Принципы сцепления: Что такое сцепление: типы и основные функции

Содержание

видео, фото. Как работает сцепление в автомобиле? Принцип работы сцепления и коробки передач

Сцепление: общие сведения и назначение, функции

Сцепление является неотъемлемой частью трансмиссии, а располагается между двигателем и КПП автомобиля, обеспечивая ступенчатое переключение передач, контроль крутящего момента и временное прерывание связи маховика и трансмиссии.

Принцип работы сцепления основывается на силе трения, а если точнее – скольжения. Состоит система сцепления из привода и непосредственного механизма.

При необходимости резкого торможения именно сцепление может уберечь узел от перегрузки.

Управление в автомобилях с механической коробкой передач происходит за счет педали сцепления. С ее помощью удается соединять и разрывать связь между двигателем и КПП. Если педаль отпустить резко, пружина стремительно вернет ее в исходную позицию.

Езда на транспортном средстве с механической коробкой передач при постоянно выжатом сцеплении спровоцирует перегрев и быстрый износ элементов. Езда с пробуксовкой допустима в экстремальных условиях, для поднятия оборотов.

В стандартном виде сцепление отсутствует в гидромеханических КПП и вариаторах. Хотя, в гидромеханических коробках используются фрикционные муфты для плавного переключения передач. Встретить классическую сборку возможно лишь на РКПП, где процессом переключения управляют сервоприводы (гидравлические или электронные). Очень часто в РКПП используются два сцепления для оптимизации процесса и устранения задержек переключения – когда одно сцепление работает, другое в состоянии ожидания для переключения следующей передачи.

Устройство и составляющие сцепления

Устройство сцепления условно можно разделить на две части: механизм и привод. В целом в конструкцию узла входит:

  1. Нажимной диск или корзина. Является основой для других конструктивных элементов сцепления. Имеет непосредственный контакт с выжимными пружинами, которые направлены к центру. Размер площадки пропорционален двум радиусам маховика ДВС. Прижимной участок отличается наличием шлифовки исключительно с одной стороны. Диск имеет плотное соединение с маховиком двигателя.
  2. Ведомый диск. Располагается в зазоре прижимного участка и маховика. Имеет непосредственный контакт с КПП при помощи шлицевой муфты и фрикционных накладок. Вокруг муфты конструктивно находятся демпферные пружины, которые принимают на себя всю вибрацию.
  3. Фрикционные накладки. Находятся в основании и изготавливаются из различных композитных материалов.
  4. Выжимной подшипник. Визуально делится на две части, одна из которых имеет круглую основу для воздействия на пружины корзины. Подшипник расположен на кожухе вала. Существует два типа подшипников: оттягивающего или нажимного принципа. Первый тип нашел свое применение в Peugeot. Иногда подшипник имеет несколько пружин-фиксаторов.
  5. Привод и педаль сцепления. В автоматических коробках сохранен только механизм.

Классификация

Сцепление систематизируют по нескольким функциональным устройствам.

По связи ведущих и ведомых частей

По контакту пассивных и активных элементов различают такие категории узлов:

  1. Гидравлический. Работа выполняется за счёт потока специальной суспензии. Подобные муфты применяются в автоматических коробках скоростей.
  2. Электромагнитный. Для приведения в действие используется магнитный поток. Устанавливается на малогабаритных автомобилях.
  3. Фрикционный или типичный. Передача импульса осуществляется за счёт силы трения. Самый ходовой тип для автомобилей с механической коробкой передач.

Важно! По причине сложности устройства электромагнитная и гидравлическая муфты не заработали повсеместного применения.

По типу создания

В данной категории различают такие типы соединительной муфты:

  • центробежные;
  • частично центробежные;
  • с основной пружиной;
  • с периферийными спиралями.

По числу руководимых валов выделяют:

  • однодисковые — самый распространённый тип;
  • двухдисковые — устанавливаются на грузовом транспорте или автобусах солидной вместимости;
  • многодисковые — используются в мототехнике.

По типу привода

По разряду привода сцепления классифицируют на:

  1. Механические. Предусматривают передачу импульса при нажиме на рычаг через трос на выжимную вилку.
  2. Гидравлические. Включают в состав главный и рабочий цилиндры сцепления, которые сопряжены трубкой повышенного давления. При натиске на педаль включается в работу шток ключевого цилиндра, на котором размещается поршень. Он в ответ давит на ходовую жидкость и создаёт пресс, который передаётся к основному цилиндру.

В авто с автоматической КПП педаль сцепления отсутствует. Но это означает только то, что соединительная муфта работает без участия человека.

Существует и электромагнитный тип соединительной муфты, но сегодня он практически не используется в машиностроении ввиду дорогостоящего обслуживания.

Принцип работы и механизм

Вся работа сцепления построена на трении между дисками. Ведущий диск является частью ДВС, а ведомый диск – элемент трансмиссии. Когда водитель отпускает педаль, то пружины сжимают диски вместе. В итоге за счет фрикционных поверхностей, диски притираются и продолжают вращение с равной угловой скоростью. От силы лепестков пружин зависит показатель абразива диска.

Когда водитель выжимает сцепление, основа привода перемещают вилку, которая впоследствии оказывает влияние на подшипник. Последний перемещается до упора. Пружины в этот момент уже готовы прижать два диска, что значит, что вилка разорвала связь между трансмиссией и маховиком ДВС. Все трансмиссионные удары, когда водитель резко бросает педаль, когда ТС тронулось с места, поглощают и сглаживает отдельный тип пружин.

Принцип работы сцепления с механическим приводом

Стоит отметить, что данный узел имеет одинаковый принцип работы вне зависимости от количества ведомых валов и типа создания нажимных усилий. Исключение составляет тип привода. Напомним, он бывает механическим и гидравлическим. И сейчас мы рассмотрим принцип работы сцепления с механическим приводом.

Как же действует данный узел?

В рабочем состоянии, когда педаль сцепления не затронута, ведомый диск зажат между нажимным и маховиком.

В это время передача крутящих усилий на вал производится за счет силы трения.

Когда водитель нажимает ногой на педаль, трос сцепления перемещается в корзине. Далее рычаг поворачивается относительно своего места крепления. После этого свободный конец вилки начинает давить на выжимной подшипник.

Последний, перемещаясь к маховику, — давить на пластины, которые отодвигают нажимной диск. В данный момент ведомый элемент освобождается от прижимающих усилий и таким образом происходит отсоединение сцепления.

Далее водитель свободно производит переключение передачи и начинает плавно отпускать педаль сцепления. После этого система вновь включает в связь ведомый диск с маховиком. По мере отпускания педали сцепление включается, происходит притирка валов. Через некоторое время (пару секунд) узел в полной мере начинает передавать крутящий момент на двигатель.

Последний через маховик осуществляет привод на колеса. Стоит отметить, что трос сцепления присутствует только на узлах с механическим приводом. Нюансы конструкции другой системы мы опишем в следующем разделе.

Принцип работы сцепления с гидравлическим приводом

Здесь, в отличие от первого случая, усилие от педали к механизму передается посредством жидкости.

Последняя содержится в специальных трубопроводах и цилиндрах.

Устройство данного типа сцепления несколько отличается от механического.

На шлицевом конце ведущего вала трансмиссии и стального кожуха, закрепленного к маховику, устанавливается 1 ведомый диск.

Внутри кожуха есть пружина с радиальным лепестком. Она служит выжимным рычагом. Управляющая педаль при этом подвешивается на оси к кронштейну кузова. К ней также прикреплен толкатель главного цилиндра на шарнирном соединении. После того как происходит выключение узла и переключение передачи, пружина с радиальными лепестками возвращает педаль в исходное положение.

В конструкции узла присутствует как главный, так и рабочий цилиндр сцепления. По своей конструкции оба элемента очень схожи между собой. Оба состоят из корпуса, внутри которого присутствует поршень и специальный толкатель. Как только водитель нажимает педаль, задействуется главный цилиндр сцепления. Здесь при помощи толкателя поршень перемещается вперед, благодаря чему давление внутри увеличивается. Последующее его передвижение приводит к тому, что жидкость проникает в рабочий цилиндр через нагнетательный канал. Так вот, благодаря воздействию толкателя на вилку и происходит выключение узла. В то время, когда водитель начинает отпускать педаль, рабочая жидкость поступает обратно. Это действие приводит к включению сцепления. Данный процесс можно описать так. Сначала открывается обратный клапан, который сжимает пружину. Далее идет возврат жидкости из рабочего цилиндра в главный. Как только давление в нем становится меньше усилия нажатия пружины, клапан закрывается, а в системе образуется избыточное давление жидкости. Так происходит нивелирование всех зазоров, которые находятся в определенной части системы.

Особенности сцепления РКПП

Теперь немного о сцеплении, используемом в трансмиссии с роботизированной КПП.

Конструктивно оно очень похоже на двухдисковый двухпоточный тип, но таковым не является. Его называют просто двойным. А все это из-за особенностей конструкции КПП.

В таком узле присутствует два ведомых диска, который зажаты между маховиком и двумя ведущими дисками (один из них промежуточный).

Каждый из ведомых дисков взаимодействует со своим первичным валом КПП (которых в конструкции коробка – два, и расположены они на одной оси, по сути, один вставлен во второй).

Особенность работы такого сцепления заключается в том, что при наличии двух потоков, одновременно они не задействуются.

В роботизированной коробке имеются так называемые ряды парных и непарных передач, и на каждый из них вращение передается от своего диска сцепления.

То есть, если включена непарная передача, то зажатым оказывается только один из ведомых дисков, а второй находится в свободном состоянии (им вращение не осуществляется).

При смене передачи (переход на парную) диски меняются местами, то есть бывший ранее свободным зажимается, а второй – отпускается. Управляется этот тип сцепления электрическим автоматическим приводом.

Элементы муфты сцепления

Конструкция муфты сцепления

Стандартная муфта сцепления, применяющаяся на большинстве автомобилей с механической коробкой передач, включает следующие основные элементы:

  • Маховик двигателя – ведущий диск.
  • Ведомый диск сцепления.
  • Корзина сцепления – нажимной диск.
  • Выжимной подшипник сцепления.
  • Муфта выключения сцепления.
  • Вилка сцепления.
  • Привод сцепления.

На ведомый диск сцепления с обеих сторон установлены фрикционные накладки. Его функция – передача крутящего момента за счет силы трения. Встроенный в корпус диска пружинный демпфер крутильных колебаний смягчает соединение с маховиком и гасит вибрации и нагрузки от неравномерности работы двигателя.

Схема расположения диска сцепления, корзины и выжимного подшипника с муфтой выключения

Нажимной диск и диафрагменная пружина, воздействующие на ведомый диск сцепления, в сборе представляют собой единый узел, получивший название “корзина сцепления”. Ведомый диск сцепления расположен между корзиной и маховиком и соединен с первичным валом коробки передач с помощью шлицев, по которым он может перемещаться.

Диафрагменная пружина корзины может быть либо нажимного, либо вытяжного принципа действия. Отличие – в направлении приложения усилия от привода сцепления: к маховику или от маховика. Особенность конструкции пружины вытяжного действия позволяет использовать корзину, толщина которой значительно меньше. Это делает узел максимально компактным.

Виды сцеплений

Компрессор автомобильного кондиционера с магнитным сцеплением В автомобиле используются различные виды сцеплений.
Автоматическая КПП включает в себя несколько сцеплений. Эти сцепления включают и выключают планетарные передачи. Каждое сцепление приводится в действие при помощи гидравлической жидкости под давлением. При падении давления пружины разъединяют сцепление.
В автомобильном кондиционере используется электромагнитное сцепление. Оно позволяет компрессору отключаться даже при работающем двигателе. Сцепление срабатывает при прохождении электрического тока через магнитную катушку. Если подача тока прекращается (Вы выключили кондиционер), сцепление разъединяется.
Во многих автомобилях используются вентилятор охлаждения, работающий от двигателя. Такой вентилятор управляется другим типом сцепления — вязкостной муфтой. Она срабатывает в зависимости от температуры жидкости. Муфта устанавливается на ступицу вентилятора в потоке воздуха, проходящего через радиатор. Данный тип сцепления схож с вискомуфтой, которая используется во вседорожных автомобилях. При нагревании вязкость жидкости в муфте повышается, что приводит к повышению скорости вращения вентилятора для соответствия скорости вращения двигателя. В холодном автомобиле жидкость в муфте не нагревается, и вентилятор вращается медленно, что позволяет двигателю быстрее нагреться до рабочей температуры.
Во многих автомобилях установлены самоблокирующиеся дифференциалы или вискомуфты, которые используются для повышения сцепления с дорогой. При повороте одно колесо вращается быстрее другого, что затрудняет управление. Самоблокирующийся дифференциал срабатывает при помощи сцепления. Если одно колесо начинает вращаться быстрее других, активируется сцепление для замедления вращения. Езда по лужам и по льду может привести к пробуксовке.
В бензопилах используются центробежные сцепления для остановки цепи без необходимости глушить двигатель. Такие сцепления срабатывают автоматически посредством центробежной силы. Входной барабан соединен с коленвалом двигателя. Выходной барабан приводит в действие цепь. При повышении оборотов двигателя, фрикционные сегменты прижимаются к внутренней поверхности барабана. Центробежные сцепления также используются в газонокосилках, картах и мопедах. Сцепление есть даже в некоторых игрушках йо-йо.

Смотрите это видео на YouTube

Распространенные проблемы сцепления

В 1950-е — 1970-е гг. приходилось менять сцепление каждые 80 000 — 100 000 км. Ресурс современных сцеплений составляет более 130 000 км при правильной эксплуатации и обслуживании. В противном случае, сцепление может выйти из строя на 55 000 км. У перегруженных грузовиков и буксирующих тяжелые грузы тягачей могут возникнуть проблемы даже с новым сцеплением.
Основная проблема заключается в износе фрикционного материала диска. Фрикционный материал на диске сцепления схож с фрикционным материалом тормозных колодок — со временем он стирается. При износе большей части фрикционного материала диск начинает проскальзывать, и сцепление не передает мощность от двигателя на колеса.
Износ сцепления происходит только при вращении дисков с разной скоростью. Когда диски прижаты друг к другу, фрикционный материал удерживает диски, и они вращаются с одинаковой скоростью. Износ происходит, если диск сцепления проскальзывает по нажимному диску. Но если Вы водите с частым просказыванием сцепления, износ проходит намного быстрее.
Проблемы со сцеплением также могут возникнуть, если диск сцепления не может оторваться от нажимного диска. Если сцепление выжато не до конца, оно продолжает вращать ведущий вал. Это может привести к включению передачи «с хрустом» или заклиниванию передач. Это может произойти по следующим причинам:

  • Трос сцепления растянут или поврежден — Для эффективной работы кабеля требуется достаточное натяжение.
  • Протекание или износ главного/рабочего цилиндра сцепления — Протечка не позволяет обеспечить достаточное давление.
  • Воздух в гидравлическом трубопроводе — Воздух влияет на работу гидравлики, т.к. занимает пространство и не позволяет обеспечить достаточное давление.
  • Неправильно установленный рычаг педали сцепления — Передает слабое усилие на трос или главный цилиндр гидравлической системы.
  • Несовместимость деталей сцепления — Не все детали, представленные на послегарантийном рынке, подходят для Вашего автомобиля.

Тугое сцепление — еще одна распространенная проблема. Для полного выключения сцепления требуется определенное усилие. Слишком тугая педаль сцепления может свидетельствовать о неисправности. Причин может быть несколько: заел рычаг педали, трос, поперечный валик или подшипник вилки сцепления. Иногда износ уплотнений и затор в гидравлической системе могут привести к тому, что педаль сцепления становится тугой. Еще одна частая проблема — это износ выжимного подшипника, который также называют подшипник выключения сцепления. Этот подшипник надавливает на лепестки диафрагменной пружины нажимного диска. Если Вы слышите неприятный звук при нажатии на педаль сцепления, это может свидетельствовать о неисправном выжимном подшипнике.

Эксплуатация сцепления

При эксплуатации автомобиля необходимо периодически проверять уровень в бачке, питающем жидкостью гидравлический привод сцепления. Если уровень окажется меньше нормы, то его обязательно следует восстановить, долив тормозной жидкости.
В противном случае, когда ее уровень понизится до нуля, усилие вашей ноги на педали сцепления будет передаваться в никуда.

Пониженный уровень жидкости или неправильная регулировка сцепления может привести к тому, что передачи на вашем автомобиле будут включаться с огромным усилием или вообще включаться не будут. И если, при полностью нажатой педали
сцепления, вам все-таки удастся «впихнуть» первую передачу, то автомобиль самопроизвольно начнет медленное движение, хотя в данный момент двигатель еще должен быть отделен от ведущих колес.

Как это может случиться и почему машина едет?

Описанная неприятность называется – сцепление ведет. Суть происходящего в следующем. В то время, когда ведомый диск сцепления не должен иметь контакта с маховиком, он все-таки за него немного цепляется, и поэтому часть крутящего момента передается на вал коробки передач и далее на ведущие колеса.

Со сцеплением может случиться неприятность и другого рода. Так как каждый раз, отпуская педаль сцепления, мы заставляем обе поверхности ведомого диска сильно тереться о железный маховик и не менее железный нажимной диск, то естественно боковые поверхности ведомого диска со временем изнашиваются.

Это нормальный процесс, предусмотренный конструкцией автомобиля, и ведомый диск является расходным материалом. Однако наступает момент, когда и первая передача включена, и педаль сцепления наверху, и «газуете» вы так, что у проезжающих мимо водителей «сердце кровью обливается». Но износ накладок ведомого диска уже настолько велик, что теперь он не зажимается между маховиком и нажимным диском с должным усилием, и, прокручиваясь, не передает крутящий момент от двигателя к трансмиссии. Описанное явление называется – сцепление пробуксовывает.

Конечно, здесь описан пример совсем уж глухого и слепого водителя, потому что машина намного раньше «предупреждала» его о том, что такой случай может произойти в ближайшее время. Еще раньше, на подходе к максимальному износу, ведомый диск начал пробуксовывать, сначала на четвертой передаче, затем на третьей и так далее.

Начало критического износа легко определить, двигаясь на четвертой передаче со скоростью 40 – 45 км/ч. Если при активном нажатии на педаль газа обороты
двигателя начинают увеличиваться, а машина продолжает движение с постоянной скоростью, то в подтверждение своей догадки вы еще и унюхаете специфический запах «подгорающих» накладок диска. Значит, пора покупать новый диск.

«Шелест» в районе сцепления и его пропадание при полностью нажатой педали сцепления означает, что вы должны готовится к замене выжимного подшипника. Резкие старты и ускорения машины, постоянное держание ноги на педали сцепления при
движении ведут к ускоренному износу не только сцепления, но и других агрегатов автомобиля.

Укорачивает срок службы сцепления и еще одна плохая привычка. Это когда водитель долго удерживает педаль сцепления в нажатом состоянии, например, на все время остановки перед красным сигналом светофора.

Диагностика сцепления в домашних условиях

Чаще всего при поломке слышны характерные звуки. Для этого давим пару раз на педаль сцепления и внимательно слушаем. Если появляются посторонние звуки, к примеру, такие как скрип, стук или подобное, то стоит понять, откуда они идут и устранить их. При нажатии на педаль, она должна идти свободно, без рывков и задержек. Расстояние от пола до педали при включенном или выключенном состоянии не должна превышать 145 миллиметров.

Встречаются еще поломки во время езды, а именно когда переключаете передачу. Если тяжело включить передачу и при включении появляются нестандартный хруст, шум и другие звуки, то не стоит затягивать. Так же при включении передачи и нажатии на газ машина не так резва, как обычно, начинает плавно набирать ход, при этом мотор работает на максимум. Это первый признак поломки диска сцепления.

Продлеваем срок службы

Сцепление – это, пожалуй, один из самых износостойких элементов в конструкции автомобиля. Качественный узел может прослужить 200 и более тысяч километров. Однако чтобы ваша коробка не потребовала ремонта уже на первых неделях езды, нужно знать определенные правила эксплуатации.

При вождении автомобиля с механической трансмиссией, прежде всего, научитесь правильно нажимать на педаль. В то время когда вы приотпускаете ее, происходит включение сцепления. В этот момент пружина нажимного диска подводит ведомый механизм к маховику. Происходит плавное притирание элементов. За счет этого диск немного проскальзывает относительно маховика, последний также начинает вращаться.

На следующем этапе необходимо дать небольшое время узлу для того, чтобы обороты максимально сравнялись. Для этого следует удерживать педаль в средней позиции примерно 2-3 секунды. После этого количество оборотов маховика приблизится к скорости вращения диска. Итак, автомобиль потихоньку набирает ход.

Что же делать далее? Когда маховик с ведомым и нажимным диском стал самостоятельно вращаться с одинаковой скоростью и без проскальзываний, происходит максимально высокая передача крутящего момента. В таком случае необходимость в повторном разъединении КПП и двигателя отсутствует (разве что при экстренном торможении). Как только машина тронулась, а на спидометре уже больше 10 километров в час, педальку можно смело отпускать. Дальше аналогичным путем переключаемся на повышенную передачу вплоть до 5-й (если это позволяют ПДД).

Обратите внимание, что если при трогании с места внезапно сбросить педаль сцепления, машина будет ехать рывками, а через 3-4 секунды заглохнет. Это происходит из-за того, что при резкой притирке дисков мотор передает всю мощь на коробку, тем самым попросту рвет ее. Нагрузка на шестерни увеличивается, соответственно, ресурс механизмов трансмиссии уменьшается. Резко отпускать педаль при трогании не следует, так как это очень вредит вашему автомобилю. Лишь когда машина набирает достаточно большую скорость (это уже 3-5 передача), при переключении на повышенную можно «бросать» педаль сходу.

[spoiler title=»Источники»]

  • https://pricurivatel.ru/ustrojstvo-i-princip-raboty-scepleniya-avtomobilya
  • https://scart-avto.ru/remont/kak-rabotaet-stseplenie-v-avtomobile-printsip-raboty-dlya/
  • https://principraboty.ru/princip-raboty-scepleniya/
  • https://AutoTopik.ru/sceplenie/1335-ustroystvo.html
  • https://TechAutoPort.ru/transmissiya/sceplenie-i-mufty/sceplenie.html
  • https://exist.ru/Document/Articles/2337
  • https://avtonov.info/sceplenie-avtomobilja-naznachenie-i-ustrojstvo
  • https://FokSevmash. ru/hodovaya-chast-i-transmissiya/privod-scepleniya.html
  • https://www.syl.ru/article/158580/new_stseplenie-avtomobilya-printsip-rabotyi-stsepleniya-avtomobilya—shema

[/spoiler]



Post Views:
4 731

Сцепление автомобиля – назначение, типы сцепления, устройство, принцип работы.

Сцепление является важным конструктивным элементом трансмиссии автомобиля. Оно предназначено для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения при переключении передач, а также предохранения элементов трансмиссии от перегрузок и гашения колебаний.

Сцепление автомобиля располагается между двигателем и коробкой передач.

В зависимости от конструкции различают следующие типы сцепления: фрикционное, гидравлическое, электромагнитное.

Фрикционное сцепление передает крутящий момент за счет сил трения. В гидравлическом сцеплении связь обеспечивается за счет потока жидкости. Электромагнитное сцепление управляется магнитным полем.

Самым распространенным типом сцепления является фрикционное сцепление.

В зависимости от количества дисков различает следующие виды фрикционного сцепления: однодисковое, двухдисковое и многодисковое.

В зависимости от состояния поверхности трения сцепление может быть сухое и мокрое. В сухом сцеплении используется сухое трение между дисками. Мокрое сцепление предполагает работы дисков в жидкости.

На современных автомобилях устанавливается в основном сухое однодисковое сцепление. Конструкция однодискового сцепления включает маховик, нажимной и ведомый диски, диафрагменную пружину, подшипник выключения сцепления с муфтой и вилкой. Все конструктивные элементы сцепления размещаются в картере. Картер сцепления крепиться болтами к двигателю.

Маховик устанавливается на коленчатом вале двигателя. Он выполняет роль ведущего диска сцепления . На современных автомобилях применяется, как правило, двухмассовый маховик. Такой маховик состоит из двух частей, соединенных пружинами. Одна часть соединена с коленчатым валом, другая — с ведомым диском. Конструкция двухмассового маховика обеспечивает сглаживание рывков и вибраций коленчатого вала.

Нажимной диск прижимает ведомый диск к маховику и при необходимости освобождает его от давления. Нажимной диск соединен с корпусом (кожухом) с помощью тангенциальных пластинчатых пружин. Тангенциальные пружины, при выключении сцепления, выполняют роль возвратных пружин.

На нажимной диск воздействует диафрагменная пружина, обеспечивающая необходимое усилие сжатия для передачи крутящего момента. Диафрагменная пружина наружным диаметром опирается на края нажимного диска. Внутренний диаметр пружины представлен упругими металлическими лепестками, на концы которых воздействует подшипник выключения сцепления. Диафрагменная пружина закреплена в корпусе. Для закрепления используются распорные болты или опорные кольца.

Нажимной диск, диафрагменная пружина и корпус образуют единый конструктивный блок, который носит устоявшееся название корзина сцепления. Корзина сцепления имеет жесткое болтовое соединение с маховиком. По характеру работы различают два типа корзин сцепления — нажимного и вытяжного действия. В распространенной корзине сцепления нажимного действия лепестки диафрагменной пружины при выключении сцепления перемещаются к маховику. В вытяжной корзине сцепления наоборот — лепестки диафрагменной пружины перемещаются от маховика. Данный тип корзины сцепления характеризуется минимальной толщиной, поэтому применяется в стесненных условиях.

Ведомый диск располагается между маховиком и нажимным диском. Ступица ведомого диска соединяется шлицами с первичным валом коробки передач и может перемещаться по ним. Для обеспечения плавности включения сцепления в ступице ведомого диска размещены демпферные пружины, выполняющие роль гасителя крутильных колебаний.

На ведомом диске с двух сторон установлены фрикционные накладки. Накладки изготавливаются из стеклянных волокон, медной и латунной проволоки, которые запрессованы в смесь из смолы и каучука. Такой состав может кратковременно выдерживать температуру до 400°С. Накладки ведомого диска могут иметь и более высокую тепловую характеристику. На спортивных автомобилях устанавливают т.н. керамическое сцепление, накладки ведомого диска которого состоят из керамики, кевлара и углеродного волокна. Еще более прочные металлокерамические накладки, выдерживающие температуру до 600°С.

Подшипник выключения сцепления (обиходное название — выжимной подшипник) является передаточным устройством между сцеплением и приводом. Он располагается на оси вращения сцепления и непосредственно воздействует на лепестки диафрагменной пружины. Подшипник располагается на муфте выключения. Перемещение муфты с подшипником обеспечивает вилка сцепления.

На грузовых и легковых автомобилях с мощным двигателем применяется двухдисковое сцепление. Оно осуществляет передачу большего крутящего момента при неизменном размере, а также обеспечивает больший ресурс конструкции. Это достигнуто за счет применения двух ведомых дисков, между которыми установлена проставка. В результате получены четыре поверхности трения.

Принцип работы сцепления

Однодисковое сухое сцепление постоянно включено. Работу сцепления обеспечивает привод сцепления.

При нажатии на педаль сцепления привод сцепления перемещает вилку сцепления, которая воздействует на подшипник сцепления. Подшипник нажимает на лепестки диафрагменной пружины нажимного диска. Лепестки диафрагменной пружины прогибаются в сторону маховика, а наружный край пружина отходит от нажимного диска, освобождая его. При этом тангенциальные пружины отжимают нажимной диск. Передача крутящего момента от двигателя к коробке передач прекращается.

При отпускании педали сцепления диафрагменная пружина приводит нажимной диск в контакт с ведомым диском и через него в контакт с маховиком. Крутящий момент за счет сил трения передается от двигателя к коробке передач.

 

 

Что такое сцепление — детали, принцип работы, диск сцепления и [изображения]

В этой статье мы обсудим что такое сцепление? его принцип работы, детали, требование сцепление в двигателе , и диск сцепления или диск.

Что такое сцепление?

Сцепление — механическое устройство, используемое в трансмиссии автомобиля. Он включает и отключает систему трансмиссии от двигателя. Он закреплен между двигателем и коробкой передач.

Мощность, вырабатываемая в цилиндре двигателя, в конечном итоге предназначена для поворота колес, чтобы автомобиль мог двигаться по дороге. Возвратно-поступательное движение поршня приводит во вращение коленчатый вал за счет вращения маховика через шатун.

Круговое движение коленчатого вала теперь должно передаваться на задние колеса. Он передается через сцепление, коробку передач, карданные узлы карданного или карданного вала, дифференциал и полуоси, идущие к колесам.

С помощью всех этих частей использование мощности двигателя для ведущего колеса называется силовой передачей. Передача мощности двигателя на ведущие колеса через все эти части называется передачей мощности.

Система силовой передачи обычно одинакова на всех легковых и грузовых автомобилях. Но его конструкция и устройство могут различаться в зависимости от способа привода и типа агрегатов трансмиссии.

Читайте также: 9 разных типов муфт

Основная часть сцепления

Основные части сцепления делятся на три группы

  1. Приводные элементы
  2. Ведомые элементы
  3. Рабочие элементы.

Ведущий элемент

Ведущий элемент имеет маховик, установленный на коленчатом валу двигателя. Маховик закреплен на крышке, которая поддерживает нажимной диск или ведущий диск, нажимные пружины и расцепляющие рычаги.

Вся сборка маховика и крышки все время вращается. Корпус сцепления и крышка снабжены отверстием. Из этого отверстия испаряется тепло, выделяемое трением во время работы сцепления.

Ведомый элемент

Ведомый элемент имеет диск или пластину, называемую диском сцепления. Он свободно скользит по шлицам вала сцепления. Ведомый элемент несет на обеих своих поверхностях фрикционные материалы. Когда ведомый элемент удерживается между маховиком и нажимным диском, он помогает вращать вал сцепления через шлицы.

Приводной элемент

Приводной элемент имеет ножную педаль, рычажный механизм, выжимной или выжимной подшипник, выжимные рычаги и пружины, необходимые для обеспечения правильной работы сцепления.

Функции различных компонентов силовой передачи

Функции различных компонентов системы трансмиссии:

Сцепление

Его основная функция — отключение двигателя от двигателя. ведущие колеса. Мгновенно и для постепенного включения привода от двигателя к ведущим колесам при выводе автомобиля из состояния покоя.

Коробка передач (трансмиссия)

Помогает изменять передаточное число и, следовательно, крутящий момент между двигателем и ведущими колесами в соответствии с дорожными условиями.

Универсальный шарнир

Универсальный шарнир используется, когда два вала соединены под углом для передачи крутящего момента. Карданный шарнир позволяет передавать крутящий момент под углом, а также при постоянном изменении этого угла во время движения автомобиля по дороге.

Карданный вал

Карданный вал соединен между коробкой передач и дифференциалом с помощью универсального шарнира на каждом конце. Он передает вращательное движение выходного вала коробки передач на дифференциал.

Дифференциал

При поворотах ведущие колеса должны вращаться с разной скоростью. Это делается с помощью дифференциала.

Как работает сцепление в автомобиле

Сцепление — это механическое устройство, используемое в системе трансмиссии автомобиля. Он включает и отключает систему трансмиссии от двигателя. Он закреплен между двигателем и коробкой передач.

  • Когда сцепление включено , мощность передается от двигателя на ведущие колеса через систему трансмиссии, и автомобиль начинает движение.
  • При выключенном сцеплении мощность не передается на задние или ведущие колеса и автомобиль останавливается при работающем двигателе.
  • Выключение сцепления при запуске двигателя, при остановке автомобиля, при переключении передач и при работе двигателя на холостом ходу.
  • Сцепление включено , когда автомобиль должен двигаться, и остается включенным, когда автомобиль движется. Сцепление также позволяет непрерывно воспринимать нагрузку.

При правильной эксплуатации предотвращает рывки автомобиля и, таким образом, не создает чрезмерной нагрузки на остальные части системы передачи мощности.

Читайте также: Гидротрансформатор: принцип работы и детали

Принцип работы сцепления

Сцепление работает по принципу трения , когда две фрикционные поверхности соприкасаются друг с другом и прижимаются друг к другу. объединены из-за трения между ними. Если один вращается, другой тоже будет вращаться.

Трение между двумя поверхностями зависит от площади поверхностей, давления на них и коэффициента трения материалов поверхности. При необходимости две поверхности можно разделить и привести в контакт.

Одна поверхность считается ведущей, а другая — ведомой. Ведущий элемент продолжает вращаться, когда ведомый элемент входит в контакт с ведущим элементом, он также начинает вращаться. Когда ведомый элемент отделяется от ведущего, он перестает вращаться. Так работает сцепление.

Фрикционные поверхности сцепления сконструированы таким образом, что ведомый элемент скользит по ведущему элементу при первом приложении давления. По мере увеличения давления ведомый элемент медленно доводится до скорости ведущего элемента.

Когда скорости стержней становятся равными, проскальзывания нет, два стержня находятся в плотном контакте, а сцепление полностью включено.

Приводным элементом сцепления является маховик. Он установлен на коленчатом валу, ведомым элементом является нажимной диск. Он установлен на валу коробки передач. Диски сцепления находятся между двумя элементами.

При включенном сцеплении двигатель на задние колеса через систему трансмиссии. Когда сцепление выключается нажатием на педаль сцепления, двигатель отсоединяется от трансмиссии. Таким образом, мощность перестает поступать на задние колеса при работающем двигателе.

Требование к сцеплению

Передача крутящего момента

Сцепление должно передавать максимальный крутящий момент двигателю.

Постепенное включение

Сцепление должно включаться постепенно, чтобы избежать внезапных рывков.

Тепловыделение

Сцепление должно рассеивать большое количество тепла, которое выделяется во время работы сцепления из-за трения.

Динамическая балансировка

Сцепление должно быть динамически сбалансировано. Это особенно необходимо в случае муфт высокоскоростных двигателей.

Гашение вибрации

Сцепление должно иметь соответствующий механизм для гашения вибраций и устранения шума, возникающего при передаче мощности.

Муфта должна быть как можно меньше по размеру, чтобы занимать минимум места.

Свободный ход педали

Для уменьшения эффективной зажимной нагрузки на упорный карбоновый подшипник и его износа. Сцепление должно иметь свободный ход педали.

Простота в эксплуатации

Сцепление должно работать легко, требуя от водителя как можно меньше усилий.

Легкость

Ведомый элемент сцепления должен быть изготовлен как можно легче, чтобы он не продолжал вращаться в течение некоторого времени после выключения сцепления.

Диск или диск сцепления

Диск сцепления является ведущим элементом сцепления и зажат между маховиком и нажимным диском. Он крепится на вал сцепления через шлицы. Когда он зажат, вращается вал сцепления, и мощность передается от двигателя к трансмиссии через сцепление.

Нажимная пластина состоит из двух комплектов облицовочного или фрикционного материала, установленных на стальных амортизирующих пружинах. Облицовочные и амортизирующие пружины приклепаны к диску основания пружины и стопорной пластине пружины, которые имеют прорези для вставки торсионной пружины.

Эти пружины соприкасаются с фланцами ступицы, расположенными между стопорной пластиной пружины и диском, и служат для передачи крутящего усилия, прилагаемого к накладкам, на шлицевую ступицу. Пружинное действие служит для уменьшения крутильных колебаний и ударов между двигателем и трансмиссией во время работы сцепления.

Облицовка и пластины поворачиваются относительно ступицы до предела сжатия пружин или до предела упоров пружин.

Когда сцепление включено, давление на облицовку сжимает амортизирующие пружины настолько, что толщина блока уменьшается на 1–1,5 мм. Такая конструкция помогает сделать взаимодействие плавным и бесшумным.


Закрытие

Вот и все. Спасибо за прочтение. Если вам понравилась наша статья о сцеплении, поделитесь с друзьями. Если у вас есть вопросы о « принцип работы сцепления » оставить комментарий.

Хотите получать бесплатные PDF-файлы прямо на свой почтовый ящик? Тогда подпишитесь на нашу рассылку.

Введите адрес электронной почты…

Загрузить эту статью в формате PDF:

Щелкните здесь, чтобы загрузить

Подробнее: Четыре различных типа коробок передач, которые используются в современных автомобилях на Системы сцепления это может привести к серьезным травмам\проблемам со здоровьем, т.е. Проблемы с дыханием у персонала.
Даны инструкции по надлежащим процедурам безопасности при работе с системами сцепления, включая безопасное использование:

  • автоподъемников,
  • Опорные балки двигателя,
  • Домкраты коробки передач,
  • Использование подходящей защиты для глаз,
  • Латексные перчатки,
  • Защитная обувь
  • Безопасное удаление пыли сцепления,
  • Использование подходящей маски для лица во избежание проблем с дыханием,
  • Работа с соответствующими инструментами сцепления,
  • Предотвращение утечки жидкости сцепления,
  • Помощь при снятии и установке коробки передач с использованием рекомендованных отраслевых методов ручного обращения и т. д.

См. оценки рисков, связанных с транспортным средством, экологическую политику и паспорта безопасности материалов (MSDS)

3.1   Принципы сцепления

Муфта соединяет и отсоединяет один вращающийся механический компонент от другого. Автомобильное сцепление передает крутящий момент от двигателя к трансмиссии, а водитель использует расцепляющий механизм для управления потоком крутящего момента между ними.


В большинстве легковых автомобилей используется однодисковый фрикционный диск с двумя фрикционными накладками, прикрепленными к центральной ступице со шлицами для приема входного вала трансмиссии.
Фрикционные накладки зажаты между плоской поверхностью маховика двигателя и подпружиненной нажимной пластиной, прикрученной болтами к ее внешнему краю.

3.2 Однодисковые муфты сцепления

В большинстве легковых автомобилей для передачи крутящего момента от двигателя к первичному валу коробки передач используется однодисковая муфта. Маховик является приводным элементом сцепления. Блок сцепления установлен на обработанной задней поверхности маховика, так что блок вращается вместе с маховиком. Блок сцепления состоит из фрикционного диска с двумя фрикционными накладками и центральной шлицевой ступицы.
Узел нажимной пластины, состоящий из штампованной стальной крышки, нажимной пластины с обработанной плоской поверхностью, сегментированной диафрагменной пружины, выжимного подшипника и рабочей вилки.
Фрикционный диск зажат между обработанными поверхностями маховика и прижимной пластины, когда прижимная пластина прикручена болтами к внешнему краю поверхности маховика.

Прижимное усилие на фрикционных накладках обеспечивается диафрагменной пружиной. В разгруженном состоянии он имеет выпуклую форму. Когда крышка прижимной пластины затягивается, она поворачивается на своих опорных кольцах и расплющивается, оказывая усилие на прижимную пластину и облицовку.
Входной вал трансмиссии проходит через центр нажимного диска. Его параллельные шлицы входят в зацепление с внутренними шлицами центральной втулки на фрикционном диске.
При вращении двигателя крутящий момент теперь может передаваться от маховика через фрикционный диск к центральной втулке и к трансмиссии. Группа торсионных пружин, расположенных между ступицей сцепления и накладкой, гасит удары и вибрации трансмиссии.


При нажатии на педаль сцепления движение передается через рабочий механизм на рабочую вилку и выжимной подшипник.
Выжимной подшипник перемещается вперед и толкает центр диафрагменной пружины к маховику.
Мембрана поворачивается на своих кольцах шарнира, заставляя внешний край двигаться в противоположном направлении и воздействовать на зажимы втягивания прижимной пластины. Прижимная пластина отключается, и привод больше не передается. Отпускание педали позволяет диафрагме повторно приложить усилие зажима и включить сцепление, и привод восстанавливается.

3.3 Нажимная пластина

В легковых автомобилях нажимная пластина обычно представляет собой мембранный тип и обслуживается как узел.

Он состоит из штампованной стальной крышки, прижимной пластины с обработанной плоской поверхностью, ряда приводных ремней из пружинной стали и диафрагменной пружины.
Эта диафрагма расположена внутри крышки сцепления на 2 опорных кольцах, удерживаемых рядом заклепок, проходящих через диафрагму.
Нажимная плита соединена с крышкой приводными ремнями из пружинной стали, приклепками к крышке с одного конца и к выступающим выступам на плите — с другой.
Втягивающие зажимы удерживают прижимную пластину в контакте с внешним краем диафрагмы. Во время работы сцепления они отодвигают диск от маховика.


3.4 Ведомая / центральная пластина

Ведомая центральная пластина также называется диском сцепления или фрикционным диском.

Ведомая пластина имеет пару фрикционных накладок из армированного проволокой безасбестового состава, закрепленных на волнистых сегментах из пружинной стали, приклепываемых к стальному диску.
Центральная шлицевая втулка из легированной стали является отдельной. Привод передается от диска к ступице через тяжелые винтовые пружины кручения или резиновые блоки. Такая пружинная ступица гасит крутильные колебания двигателя. Он также поглощает ударные нагрузки, воздействующие на трансмиссию при внезапном или резком включении сцепления.
Стопоры ограничивают радиальное перемещение ступицы против усилия пружины. Формованная фрикционная шайба между ступицей и удерживающей пластиной пружины также действует как демпфер.
Волнистые сегменты из пружинной стали заставляют накладки немного расширяться, когда сцепление выключено, а затем сжиматься при включении. Это имеет амортизирующий эффект и обеспечивает плавное зацепление.


3.5 Подшипник выключения сцепления (выжимной подшипник)

Подшипник выключения сцепления может быть упорным радиально-упорным шарикоподшипником, поддерживаемым на водиле. Он скользит по ступице или втулке, выступающей из передней части трансмиссии.

Держатель подшипника устанавливается на вилке выключения сцепления. При перемещении вилки упорная поверхность подшипника соприкасается с пальцами нажимного диска. Это заставляет подшипник вращаться и поглощать вращательное движение пальцев против линейного движения вилки. Подшипник заполнен смазкой при изготовлении и не требует периодического обслуживания в течение всего срока службы.

3.6   Двухмассовые маховики

В современных легкодизельных технологиях мы наблюдаем гораздо большую мощность и прирост крутящего момента, иногда в сочетании с большей экономией топлива.


Преимущества двухмассовых маховиков

Чтобы устранить чрезмерное дребезжание шестерен трансмиссии и сделать вождение комфортным на любой скорости, уменьшите усилие при переключении передач.

Зачем нужен двухмассовый маховик?

Трансмиссии легких грузовиков Автомобили с дизельным двигателем по умолчанию имеют повышенную чувствительность к колебаниям крутящего момента. Это приводит к сильному крутильному резонансу или вибрации, возникающим при эксплуатации автомобиля в пределах нормального диапазона движения.
Обеспечивая демпфирование вибраций, превосходящее нормальное демпфирование при обычном расположении сцепления, автомобиль может эксплуатироваться в течение более длительного времени без долговременных повреждений.
Конструкция двухмассового маховика перемещает демпфер с ведомого диска на маховик двигателя. Такое изменение положения гасит крутильные колебания двигателя в большей степени, чем это возможно при использовании стандартной технологии демпфирования диска сцепления.

Функция и работа

Функция двухмассовых маховиков или двухмассовых маховиков состоит в том, чтобы изолировать торсионные шипы коленчатого вала, создаваемые дизельными двигателями с высокой степенью сжатия. Устраняя торсионные шипы, система устраняет любое потенциальное повреждение зубьев шестерни трансмиссии. Если бы DMF не использовался, крутильные частоты могли бы повредить трансмиссию.

3.7   Рабочие механизмы

Движение накладки педали передается через рабочий механизм на узел сцепления на задней части маховика.
Этот механизм может быть механическим или гидравлическим.
Механические системы могут использовать систему рычагов, но тросовое управление обеспечивает большую гибкость и является более распространенным.


В гидравлическом управлении сцеплением педаль воздействует на главный цилиндр, соединенный гидравлической трубой и гибким шлангом с рабочим цилиндром, установленным на картере сцепления.
Рабочий цилиндр приводит в действие вилку выключения сцепления. В гидравлических системах сцепления важно, чтобы в системе не было воздуха, так как он будет сжиматься и не позволит давлению передаваться на вилку выключения сцепления. Поэтому важно прокачать систему, и это должно быть сделано с использованием заводских процедур.

4.1   Рычаг / механическое преимущество

Механическое преимущество

В физике и технике механическое преимущество (MA) — это коэффициент, на который машина умножает прилагаемую к ней силу.

Рычаги

В физике рычаг — это жесткий объект, который используется с соответствующей точкой опоры или точкой поворота для умножения механической силы, которая может быть приложена к другому объекту. Это также называется механическим преимуществом (ma) и является одним из примеров принципа моментов.

Сила и рычаги

Приложенная сила (в конечных точках рычага) пропорциональна отношению длины плеча рычага, измеренного между точкой опоры и точкой приложения силы, приложенной к каждому концу рычага.


Три класса рычагов

Существует три класса рычагов, представляющих собой варианты расположения точки опоры и входных и выходных усилий.

Рычаги первого класса

Примеры: Рычаги первого класса

  • Качели
  • Лом (удаление гвоздей)
  • Клещи (двухрычажные)
  • Ножницы (двухрычажные)
  • Весло для гребли, рулевого управления или гребли

Рычаги второго класса

Примеры: Рычаги второго класса

  • Тачка
  • Щелкунчик (двухрычажный)
  • Лом (разъединяющий два предмета)
  • Ручка кусачек для ногтей

 

Рычаги третьего класса

Примеры: Рычаги третьего класса

  • Рука человека
  • Щипцы (двухрычажные) (с петлей на одном конце, стиль с центральной осью является первоклассным)
  • Основной корпус кусачек для ногтей, в котором рукоятка создает поступающее усилие


Моменты

Принцип моментов гласит, что когда тело находится в равновесии, то сумма моментов по часовой стрелке относительно любой точки равна сумме моментов против часовой стрелки относительно той же точки.


Гидравлическое давление и усилие

Системы гидравлического сцепления используют несжимаемую жидкость, такую ​​как тормозная жидкость, для передачи усилий из одного места в другое внутри жидкости. Большинство автомобилей также используют гидравлику в тормозных системах. Закон Паскаля гласит, что при повышении давления в любой точке замкнутой жидкости происходит такое же увеличение во всех остальных точках сосуда.

Гидравлическое давление передается через жидкость. Поскольку жидкость фактически несжимаема, давление, приложенное к жидкости, передается без потерь по всей жидкости. В тормозной системе это позволяет усилию, приложенному к педали тормоза, воздействовать на тормоза на колесах.
Гидравлическое давление может передавать повышенную силу. Поскольку давление — это сила, приходящаяся на единицу площади, одно и то же давление, прикладываемое к разным площадям, может создавать разные силы — большие и меньшие.

Давление

Давление — это приложение силы к поверхности и концентрация этой силы в данной области. Палец можно прижимать к стене, не оставляя длительного впечатления; однако тот же палец, нажимающий кнопку, может легко повредить стену, даже если приложенная сила одинакова, потому что острие концентрирует эту силу на меньшей площади.


Расчет соотношения сил (гидравлика)

В обычном гаражном домкрате плунжер диаметром 10 мм нагнетается в поршень диаметром 50 мм. Это даст соотношение сил 25:1.
Площадь плунжера     = Þr2
= 3,14 х (52)
= 78,5 мм2
Площадь Рама          = Þr2
= 3,14 х (252)
= 1962,5 мм2
Отношение сил             Площадь ползуна                1962,5 = 25 
Площадь плунжера              78,5
Ф.Р = 25:1
В тормозной системе главный цилиндр и подчиненный цилиндр имеют такой размер, чтобы обеспечить соотношение усилий 4:1 (приблизительно)


4.

3 Трение

 

Обзор

Трение — это сила, которая сопротивляется движению одной поверхности по другой. В некоторых случаях это может быть желательно; но чаще не желательно. Это вызвано поверхностными шероховатыми пятнами, которые сцепляются друг с другом. Эти пятна могут быть микроскопически малы, поэтому даже кажущиеся гладкими поверхности могут испытывать трение. Трение можно уменьшить, но никогда не устранить.
Трение всегда измеряется для пар поверхностей с использованием так называемого коэффициента трения.

  • Низкий коэффициент трения для пары поверхностей означает, что они могут легко перемещаться друг по другу.
  • Высокий коэффициент трения для пары поверхностей означает, что они не могут легко перемещаться друг по другу.

Коэффициент трения

Коэффициент трения (также известный как коэффициент трения или коэффициент трения) — это скалярная величина, используемая для расчета силы трения между двумя телами. Коэффициент трения зависит от используемых материалов — например, лед на металле имеет очень низкий коэффициент трения (они очень легко трутся друг о друга), в то время как резина на асфальте имеет очень высокий коэффициент трения (они не легко трутся друг о друга). ). Интересно отметить, что, вопреки распространенному мнению, сила трения не зависит от размера площади контакта между двумя объектами. Это означает, что трение не зависит от размера объектов. Сила трения всегда действует в направлении, противоположном движению. Например, стул, скользящий по полу вправо, испытывает силу трения в левом направлении.


Типы трения

Статическое трение

Статическое трение возникает, когда два объекта не движутся относительно друг друга (например, стол на земле). Коэффициент статического трения обычно обозначается как μ. В начальной силе, заставляющей объект двигаться, часто преобладает статическое трение.

Кинетическое трение

Кинетическое трение возникает, когда два объекта движутся относительно друг друга и трутся друг о друга (как сани о землю). Коэффициент кинетического трения обычно обозначается как μ и обычно меньше коэффициента статического трения.

Трение скольжения

Это когда два объекта трутся друг о друга. Положите книгу на стол и передвигайте ее — это пример трения скольжения.


4.4 Крутящий момент, передаваемый муфтой

Максимальный крутящий момент, передаваемый муфтой, определяется фрикционным материалом накладки, средним радиусом накладки (с обеих сторон) и давлением пружины пластина. Масло или смазка на накладке, которые уменьшат трение, или слабые или сломанные пружины в нажимном диске могут привести к проскальзыванию сцепления под давлением.

Теперь ясно видно, что средний радиус футеровки А на 10 % больше, чем футеровки В. Это означает, что футеровка А может передавать больший крутящий момент на целых 10 %. Пример ширины футеровки призван развеять мнение, что увеличение площади позволяет передавать больший крутящий момент. Подходящей шириной футеровки является ширина, достаточно узкая, чтобы обеспечить наибольший средний радиус, но не настолько узкая, чтобы допустить быстрый износ или выцветание.


Факторы, влияющие на передачу крутящего момента

Для передачи крутящего момента муфтой без проскальзывания необходимо учитывать четыре фактора.

  • Количество поверхностей (S).
  • Суммарное давление пружины (P).
  • Коэффициент трения (мк).
  • Средний радиус.

Крутящий момент = Цилиндр

(с) Две поверхности. Давление пружины (Н). Коэффициент трения (мк), 100 мм = 1 м (радиус)


Неисправность

Причина

Муфта пробуксовки

Изношенная подкладка
Недостаточный свободный ход педали сцепления.
Масло или смазка на фрикционных накладках
Слабые нажимные пружины.
Чрезмерные задиры на поверхности маховика из-за износа накладки.

Фрикцион сцепления Ведущий диск не освобождается при нажатии на педаль

Деформированный ведущий диск
Неправильная регулировка педали приводит к недостаточному перемещению выжимного подшипника.
Масло или смазка на фрикционной накладке.
Ведущий диск (диск сцепления) заклинило на шлицах.
Сломаны рычаги разблокировки.

Вибрация сцепления

Износ накладки или торчащие заклепки.
Масло на накладках.
Деформированный приводной диск.
Ослаблены крепления двигателя или коробки передач или ослаблены рулевые тяги.

0002  

Если вы являетесь автором приведенного выше текста и не согласны делиться своими знаниями в целях обучения, исследований, стипендий (для добросовестного использования, как указано в законе об авторских правах США), отправьте нам электронное письмо, и мы быстро удалить текст.
Добросовестное использование — это ограничение и исключение исключительного права, предоставленного авторским правом автору творческого произведения. В законе США об авторском праве добросовестное использование — это доктрина, которая разрешает ограниченное использование материалов, защищенных авторским правом, без получения разрешения от правообладателей. Примеры добросовестного использования включают комментарии, поисковые системы, критику, новостные репортажи, исследования, обучение, библиотечное архивирование и стипендию.

Back to top