетоксичным, нереакционноспособным газом, таким как азот. Когда гидравлическое давление в системе превышает давление зарядки аккумулятора, газ начинает сжиматься. Гидравлическое масло начинает течь в емкость аккумулятора. Газ и масло разделяются с помощью некоторой мембраны. Это происходит до тех пор, пока давление газа не сравняется с гидравлическим давлением. Гидравлическая кинетическая энергия теперь хранится в потенциальной энергии давления газа. При снижении давления в гидравлическом контуре то же самое происходит и в гидроаккумуляторе. Газ снова расширяется. Сохраненная энергия теперь преобразуется обратно в движение. Он выталкивает гидравлическую жидкость обратно в контур до тех пор, пока давление газа не упадет до значения гидравлического давления или исходного давления предварительной зарядки, в зависимости от того, что больше. На самом деле зарядка-разрядка аккумулятора происходит очень быстро и происходит одновременно с давлением в системе.

    Теперь мы более подробно рассмотрим, как аккумулятор может помочь нам в гидравлической системе.

    Давайте посмотрим, как гидроаккумулятор может помочь в гидравлической системе

    Рис. 3 Гидравлический пресс

    Рассмотрим пример, гидравлический пресс предназначен для сжатия заготовки. Для этого требуется много силы (знаю почему), но только на низкой скорости. Это означает, что нам нужно высокое давление с насосом с низким расходом. Рециркуляция после нажатия означает, что поршень для втягивания не требует большого усилия, но он должен идти быстро, что означает низкое давление и высокую производительность насоса. Чтобы полностью выполнить оба условия, нам нужно отрегулировать насос, что довольно дорого.

    Но гидроаккумулятор дает решение. Мы можем использовать насос с высоким давлением и низким расходом с добавлением аккумулятора к нагнетанию насоса.

    Рис. 4 Гидравлический пресс с гидроаккумулятором

    Как показано на рис. 4 гидроаккумулятор устанавливается между насосом и гидрораспределителем. Производительности насоса достаточно для прессования на низкой скорости. Высокое давление при прессовании сжимает газ в гидроаккумуляторе, и он заряжается жидкостью. Как только начнется втягивание поршня из-за ограничения нагрузки, давление в контуре упадет. Поэтому газ в гидроаккумуляторе расширяется, вытесняет жидкость и увеличивает расход. Таким образом, пресс может возвращаться быстрее, чем при простом расходе насоса.

    Типы предварительно заряженных газовых аккумуляторов.

    • Баллонный тип
    • Мембранный тип
    • Поршневой тип

    Использование этих различных аккумуляторов зависит от давления и объема, требуемых в системе. Аккумулятор баллонно-диафрагменного типа используется для умеренного давления и небольшого объема (от 0,5 до 500 литров). Но время отклика быстрое. С другой стороны, гидроаккумулятор поршневого типа используется для высокого давления и большого объема (более 500 литров). Но у него малое время отклика из-за большой массы поршня. Наконец, предварительно заряженный газовый аккумулятор должен быть установлен в указанном положении в соответствии с конструкцией для достижения наилучших результатов.

    2. Принцип работы пружинного гидроаккумулятора

    Рис. 5 Пружинный гидроаккумулятор

    В пружинном гидроаккумуляторе вместе с контейнером и подвижным поршнем находится пружина. Подпружиненный аккумулятор можно установить в любом положении. Однако усилие пружины не так просто отрегулировать. Эти пружины создают необходимое давление на гидравлический поршень для откачки жидкости. Величина накачки зависит от степени сжатия пружины. Основное преимущество этого типа гидроаккумуляторов состоит в том, что они имеют сравнительно небольшие размеры, малый вес, легко монтируются в гидросистему и в то же время экономичны. Их можно использовать в качестве мобильных гидроаккумуляторов благодаря их небольшому весу. Из-за ограничений размеров пружин использование этого аккумулятора нецелесообразно там, где требуется большой объем жидкости.

    3. Принцип работы гидроаккумулятора с грузоподъемностью

    Рис. 6 Аккумулятор с грузоподъемностью

    Аккумулятор с грузоподъемностью был использован первым, но он намного больше и тяжелее по своей емкости, чем современные поршневые и баллонные аккумуляторы. С другой стороны, это единственный тип аккумулятора, в котором давление постоянно, независимо от того, заполнена камера или почти пуста (здесь вы можете узнать, почему). Он тяжелый и громоздкий, что ограничивает использование. Например, он используется в тяжелых прессах, где требуется постоянное давление.

    Пример: Аккумулятор используется для демпфирования в автомобиле.

    Рис. 7 Демпфирование

    Для демпфирования нежелательных скачков и колебаний давления можно использовать аккумулятор. Например, гидропневматический амортизатор в транспортных средствах показан на рисунке 7. Он в основном состоит из гидроцилиндра и предварительно заряженного газового аккумулятора. Если неровности дороги толкают колесо вверх, давление в гидравлической жидкости резко возрастает. Он проталкивается в гидроаккумулятор и сжимает присутствующий там газ. В результате газ действует как пружина. Давление и движение удара поглощаются и передаются на автомобиль только в демпфированной форме.

    Когда давление колеса на гидравлическую жидкость ослабевает после удара, газ в гидроаккумуляторе снова расширяется из-за ослабления противодавления и выталкивает жидкость обратно в цилиндр.

    Приведенный выше пример также применим для демпфирования в гидравлической системе. Когда гидрораспределитель быстро меняет положение, вступает в действие аккумулятор, который поглощает внезапные колебания давления.

    Обслуживание гидроаккумулятора

    Предварительно заряженная гидравлика не требует особого обслуживания, но необходимо регулярно проверять давление газа.

    Рис. 8 Высокое давление газа

    Например. В гидроаккумуляторе поршневого типа, если давление зарядки слишком высокое, гидравлическая жидкость будет полностью вытеснена из гидроаккумулятора при минимальном рабочем давлении. Поршень ударяется о гидравлическое соединение и может быть поврежден.

    Рис. 9 Низкое давление газа

    При слишком низком давлении наддува происходит обратное. Поршень прижимается полностью вверх к газовому клапану при максимальном рабочем давлении и также может быть поврежден.

    Точно так же в баллонном и диафрагменном типах разделительная мембрана может быть повреждена из-за неправильного давления зарядки.

    С другой стороны, из-за неправильной заправки газом изменился полезный объем гидравлической жидкости, необходимой для системы. Эти результаты изменяют поведение системы и могут повредить другие гидравлические компоненты.

    Процедура заправки газом

    • Во-первых, гидравлическая система не должна находиться под давлением
    • Заправочное оборудование должно напрямую подключаться к газовому клапану аккумулятора.
    • В зарядном комплекте должен быть встроенный манометр, который будет показывать преобладающее давление газа в аккумуляторе.
    • Для зарядки подсоедините имеющийся в продаже газовый баллон к оборудованию с помощью гибкого шланга.
    • Должны быть два регулирующих клапана для контроля количества газа в аккумуляторе. Один будет управлять газовым баллоном, а другой – аккумуляторным газом.
    • После подключения зарядного комплекта первым делом необходимо открутить контргайку аккумулятора. Затем немного приоткройте клапан управления баллоном и откройте клапан управления газом аккумулятора.
    Back to top