Движение тела, брошенного горизонтально и под углом к горизонту. Формула максимальная высота


Максимальные значения, бросок под углом к горизонту

hmax - максимальная высота

Smax - максимальная дальность полета, если бросок и падение на одном уровне

Sh - расстояние пройденное по горизонтали до момента максимального подъема

tmax - время всего полета

th - время за которое тело поднялось на максимальную высоту

Vo - начальная скорость тела

α - угол под которым брошено тело

g ≈ 9,8 м/с2 - ускорение свободного падения

Формула для нахождения расстояния по горизонтали при максимальной высоте, если даны, начальная скорость броска Vo и угол α под которым брошено тело. :

 

или известны максимальная высота hmax и угол α под которым брошено тело. :

* т. к. траектория движения симметрична относительно линии максимальной высоты, то расстояние Sh ровно в два раза, меньше максимальной дальности броска Smax

Формула для определения времени затраченного на весь полет, если даны, начальная скорость Vo и угол α под которым брошено тело или если известна только максимальная высота hmax :

* т. к. траектория движения симметрична относительно линии максимальной высоты, то время максимального подъема th ровно в два раза, меньше максимального времени tmax

 

Формула для определения времени за которое тело поднялось на максимальную высоту, если даны, начальная скорость Vo и угол α под которым брошено тело или если известна только максимальная высота hmax :

www-formula.ru

Движение тела, брошенного вертикально вверх | Формулы и расчеты онлайн

Тело, брошенное вертикально вверх, движется равномерно замедленно с начальной скоростью u0 и ускорением a = -g. Перемещение тела за время t представляет собой высоту подъема h.Для этого движения справедливы формулы:

Если:u0 — начальная скорость движения тела ,u — скорость падения тела спустя время t,g — ускорение свободного падения, 9.81 (м/с²),h — высота на которую поднимется тело за время t,t — время,То, движение тела, брошенного вертикально вверх описывается следующими формулами:

Высота подъема тела за некоторое время, зная конечную скорость

\[ h = \frac{u_0 + u}{2} t \]

Высота подъема тела за некоторое время, зная ускорение свободного падения

\[ h = u_0 t - \frac{g t^2}{2} \]

Скорость тела через некоторое время, зная ускорение свободного падения

\[ u = u_0 - gt \]

Скорость тела на некоторой высоте, зная ускорение свободного падения

\[ u = \sqrt{ u_0^2 - 2gh} \]

Максимальная высота подъема тела, зная первоначальную скорость и ускорение свободного падения

Тело, брошенное вертикально вверх, достигает максимальной высоты в тот момент, когда его скорость обращается в ноль. Поднявшись на максимальную высоту тело начинает свободное падение вниз.

\[ h_{max} = \frac{u_0^2}{2g} \]

Время подъема на максимальную высоту подъема тела, зная первоначальную скорость и ускорение свободного падения

\[ t_{hmax} = \frac{u_0}{g} \]

Примечание к статье: Движение тела, брошенного вертикально вверх

В помощь студенту

Движение тела, брошенного вертикально вверх
стр. 408

www.fxyz.ru

Быстро найти нужную формулу для расчета онлайн. Геометрия. Алгебра.

 

1. Найти время полета тела на определенной высоте

hв - высота на восходящем участке траектории

hн - высота на нисходящем участке траектории

t - время в момент которого тело находится на высоте hв или hн

Vo - начальная скорость тела

α - угол под которым брошено тело

g ≈ 9,8 м/с2 - ускорение свободного падения

 

Формула для определения значения времени, за которое тело поднялось на определенную высоту, на восходящем участке траектории

 

Формула для определения значения времени, за которое тело поднялось на определенную высоту, на нисходящем участке траектории

Таким образом, одному значению высоты будет соответствовать два значения времени, одно при подъеме, второе при падении.

 

 

2. Найти время полета тела пролетевшее определенное расстояние

S - расстояние пройденное по горизонтали

t - время за которое тело прошло расстояние S

Vo - начальная скорость тела

Vx - проекция начальной скорости на ось OX

Vy - проекция начальной скорости на ось OY

α - угол под которым брошено тело

g ≈ 9,8 м/с2 - ускорение свободного падения

 

Формула для определения значения времени, за которое пройдено определенное расстояние

 

 

3. Значение времени при максимальных значениях высоты и дальности

Smax - максимальная дальность по горизонтали

hmax - максимальная высота

tmax - время всего полета

th - время за которое тело поднялось на максимальную высоту

Vo - начальная скорость тела

Vx - проекция начальной скорости на ось OX

Vy - проекция начальной скорости на ось OY

α - угол под которым брошено тело

g ≈ 9,8 м/с2 - ускорение свободного падения

 

Формула для определения значения времени, затраченное на весь полет, если известна начальная скорость или ее проекции

 

Формула для определения значения времени, на максимальной высоте

Т. к. траектория движения тела симметрична относительно линии максимальной высоты, следовательно - время всего полета, в два раза больше времени затраченного при подъеме на максимальную высоту

 

www-formula.ru

Свободное падение тела брошенного вверх

 

1. Формулы максимальной высоты и времени за которое тело поднялось на максимальную высоту

 

h max - максимальная высота достигнутая телом за время t

Vк - конечная скорость тела на пике, равная нулю

Vн - начальная скорость тела

t - время подъема тела на максимальную высоту h max

g - ускорение свободного падения

 

Формула максимальной высоты (h max ):

 

Формула времени за которое тело достигло максимальной высоты (t ):

 

 

2. Формулы скорости, высоты и времени тела брошенного вертикально вверх под воздействием силы тяжести

 

h - расстояние пройденное телом за время t

Vн - начальная скорость тела

V - скорость тела в момент времени t

t - время подъема за которое тело пролетело расстояние h

g - ускорение свободного падения

 

Формула скорости тела в момент времени t (V ):

 

Формула начальной скорости тела (Vн ):

 

Формулы высоты тела в момент времени t (h ):

 

Формулы времени, за которое тело достигло высоту h (t ):

zdesformula.ru

Движение тела, брошенного горизонтально или под углом к горизонту.

Движение тела, брошенного горизонтально или под углом к горизонту.
  1. Это движение в плоскости, поэтому для описания движения необходимо 2 координаты.
  2. Считаем, что движение происходит вблизи поверхности Земли, поэтому ускорение тела – ускорение свободного падения (a = g).
 

Так как мы пренебрегаем сопротивлением воздуха, то ускорение направлено только к поверхности Земли (g) – вдоль вертикальной оси (y), вдоль оси х движение равномерное и прямолинейное.

 

Движение тела, брошенного горизонтально.

Выразим проекции скорости и координаты через модули векторов.

 

Для того чтобы получить уравнение траектории, выразим время tиз уравнения координаты x и подставим в уравнение для y: 

 - между координатами квадратичная зависимость, траектория – парабола!

 

Движение тела, брошенного под углом к горизонту.

Порядок решения задачи аналогичен предыдущей.

Решим задачу для случая х0=0 и y0=0. 

Докажем, что траекторией движения и в этом случае будет парабола. Для этого выразим координату Y через X (получим уравнение траектории):

.

Мы получили квадратичную зависимость между координатами. Значит траектория - парабола.

 

Найдем время полета тела от начальной точки до точки падения. В точке падения координата по вертикальной оси у=0. Следовательно, для решения этой задачи необходимо решить уравнение . Оно будет иметь решение при t=0 (начало движения) и 

Время полета:

 

Зная время полета, найдем максимальное расстояние, которое пролетит тело:

Дальность полета:

 

Из этой формулы следует, что:

- максимальная дальность полета будет наблюдаться при бросании тела (при стрельбе, например) под углом 450;

- на одно и то же расстояние можно бросить тело (с одинаковой начальной скоростью) двумя способами – т.н. навесная и настильная баллистические траектории.

Используя то, что парабола – это симметричная кривая, найдем максимальную высоту, которой может достичь тело.Время, за которое тело долетит до середины, равно:

Время подъема:

Тогда: 

Максимальная высота:

 

Скорость тела в любой момент времени направлена по касательной к траектории движения (параболе) и равна

 

Угол, под которым направлен вектор скорости в любой момент времени:

 

www.eduspb.com

Все главные формулы по физике - Физика - Теория, тесты, формулы и задачи

Оглавление:

 

Кинематика

К оглавлению...

Путь при равномерном движении:

Перемещение S (расстояние по прямой между начальной и конечной точкой движения) обычно находится из геометрических соображений. Координата при равномерном прямолинейном движении изменяется по закону (аналогичные уравнения получаются для остальных координатных осей):

Средняя скорость пути:

Средняя скорость перемещения:

Определение ускорения при равноускоренном движении:

Выразив из формулы выше конечную скорость, получаем более распространённый вид предыдущей формулы, которая теперь выражает зависимость скорости от времени при равноускоренном движении:

Средняя скорость при равноускоренном движении:

Перемещение при равноускоренном прямолинейном движении может быть рассчитано по нескольким формулам:

Координата при равноускоренном движении изменяется по закону:

Проекция скорости при равноускоренном движении изменяется по такому закону:

Скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Время падения тела с высоты h без начальной скорости:

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v0, время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Формула для тормозного пути тела:

Время падения тела при горизонтальном броске с высоты H может быть найдено по формуле:

Дальность полета тела при горизонтальном броске с высоты H:

Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости к горизонту:

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Время подъема до максимальной высоты при броске под углом к горизонту:

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Определение периода вращения при равномерном движении по окружности:

Определение частоты вращения при равномерном движении по окружности:

Связь периода и частоты:

Линейная скорость при равномерном движении по окружности может быть найдена по формулам:

Угловая скорость вращения при равномерном движении по окружности:

Связь линейной и скорости и угловой скорости выражается формулой:

Связь угла поворота и пути при равномерном движении по окружности радиусом R (фактически, это просто формула для длины дуги из геометрии):

Центростремительное ускорение находится по одной из формул:

 

Динамика

К оглавлению...

Второй закон Ньютона:

Здесь: F - равнодействующая сила, которая равна сумме всех сил действующих на тело:

Второй закон Ньютона в проекциях на оси (именно такая форма записи чаще всего и применяется на практике):

Третий закон Ньютона (сила действия равна силе противодействия):

Сила упругости:

Общий коэффициент жесткости параллельно соединённых пружин:

Общий коэффициент жесткости последовательно соединённых пружин:

Сила трения скольжения (или максимальное значение силы трения покоя):

Закон всемирного тяготения:

Если рассмотреть тело на поверхности планеты и ввести следующее обозначение:

Где: g - ускорение свободного падения на поверхности данной планеты, то получим следующую формулу для силы тяжести:

Ускорение свободного падения на некоторой высоте от поверхности планеты выражается формулой:

Скорость спутника на круговой орбите:

Первая космическая скорость:

Закон Кеплера для периодов обращения двух тел вращающихся вокруг одного притягивающего центра:

 

Статика

К оглавлению...

Момент силы определяется с помощью следующей формулы:

Условие при котором тело не будет вращаться:

Координата центра тяжести системы тел (аналогичные уравнения для остальных осей):

 

Гидростатика

К оглавлению...

Определение давления задаётся следующей формулой:

Давление, которое создает столб жидкости находится по формуле:

Но часто нужно учитывать еще и атмосферное давление, тогда формула для общего давления на некоторой глубине h в жидкости приобретает вид:

Идеальный гидравлический пресс:

Любой гидравлический пресс:

КПД для неидеального гидравлического пресса:

Сила Архимеда (выталкивающая сила, V - объем погруженной части тела):

 

Импульс

К оглавлению...

Импульс тела находится по следующей формуле:

Изменение импульса тела или системы тел (обратите внимание, что разность конечного и начального импульсов векторная):

Общий импульс системы тел (важно то, что сумма векторная):

Второй закон Ньютона в импульсной форме может быть записан в виде следующей формулы:

Закон сохранения импульса. Как следует из предыдущей формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

 

Работа, мощность, энергия

К оглавлению...

Механическая работа рассчитывается по следующей формуле:

Самая общая формула для мощности (если мощность переменная, то по следующей формуле рассчитывается средняя мощность):

Мгновенная механическая мощность:

Коэффициент полезного действия (КПД) может быть рассчитан и через мощности и через работы:

Формула для кинетической энергии:

Потенциальная энергия тела поднятого на высоту:

Потенциальная энергия растянутой (или сжатой) пружины:

Полная механическая энергия:

Связь полной механической энергии тела или системы тел и работы внешних сил:

Закон сохранения механической энергии (далее – ЗСЭ). Как следует из предыдущей формулы, если внешние силы не совершают работы над телом (или системой тел), то его (их) общая полная механическая энергия остается постоянной, при этом энергия может перетекать из одного вида в другой (из кинетической в потенциальную или наоборот):

 

Молекулярная физика

К оглавлению...

Химическое количество вещества находится по одной из формул:

Масса одной молекулы вещества может быть найдена по следующей формуле:

Связь массы, плотности и объёма:

Основное уравнение молекулярно-кинетической теории (МКТ) идеального газа:

Определение концентрации задаётся следующей формулой:

Для средней квадратичной скорости молекул имеется две формулы:

Средняя кинетическая энергия поступательного движения одной молекулы:

Постоянная Больцмана, постоянная Авогадро и универсальная газовая постоянная связаны следующим образом:

Следствия из основного уравнения МКТ:

Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева):

Газовые законы. Закон Бойля-Мариотта:

Закон Гей-Люссака:

Закон Шарля:

Универсальный газовый закон (Клапейрона):

Давление смеси газов (закон Дальтона):

Тепловое расширение тел. Тепловое расширение газов описывается законом Гей-Люссака. Тепловое расширение жидкостей подчиняется следующему закону:

Для расширения твердых тел применяются три формулы, описывающие изменение линейных размеров, площади и объема тела:

 

Термодинамика

К оглавлению...

Количество теплоты (энергии) необходимое для нагревания некоторого тела (или количество теплоты выделяющееся при остывании тела) рассчитывается по формуле:

Теплоемкость (С - большое) тела может быть рассчитана через удельную теплоёмкость (c - маленькое) вещества и массу тела по следующей формуле:

Тогда формула для количества теплоты необходимой для нагревания тела, либо выделившейся при остывании тела может быть переписана следующим образом:

Фазовые превращения. При парообразовании поглощается, а при конденсации выделяется количество теплоты равное:

При плавлении поглощается, а при кристаллизации выделяется количество теплоты равное:

При сгорании топлива выделяется количество теплоты равное:

Уравнение теплового баланса (ЗСЭ). Для замкнутой системы тел выполняется следующее (сумма отданных теплот равна сумме полученных):

Если все теплоты записывать с учетом знака, где «+» соответствует получению энергии телом, а «–» выделению, то данное уравнение можно записать в виде:

Работа идеального газа:

Если же давление газа меняется, то работу газа считают, как площадь фигуры под графиком в p–V координатах. Внутренняя энергия идеального одноатомного газа:

Изменение внутренней энергии рассчитывается по формуле:

Первый закон (первое начало) термодинамики (ЗСЭ):

Для различных изопроцессов можно выписать формулы по которым могут быть рассчитаны полученная теплота Q, изменение внутренней энергии ΔU и работа газа A. Изохорный процесс (V = const):

Изобарный процесс (p = const):

Изотермический процесс (T = const):

Адиабатный процесс (Q = 0):

КПД тепловой машины может быть рассчитан по формуле:

Где: Q1 – количество теплоты полученное рабочим телом за один цикл от нагревателя, Q2 – количество теплоты переданное рабочим телом за один цикл холодильнику. Работа совершенная тепловой машиной за один цикл:

Наибольший КПД при заданных температурах нагревателя T1 и холодильника T2, достигается если тепловая машина работает по циклу Карно. Этот КПД цикла Карно равен:

Абсолютная влажность рассчитывается как плотность водяных паров (из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):

Относительная влажность воздуха может быть рассчитана по следующим формулам:

Потенциальная энергия поверхности жидкости площадью S:

Сила поверхностного натяжения, действующая на участок границы жидкости длиной L:

Высота столба жидкости в капилляре:

При полном смачивании θ = 0°, cos θ = 1. В этом случае высота столба жидкости в капилляре станет равной:

При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h < 0. Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр.

 

Электростатика

К оглавлению...

Электрический заряд может быть найден по формуле:

Линейная плотность заряда:

Поверхностная плотность заряда:

Объёмная плотность заряда:

Закон Кулона (сила электростатического взаимодействия двух электрических зарядов):

Где: k - некоторый постоянный электростатический коэффициент, который определяется следующим образом:

Напряжённость электрического поля находится по формуле (хотя чаще эту формулу используют для нахождения силы действующей на заряд в данном электрическом поле):

Принцип суперпозиции для электрических полей (результирующее электрическое поле равно векторной сумме электрических полей составляющих его):

Напряженность электрического поля, которую создает заряд Q на расстоянии r от своего центра:

Напряженность электрического поля, которую создает заряженная плоскость:

Потенциальная энергия взаимодействия двух электрических зарядов выражается формулой:

Электрическое напряжение это просто разность потенциалов, т.е. определение электрического напряжения может быть задано формулой:

В однородном электрическом поле существует связь между напряженностью поля и напряжением:

Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:

Работа электрического поля в общем случае может быть вычислена также и по одной из формул:

В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:

Определение потенциала задаётся выражением:

Потенциал, который создает точечный заряд или заряженная сфера:

Принцип суперпозиции для электрического потенциала (результирующий потенциал равен скалярной сумме потенциалов полей составляющих итоговое поле):

Для диэлектрической проницаемости вещества верно следующее:

Определение электрической ёмкости задаётся формулой:

Ёмкость плоского конденсатора:

Заряд конденсатора:

Напряжённость электрического поля внутри плоского конденсатора:

Сила притяжения пластин плоского конденсатора:

Энергия конденсатора (вообще говоря, это энергия электрического поля внутри конденсатора):

Объёмная плотность энергии электрического поля:

 

Электрический ток

К оглавлению...

Сила тока может быть найдена с помощью формулы:

Плотность тока:

Сопротивление проводника:

Зависимость сопротивления проводника от температуры задаётся следующей формулой:

Закон Ома (выражает зависимость силы тока от электрического напряжения и сопротивления):

Закономерности последовательного соединения:

Закономерности параллельного соединения:

Электродвижущая сила источника тока (ЭДС) определяется с помощью следующей формулы:

Закон Ома для полной цепи:

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Сила тока короткого замыкания:

Работа электрического тока (закон Джоуля-Ленца). Работа А электрического тока протекающего по проводнику обладающему сопротивлением преобразуется в теплоту Q выделяющуюся на проводнике:

Мощность электрического тока:

Энергобаланс замкнутой цепи

Полезная мощность или мощность, выделяемая во внешней цепи:

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Мощность потерь или мощность внутри источника тока:

Полная мощность, развиваемая источником тока:

КПД источника тока:

Электролиз

Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

Где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

 

Магнетизм

К оглавлению...

Сила Ампера, действующая на проводник с током помещённый в однородное магнитное поле, рассчитывается по формуле:

educon.by

Движение тела, брошенного горизонтально и под углом к горизонту

1. Движение тела, брошенного горизонтально

Если сопротивлением воздуха можно пренебречь, то брошенное как угодно тело движется с ускорением свободного падения .

Рассмотрим сначала движение тела, брошенного горизонтально со скоростью v_vec0 с высоты h над поверхностью земли (рис. 11.1).

В векторном виде зависимость скорости тела от времени t выражается формулой

В проекциях на оси координат:

vx = v0,     (2)vy = –gt.     (3)

? 1. Объясните, как из (2) и (3) получаются формулы

x = v0t,     (4)y = h – gt2/2.     (5)

Мы видим, что тело как бы совершает одновременно два вида движения: вдоль оси x оно движется равномерно, а вдоль оси y – равноускоренно без начальной скорости.

На рисунке 11.2 показано положение тела через равные промежутки времени. Внизу показано положение в те же моменты времени тела, движущегося прямолинейно равномерно с той же начальной скоростью, а слева – положение свободно падающего тела.

Мы видим, что брошенное горизонтально тело находится все время на одной вертикали с движущимся равномерно телом и на одной горизонтали со свободно падающим телом.

? 2. Объясните, как из формул (4) и (5) получаются выражения для времени tпол и дальности полета тела l:

Подсказка. Воспользуйтесь тем, что в момент падения y = 0.

? 3. Тело бросают горизонтально с некоторой высоты. В каком случае дальность полета тела будет больше: при увеличении в 4 раза начальной скорости или при увеличении во столько же раз начальной высоты? Во сколько раз больше?

Траекторий движения

На рисунке 11.2 траектория движения тела, брошенного горизонтально, изображена красной штриховой линией. Она напоминает ветвь параболы. Проверим это предположение.

? 4. Докажите, что для тела, брошенного горизонтально, уравнение траектории движения, то есть зависимость y(x), выражается формулой

Подсказка. Используя формулу (4), выразите t через x и подставьте найденное выражение в формулу (5).

Формула (8) действительно представляет собой уравнение параболы. Ее вершина совпадает с начальным положением тела, то есть имеет координаты x = 0; y = h, а ветвь параболы направлена вниз (на это указывает отрицательный коэффициент перед x2).

? 5. Зависимость y(x) выражается в единицах СИ формулой y = 45 – 0,05x2.а) Чему равны начальная высота и начальная скорость тела?б) Чему равны время и дальность полета?

? 6. Тело брошено горизонтально с высоты 20 м с начальной скоростью 5 м/с.а) Сколько времени будет длиться полет тела?б) Чему равна дальность полета?в) Чему равна скорость тела непосредственно перед ударом о землю?г) Под каким углом к горизонту будет направлена скорость тела непосредственно перед ударом о землю?д) Какой формулой в единицах СИ выражается зависимость модуля скорости тела от времени?

2. Движение тела, брошенного под углом к горизонту

На рисунке 11.3 схематически изображено начальное положение тела, его начальная скорость 0 (при t = 0) и ускорение (ускорение свободного падения ).Проекции начальной скорости

v0x = v0cos α,     (9)v0y = v0sin α.     (10)

Для сокращения последующих записей и прояснения их физического смысла удобно до получения окончательных формул сохранять обозначения v0x и v0y.

Скорость тела в векторном виде в момент времени t и в этом случае выражается формулой

Однако теперь в проекциях на оси координат

vx = v0x,     (11)vy = v0y – gt.     (12)

? 7. Объясните, как получаются следующие уравнения:

x = v0xt,     (13)y = v0yt – gt2/2.     (14)

Мы видим, что и в этом случае брошенное тело как бы участвует одновременно в двух видах движения: вдоль оси x оно движется равномерно, а вдоль оси y – равноускоренно с начальной скоростью, как тело, брошенное вертикально вверх.

Траектория движения

На рисунке 11.4 схематически показано положение тела, брошенного под углом к горизонту, через равные промежутки времени. Вертикальные линии подчеркивают, что вдоль оси x тело движется равномерно: соседние линии находятся на равных расстояниях друг от друга.

? 8. Объясните, как получить следующее уравнение траектории тела, брошенного под углом к горизонту:

Формула (15) представляет собой уравнение параболы, ветви которой направлены вниз.

Уравнение траектории может многое рассказать нам о движении брошенного тела!

? 9. Зависимость y(x) выражается в единицах СИ формулой y = √3 * x – 1,25x2.а) Чему равна горизонтальная проекция начальной скорости?б) Чему равна вертикальная проекция начальной скорости?в) Под каким углом к горизонту брошено тело?г) Чему равна начальная скорость тела?

Параболическую форму траектории тела, брошенного под углом к горизонту, наглядно демонстрирует струя воды (рис. 11.5).

Время подъема и время всего полета

? 10. Используя формулы (12) и (14), покажите, что время подъема тела tпод и время всего полета tпол выражаются формулами

Подсказка. В верхней точке траектории vy = 0, а в момент падения тела его координата y = 0.

Мы видим, что и в этом случае (так же, как для тела, брошенного вертикально вверх) все время полета tпол в 2 раза больше времени подъема tпод. И в этом случае при обратном просмотре видеосъемки подъем тела будет выглядеть в точности как его спуск, а спуск – как подъем.

Высота и дальность полета

? 11. Докажите, что высота подъема h и дальность полета l выражаются формулами

Подсказка. Для вывода формулы (18) воспользуйтесь формулами (14) и (16) или формулой (10) из § 6. Перемещение при прямолинейном равноускоренном движении; для вывода формулы (19) воспользуйтесь формулами (13) и (17).

Обратите внимание: время подъема тела tпод, все время полета tпол и высота подъема h зависят только от вертикальной проекции начальной скорости.

? 12. До какой высоты поднялся после удара футбольный мяч, если он упал на землю через 4 с после удара?

? 13. Докажите, что

Подсказка. Воспользуйтесь формулами (9), (10), (18), (19).

? 14. Объясните, почему при одной и той же начальной скорости v0 дальность полета l будет одинакова при двух углах α1 и α2, связанных соотношением α1 + α2 = 90º (рис. 11.6).

Подсказка. Воспользуйтесь первым равенством в формуле (21) и тем, что sin α = cos(90º – α).

? 15. Два тела, брошенные одновременно и с одинаковой по модулю начальной око одну точку. Угол между начальными скоростями равен 20º. Под какими углами к горизонту были брошены тела?

Максимальные дальность и высота полета

При одной и той же по модулю начальной скорости дальность полета и высота определяются только углом α. Как выбрать этот угол, чтобы дальность или высота полета были максимальными?

? 16. Объясните, почему максимальная дальность полета достигается при α = 45º и выражается формулой

lmax = v02/g.     (22)

? 17.Докажите, что максимальная высота полета выражается формулой

hmax = v02/(2g)     (23)

? 18.Тело, брошенное под углом 15º к горизонту, упало на расстоянии 5 м от начальной точки.а) Чему равна начальная скорость тела?б) До какой высоты поднялось тело?в) Чему равна максимальная дальность полета при той же по модулю начальной скорости?г) До какой максимальной высоты могло бы подняться это тело при той же по модулю начальной скорости?

Зависимость скорости от времени

При подъеме скорость брошенного под углом к горизонту тела уменьшается по модулю, а при спуске – увеличивается.

? 19.Тело брошено под углом 30º к горизонту с начальной скоростью 10 м/с.а) Как в единицах СИ выражается зависимость vy(t)?б) Как в единицах СИ выражается зависимость v(t)?в) Чему равна минимальная скорость тела во время полета?Подсказка. Воспользуйтесь формулами (13) и (14), а также теоремой Пифагора.

Дополнительные вопросы и задания

20. Бросая камешки под разными углами, Саша обнаружил, что не может бросить камешек дальше чем на 40 м. На какую максимальную высоту Саша сможет забросить камешек?

21. Между сдвоенными шинами заднего колеса грузовика застрял камешек. На каком расстоянии от грузовика должен ехать следующий за ним автомобиль, чтобы этот камешек, сорвавшись, не причинил ему вреда? Оба автомобиля едут со скоростью 90 км/ч.Подсказка. Перейдите в систему отсчета, связанную с любым из автомобилей.

22. Под каким углом к горизонту надо бросить тело, чтобы:а) высота полета была равна дальности?б) высота полета была в 3 раза больше дальности?в) дальность полета была в 4 раза больше высоты?

23. Тело брошено с начальной скоростью 20 м/с под углом 60º к горизонту. Через какие промежутки времени после броска скорость тела будет направлена под углом 45º к горизонту?

phscs.ru