Как извлечь корень из многозначного числа. Как извлечь корень частично


Извлечение квадратного корня в столбик

Когда-то уже довольно давно, когда я училась классе в восьмом, моя учительница математики на кружке показала, как в столбик можно извлекать квадратные корни. Вычислить корень можно с произвольной точностью, найти сколько угодно цифр в его десятичной записи, даже если он получается иррациональным. Алгоритм запомнился, а вопросы остались. Непонятно было, откуда взялся метод и почему он дает верный результат. В книжках этого не было, а может, просто не в тех книжках искала. В итоге, как и многое из того, что на сегодняшний день знаю и умею, вывела сама. Делюсь своим знанием здесь. Кстати сказать, до сих пор не знаю, где приведено обоснование алгоритма)))

Итак, сначала на примере рассказываю, “как работает система”, а потом объясняю, почему она на самом деле работает.

Возьмем число (число взято “с потолка”, только что в голову пришло).

1. Разбиваем его цифры на пары: те, что стоят слева от десятичной запятой, группируем по две справа налево, а те, что правее – по две слева направо. Получаем .

2. Извлекаем квадратный корень из первой группы цифр слева — в нашем случае это (ясно, что точно корень может не извлекаться, берем число, квадрат которого максимально близок к нашему числу, образованному первой группой цифр, но не превосходит его). В нашем случае это будет число . Записываем в ответ — это старшая цифра корня.

3. Возводим число, которое стоит уже в ответе — это — в квадрат и вычитаем из первой слева группы цифр — из числа . В нашем случае остается .

4. Приписываем справа следующую группу из двух цифр: . Число , которое уже стоит в ответе, умножаем на , получаем .

5. Теперь следите внимательно. Нам нужно к числу справа приписать одну цифру , и число умножить на , то есть на ту же самую приписанную цифру. Результат должен быть как можно ближе к , но опять-таки не больше этого числа. В нашем случае это будет цифра , ее записываем в ответ рядом с , справа. Это следующая цифра в десятичной записи нашего квадратного корня.

6. Из вычитаем произведение , получаем .

7. Далее повторяем знакомые операции: приписываем к справа следующую группу цифр , умножаем на , к полученному числу > приписываем справа одну цифру, такую, чтобы при умножении на нее получилось число, меньшее , но наиболее близкое к нему –– это цифра –– следующая цифра в десятичной записи корня.

8. Далее у нас в числе стоит десятичная точка, ставим такую же в результате после цифры . Продолжаем процесс, снося по две цифры после точки. Ясно, что можно сносить и два нуля.

Вычисления запишутся следующим образом:

А теперь обещанное объяснение. Алгоритм основан на формуле

   

Первый раз вычитаем квадрат, дальше, приписывая по одной цифре к результату, к числу под корнем, тем самым, приписываем две десятичных цифры. Отсюда разбиение на пары (видно из формулы). Вычтя квадрат, необходимо вычитать дальше числа вида , где — удвоенный известный на данный момент результат, приписывая к нему цифру, получаем , умножаем на эту же самую цифру, имеем . Вот и все!

P.S. Красивую модификацию описанного метода извлечения квадратного корня, которую предложил С.В. Савич, можно найти здесь: http://hijos.ru/2012/04/25/krasivaya-modifikaciya-metoda-izvlecheniya-kvadratnogo-kornya/

hijos.ru

Как извлечь корень из числа - видео

Как извлечь корень из числа. В этой статье мы будем учиться извлекать квадратный корень из четырехзначных и пятизначных чисел.

Давайте, для примера, извлечем квадратный корень из числа 1936.

, следовательно, .

Последняя цифра в числе 1936 - цифра 6. На 6 заканчивается квадрат числа 4 и числа 6. Следовательно, 1936 может быть квадратом числа 44 или числа 46. Осталось проверить с помощью умножения.

, значит,

Извлечем квадратный корень из числа 15129.

, следовательно, .

Последняя цифра в числе 15129 - цифра 9. На 9 заканчивается квадрат числа 3 и числа 7. Следовательно, 15129 может быть квадратом числа 123 или числа 127. Проверим с помощью умножения.

, значит,

Как извлечь корень - видео

А теперь предлагаю вам посмотреть видео Анны Денисовой - "Как извлечь корень", автора сайта "Простая физика", в котором она рассказывает, как извлекать квадратные и кубические корни без калькулятора.

В видео рассматривается несколько способов извлечения корней:

1. Самый простой способ извлечения квадратного корня.

2. Подбором, используя квадрат суммы.

3. Вавилонский способ.

4. Способ извлечения квадратного корня в столбик.

5. Быстрый способ извлечения кубического корня.

6. Способ извлечения кубического корня в столбик.

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Извлечение квадратного корня из многозначного числа

Разделы: Математика

В предисловии к своему первому изданию “В царстве смекалки” (1908 год) Е. И. Игнатьев пишет: “... умственную самодеятельность, сообразительность и “смекалку” нельзя ни “вдолбить”, ни “вложить” ни в чью голову. Результаты надёжны лишь тогда, когда введение в область математических знаний совершается в лёгкой и приятной форме, на предметах и примерах обыденной и повседневной обстановки, подобранных с надлежащим остроумием и занимательностью”.

В предисловии к изданию 1911 г “Роль памяти в математике” Е.И. Игнатьев пишет “… в математике следует помнить не формулы, а процесс мышления”.

Для извлечения квадратного корня существуют таблицы квадратов для двухзначных чисел, можно разложить число на простые множители и извлечь квадратный корень из произведения. Таблицы квадратов бывает недостаточно, извлечение корня разложением на множители - трудоёмкая задача, которая тоже не всегда приводит к желаемому результату. Попробуйте извлечь квадратный корень из числа 209764? Разложение на простые множители дает произведение 2*2*52441. Методом проб и ошибок, подбором – это, конечно, можно сделать, если быть уверенным в том, что это целое число. Способ, который я хочу предложить, позволяет извлечь квадратный корень в любом случае.

Когда-то в институте (Пермский государственный педагогический институт) нас познакомили с этим способом, о котором сейчас хочу рассказать. Никогда не задумывалась, есть ли у этого способа доказательство, поэтому сейчас пришлось некоторые доказательства выводить самой.

Основой этого способа, является состав числа =.

=&, т.е. &2=596334.

1. Разбиваем число (5963364) на пары справа налево (5`96`33`64)

2. Извлекаем квадратный корень из первой слева группы ( - число 2). Так мы получаем первую цифру числа &.

3. Находим квадрат первой цифры (22=4).

4. Находим разность первой группы и квадрата первой цифры (5-4=1).

5.Сносим следующие две цифры (получили число 196).

6. Удваиваем первую, найденную нами цифру, записываем слева за чертой (2*2=4).

7.Теперь необходимо найти вторую цифру числа &: удвоенная первая цифра, найденная нами, становится цифрой десятков числа, при умножении которого на число единиц, необходимо получить число меньшее 196 (это цифра 4, 44*4=176). 4 - вторая цифра числа &.

8. Находим разность (196-176=20).

9. Сносим следующую группу (получаем число 2033).

10. Удваиваем число 24, получаем 48.

11.48 десятков в числе, при умножении которого на число единиц, мы должны получить число меньшее 2033 (484*4=1936). Найденная нами цифра единиц (4) и есть третья цифра числа &.

Далее процесс повторяется.

Доказательство приведено мной для случаев:

1. Извлечение квадратного корня из трехзначного числа;

2. Извлечение квадратного корня из четырехзначного числа.

 

Приближенные методы извлечения квадратного корня (без использования калькулятора) [2].

1.Древние вавилоняне пользовались следующим способом нахождения приближенного значения квадратного корня их числа х. Число х они представляли в виде суммы а2+b, где а2ближайший к числу х точный квадрат натурального числа а (а2?х), и пользовались формулой . (1)

Извлечем с помощью формулы (1) корень квадратный, например из числа 28:

Результат извлечения корня из 28 с помощью МК 5,2915026.

Как видим способ вавилонян дает хорошее приближение к точному значению корня.

2. Исаак Ньютон разработал метод извлечения квадратного корня, который восходил еще к Герону Александрийскому (около 100 г. н.э.). Метод этот (известный как метод Ньютона) заключается в следующем.

Пусть а1— первое приближение числа (в качестве а1 можно брать значения квадратного корня из натурального числа — точного квадрата, не превосходящего х) .

Следующее, более точное приближение а2числа найдется по формуле .

Третье, еще более точное приближение и т.д.

(n+1)-е приближение найдется по формуле .

Нахождение приближенного значения числа методом Ньютона дает следующие результаты: а1=5; а2= 5,3; а3=5,2915.

- итерационная формула Ньютона для нахождения квадратного корня из числа х (n=2,3,4,…, аn - n-е приближение .

Указанный мною способ позволяет извлекать квадратный корень из большого числа с любой точностью, правда с существенным недостатком: громоздкость вычислений.

Литература:

  1. Пичугин Л.Ф. За страницами учебника алгебры. Книга для учащихся 7-9 классов средней школы. – М.: Просвещение, 1990.
  2. Ткачева М.В. Домашняя математика. Книга для учащихся 8 класса общеобразовательных учебных заведений. – М.: Просвещение 1994.
Поделиться страницей:

xn--i1abbnckbmcl9fb.xn--p1ai

Квадратный корень. Подробная теория с примерами.

Коротко о главном Начальный уровень

1. Введение понятия арифметического квадратного корня

Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа   называется такое неотрицательное число, квадрат которого равен  . .

Число или выражение под знаком корня должно быть неотрицательным

2. Таблица квадратов

3. Свойства арифметического квадратного корня

Свойство Пример
Корень произведения равен произведению корней  , если    
Корень из дроби - это корень из числителя и корень из знаменателя. , если    
Чтобы возвести корень в степень, достаточно возвести в эту степень подкоренное значение , при    

 

Введение понятия арифметического квадратного корня

Давай попробуем разобраться, что это за понятие такое «корень» и «с чем его едят». Для этого рассмотрим примеры, с которыми ты уже сталкивался на уроках (ну, или тебе с этим только предстоит столкнуться).

К примеру, перед нами уравнение  . Какое решение у данного уравнения? Какие числа можно возвести в квадрат и получить при этом  ? Вспомнив таблицу умножения, ты легко дашь ответ:   и   (ведь при перемножении двух отрицательных чисел получается число положительное)! Для упрощения, математики ввели специальное понятие квадратного корня и присвоили ему специальный символ .

Дадим определение арифметическому квадратному корню.

Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа   называется такое неотрицательное число, квадрат которого равен  . .

А почему же число   должно быть обязательно неотрицательным? Например, чему равен  ? Так-так, попробуем подобрать. Может, три? Проверим:  , а не  . Может,  ? Опять же, проверяем:  . Ну что же, не подбирается? Это и следовало ожидать – потому что нет таких чисел, которые при возведении в квадрат дают отрицательное число!

Это надо запомнить: число или выражение под знаком корня должно быть неотрицательным!

Однако ты наверняка уже заметил, что в определении сказано, что решение квадратного корня из «числа   называется такое неотрицательное число, квадрат которого равен  ». А в самом начале мы разбирали пример  , подбирали числа, которые можно возвести в квадрат и получить при этом  , ответом были   и  , а тут говорится про какое-то «неотрицательное число»! Такое замечание вполне уместно. Здесь необходимо просто разграничить понятия квадратных уравнений и арифметического квадратного корня из числа. К примеру,   не равносильно выражению  .

Из   следует, что

 , то есть   или  ;   (не помнишь почему так? Почитай тему про модули!)

А из   следует, что  .

Конечно, это очень путает, но это необходимо запомнить, что знаки являются результатом решения уравнения, так как при решении уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат. В наше квадратное уравнение подходит как  , так и  .

Однако, если просто извлекать квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.

А теперь попробуй решить такое уравнение  . Уже все не так просто и гладко, правда? Попробуй перебрать числа, может, что-то и выгорит?

Начнем с самого начала – с нуля:   – не подходит, двигаемся дальше  ;   – меньше трех, тоже отметаем, а что если  ? Проверим:   – тоже не подходит, т.к. это больше трех. С отрицательными числами получится такая же история. И что же теперь делать? Неужели перебор нам ничего не дал? Совсем нет, теперь мы точно знаем, что ответом будет некоторое число между   и  , а также между   и  . Кроме того, очевидно, что решения не будут целыми числами. Более того, они не являются рациональными. И что дальше? Давай построим график функции   и отметим на нем решения.

Попробуем обмануть систему и получить ответ с помощью калькулятора! Извлечем корень из  , делов-то! Ой-ой-ой, выходит, что   Такое число никогда не кончается. Как же такое запомнить, ведь на экзамене калькулятора не будет!? Все очень просто, это и не надо запоминать, необходимо помнить (или уметь быстро прикинуть) приблизительное значение.   и   уже сами по себе ответы. Такие числа называются иррациональными, именно для упрощения записи таких чисел и было введено понятие квадратного корня. Рассмотрим еще один пример для закрепления. Разберем такую задачку: тебе необходимо пересечь по диагонали квадратное поле со стороной   км, сколько км тебе предстоит пройти?

Самое очевидное здесь рассмотреть отдельно треугольник и воспользоваться теоремой Пифагора:  . Таким образом,  . Так чему же здесь равно искомое расстояние? Очевидно, что расстояние не может быть отрицательным, получаем, что  . Корень из двух приблизительно равен  , но, как мы заметили раньше,   -уже является полноценным ответом.

Извлечение корней

Чтобы решение примеров с корнями не вызывало проблем, необходимо их видеть и узнавать. Для этого необходимо знать, по меньшей мере, квадраты чисел от   до  , а также уметь их распознавать.

То есть, тебе необходимо знать, что   в квадрате равно  , а также, наоборот, что   – это   в квадрате. Первое время в извлечении корня тебе поможет эта таблица.

Как только ты прорешаешь достаточное количество примеров, то надобность в ней автоматически отпадет. Попробуй самостоятельно извлечь квадратный корень в следующих выражениях:

  1.  ;
  2.  ;
  3.  ;
  4.  ;

Ну как, получилось? Теперь давай посмотрим такие примеры:

  1.  ;
  2.  ;
  3.  .

Ответы:

 

  1.  ;
  2.  ;
  3.  ;
  4.  ;
  5.  ;
  6.  ;
  7.  .

 

 

 Свойства арифметического квадратного корня

Теперь ты знаешь, как извлекать корни и пришло время узнать о свойствах арифметического квадратного корня. Их всего 3:

Их ну просто очень легко запомнить с помощью этой таблицы и, конечно же, тренировки:

Свойство Пример
Корень произведения равен произведению корней , если    
Корень из дроби - это корень из числителя и корень из знаменателя. , если    
Чтобы возвести корень в степень, достаточно возвести в эту степень подкоренное значение , при    

Попробуем решить по несколько примеров на каждое свойство!

Умножение корней

Взглянул еще раз на табличку… И, поехали!

Начнем с простенького:

 

 

Минуууточку.   это  , а это значит, что мы можем записать вот так:

 

Усвоил? Вот тебе следующий:

 

Корни из получившихся чисел ровно не извлекаются? Не беда – вот тебе такие примеры:

 

 

А что, если множителей не два, а больше? То же самое! Формула умножения корней работает с любым количеством множителей:

 

Теперь полностью самостоятельно:

  1.  
  2.  
  3.  

Ответы:

Молодец! Согласись, все очень легко, главное знать таблицу умножения!

 

Деление корней

С умножением корней разобрались, теперь приступим к свойству деления.

Напомню, что формула в общем виде выглядит так:

 , если  .

А значит это, что корень из частного равен частному корней.

Ну что, давай разбираться на примерах:

 

Вот и вся наука. А вот такой пример:

 

Все не так гладко, как в первом примере, но, как видишь, ничего сложного нет.

А что, если попадется такое выражение:

 

Надо просто применить формулу в обратном направлении:

 

А вот такой примерчик:

 

Еще ты можешь встретить такое выражение:

 

Все то же самое, только здесь надо вспомнить, как переводить дроби (если не помнишь, загляни в тему дроби и возвращайся!). Вспомнил? Теперь решаем!

 

Уверена, что ты со всем, всем справился, теперь попробуем возводить корни в степени.

Возведение в степень

А что же будет, если квадратный корень возвести в квадрат? Все просто, вспомним смысл квадратного корня из числа   – это число, квадратный корень которого равен  . Так вот, если мы возводим число, квадратный корень которого равен  , в квадрат, то что получаем? Ну, конечно,  !

Рассмотрим на примерах:

  

  Все просто, правда? А если корень будет в другой степени? Ничего страшного!

Придерживайся той же логики и помни свойства и возможные действия со степенями.

Забыл?

Почитай теорию по теме «Степень и ее свойства» и тебе все станет предельно ясно.

Вот, к примеру, такое выражение:

 

В этом примере степень четная, а если она будет нечетная? Опять же, примени свойства степени и разложи все на множители:

 

С этим вроде все ясно, а как извлечь корень из числа в степени? Вот, к примеру, такое:

 

Довольно просто, правда? А если степень больше двух? Следуем той же логике, используя свойства степеней:

   Ну как, все понятно? Тогда реши самостоятельно примеры:

  1.  
  2.  
  3.  

А вот и ответы:

 

Внесение под знак корня

Что мы только не научились делать с корнями! Осталось только потренироваться вносить число под знак корня! Это совсем легко!

 

Допустим, у нас записано число  

Что мы можем с ним сделать? Ну конечно, спрятать тройку под корнем, помня при этом, что тройка – корень квадратный из  !

 

Зачем нам это нужно? Да просто, чтобы расширить наши возможности при решении примеров:

  Как тебе такое свойство корней? Существенно упрощает жизнь? По мне, так точно! Только надо помнить, что вносить под знак квадратного корня мы можем только положительные числа.

Реши самостоятельно вот этот пример -   Справился? Давай смотреть, что у тебя должно получиться:

 

Молодец! Перейдем к не менее важному – рассмотрим, как сравнивать числа, содержащие квадратный корень!

 

 

 

Сравнение корней

Зачем нам учиться сравнивать числа, содержащие квадратный корень? Очень просто. Часто, в больших и длиииинных выражениях, встречающихся на экзамене, мы получаем иррациональный ответ (помнишь, что это такое? Мы с тобой сегодня об этом уже говорили!) Полученные ответы нам необходимо расположить на координатной прямой, например, чтобы определить, какой интервал подходит для решения уравнения. И вот здесь возникает загвоздка: калькулятора на экзамене нет, а без него как представить какое число больше, а какое меньше? То-то и оно!

Например, определи, что больше:   или  ?

Сходу и не скажешь. Ну что, воспользуемся разобранным свойством внесения числа под знак корня?

Тогда вперед:

 

 

 

Ну и, очевидно, что чем больше число под знаком корня, тем больше сам корень! Т.е. если  , значит,  . Отсюда твердо делаем вывод, что  . И никто не убедит нас в обратном!

 

 

 

Извлечение корней из больших чисел

До этого мы вносили множитель под знак корня, а как его вынести? Надо просто разложить его на множители и извлечь то, что извлекается!

 

Можно было пойти по иному пути и разложить на другие множители:

 

Что дальше? А дальше раскладываем на множители до самого конца:

 

Неплохо, да? Любой из этих подходов верен, решай как тебе удобно.

Разложение на множители очень пригодится при решении таких нестандартных заданий, как вот это:

 

Не пугаемся, а действуем! Разложим каждый множитель под корнем на отдельные множители:

 

 

Разве это конец? Не останавливаемся на полпути!

 

На простые множители разложили. Что дальше? А дальше пользуемся свойством умножение корней и записываем все под одним знаком корня:

 

Вот и все, не так все и страшно, правда?

 

 

А теперь попробуй самостоятельно (без калькулятора! его на экзамене не будет):

 

Получилось  ? Молодец, все верно!

А теперь попробуй вот такой пример решить:

 

А пример-то – крепкий орешек, так сходу и не разберешься, как к нему подступиться. Но нам он, конечно, по зубам.

 

Ну что, начнем раскладывать   на множители? Сразу заметим, что можно поделить число на   (вспоминаем признаки делимости):

 

А теперь, попробуй сам (опять же, без калькулятора!):

 

Ну что, получилось  ? Молодец, все верно!

 

 

 

Подведем итоги

  1. Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа   называется такое неотрицательное число, квадрат которого равен  . .
  2. Если мы просто извлекаем квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.
  3. Свойства арифметического корня:
    Свойство Пример
    Корень произведения равен произведению корней , если    
    Корень из дроби - это корень из числителя и корень из знаменателя. , если    
    Чтобы возвести корень в степень, достаточно возвести в эту степень подкоренное значение , при    
  4. При сравнении квадратных корней необходимо помнить, что чем больше число под знаком корня, тем больше сам корень.

youclever.org

Извлечение корня из большого числа

   Извлечение корня из большого числа. Дорогие друзья! В этой статье мы с вами разберём как извлекать корень из большого числа без калькулятора. Это необходимо не только для решения некоторых типов задач ЕГЭ (есть такие — на движение), но и для общего математического развития этот аналитический приём знать желательно.

Казалось бы, всё просто: разложи на множители, да извлекай. Проблемы нет. Например число 291600 при разложении даст произведение:

Вычисляем:

Есть одно НО! Способ хорош если легко определяются делители 2, 3, 4 и так далее. А что делать если число, из которого мы извлекаем корень является произведением простых чисел? Например 152881 является произведением чисел 17, 17, 23, 23.  Попробуй-ка сходу найди эти делители.

Суть рассматриваемого нами метода —  это чистый анализ. Корень при наработанном навыке находится быстро. Если навык не отработан, а просто понят подход, то немного медленнее, но всё же определяется.

Извлечём корень из 190969.

Сначала определим — между какими числами (кратными ста) лежит наш результат.

Очевидно, что результат корня из данного числа лежит в пределах от 400 до 500, так как    

4002=160000   и   5002=250000

Действительно:

Далее смотрим, где «стоит» это число: 

посредине, ближе к 160 000 или к 250 000?

Число 190969 находится примерно посредине, но все же  ближе к 160000. Можно сделать вывод, что результат нашего корня будет меньше 450. Проверим:

Действительно, он меньше 450, так как  190 969 < 202 500.

Теперь проверим число 440:

Значит наш результат меньше 440, так как 190 969 < 193 600.

Проверяем число 430:

Мы установили, что результат данного корня лежит в пределах от 430 до 440.

Далее используются свойства произведений чисел. Известно, что:

Произведение чисел имеющих на конце 1 или 9 дают число с 1 в конце. Например, 21 на 21 равно 441.

Произведение чисел имеющих на конце 2 или 8 дают число с 4 в конце. Например, 18 на 18 равно 324.

Произведение чисел имеющих на конце 5 дают число с 5 в конце. Например, 25 на 25 равно 625.

Произведение чисел имеющих на конце 4 или 6 дают число с 6 в конце. Например 26 на 26 равно 676.

Произведение чисел имеющих на конце 3 или 7 дают число с 9 в конце. Например, 17 на 17 равно 289.

Так как число 190969 заканчивается цифрой 9, то это произведение либо числа 433, либо 437.

*Только они при возведении в квадрат могут дать 9 в конце.

Проверяем:

Значит результат корня будет равен 437.

То есть, мы как бы «нащупали» верный ответ.

Как видите, максимум что потребуется это осуществить 5 действий столбиком. Возможно, вы сразу попадёте в точку, или сделаете всего три действия. Всё зависит о того, как точно вы сделаете начальную оценку числа.

Извлеките самостоятельно корень  из  148996

Такой дискриминант получается в задаче:

Теплоход проходит по течению реки до пункта назначения 336 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 5 км/ч, стоянка длится 10 часов, а в пункт отправления теплоход возвращается через 48 часов после отплытия из него. Ответ дайте в км/ч.

Посмотреть решение

Результат корня находится между числами 300  и  400:

3002=90000       4002=160000

Действительно, 90000<148996<160000.

Суть дальнейших рассуждений сводится к тому, чтобы определить, как число 148996 расположено (отстоит) относительно этих чисел.

Вычислим разности 148996 — 90000=58996  и 160000 — 148996=11004.

Получается, что 148996 близко (на много ближе) к 160000. Поэтому, результат корня однозначно будет больше 350 и даже 360.

Далее  пробуем возводить в квадрат, например число 370. Как бы «щупаем» результат:

Можем сделать вывод, что наш результат больше 370. Далее ясно: так как 148996 оканчивается цифрой 6, то это означает, что в квадрат надо возводить число, оканчивающееся либо на 4, либо на 6. *Только эти числа при возведении в квадрат дают в конце 6.

Проверяем числа 374, 376, 384, 386, 394 …

Ответ: 386

Объективно говоря, вероятность того, что  вам попадёт подобная задача, очень мала. Но пусть этот приём  в вашем арсенале будет. Впереди вас ждёт много полезного, не пропустите!

Есть ещё метод по извлечению корня из большого числа, называют его алгоритмом Евклида. Его достоинство состоит в том, что можно извлекать корень из любого числа с необходимой точностью до десятых, сотых и тд. То есть корни неизвлекаемые в целых числах. *В будущем статья будет обязательно дополнена.

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

matematikalegko.ru

Как извлечь корень из квадрата? — МегаЛекции

Пусть у нас есть хорошее число 2. Возведём его в квадрат.

22 = 4

Кто бы спорил? А теперь давайте обратно, извлечём из результата квадратный корень:

Опять всё чудесно, правда? С чего начали, к тому и вернулись! Стало быть, можно записать:

Оно и естественно, правда? Возведение в квадрат компенсируется обратной операцией - извлечением квадратного корня. В общем виде формула выглядит вот так:

Стоп! Внимание! Во всех учебниках, справочниках и пособиях рядом с такой формулой всегда пишут: "где а - больше, либо равно нулю". В этих словах, которые многие просто пропускают, и кроются главные сложности корней. Потому, что в примерах а частенько бывает отрицательным! Пока и мы будем считать, что а - неотрицательное. Для простоты. А вот как встретите на этой странице мрачного зайца - вот там и начнётся настоящая работа!

Продолжаем. Корень из квадрата извлекается просто. А если у нас подкоренное выражение не в квадрате, а в другой степени? Допустим, в четвёртой? Да нет проблем. Приведём нашу степень к квадрату. Вот так:

24=(22)2

Для таких преобразований надо опять-таки знать действия со степенями, но тут уж ничего не поделаешь...

Теперь по формуле корня из квадрата:

Вот и всё. Корень из любой чётной степени даст в результате подкоренное выражение в степени, в два раза меньше исходной. Корень из 310 ? Легко! Это будет 35. Корень из 518 ? Запросто! Это будет 59. Ну, и так далее.

А если степень нечётная? Подумаешь! Раскладываем подкоренное выражение на множители - и вперёд! Используем вынесение множителя из-под корня. Например:

 

 

Всё просто. Но до сего момента мы работали только с неотрицательными числами и выражениями. Как только в игру вступают отрицательные величины, простота куда-то пропадает начисто... Вернём эту простоту и ясное понимание.

Вот тут и будет мрачный заяц. Для лучшего запоминания.) Концентрируем внимание и собираем весь интеллект в кулак!)

Итак, откуда в корнях могут появиться отрицательные числа и выражения?

Пунктик первый. Отрицательные значения даны прямо в задании. Вспоминаем пример корня из квадрата двойки:

Здесь всё понятно и просто.

А теперь попробуем вычислить:

Берём, и просто считаем, безо всяких формул:

(-2)2 = 4

Извлекаем корень из четырёх и получаем 2. Так как арифметический квадратный корень (а в школе мы работаем только с такими!) - всегда число неотрицательное! То есть:

А если бы мы использовали формулу:

получили бы не два, а минус два! Что является ошибкой.

Не работает эта формула для отрицательных значений.

Для того, чтобы формула корня из квадрата работала для всех значений а, она записывается вот так:

Это и есть последнее, третье свойство корней. Корень из квадрата. Третья ножка для табурета.)

Здесь появляется страшный значок для старшеклассников. Модуль. Если вы пока не сильны в раскрытии модулей, не волнуйтесь. Здесь он означает лишь то, что при любом знаке а, результат извлечения корня из квадрата будет всегда неотрицательный. Формула стала полноценной. Модуль просто отсекает минусы:

Пунктик второй. Отрицательные значения спрятаны в буквах и дополнительных условиях. Например, требуется упростить выражение:

где х<0.

Казалось бы, ответ прост. Получится просто х. Но зачем тогда дополнительная информация?! Приходится соображать. Если х<0, это отрицательное число. Минус два, или минус тридцать, там... Но корень квадратный отрицательным быть не может! Это будет точно х, но он должен быть с плюсом! Где взять плюс? А мы его сделаем! Если перед заведомо отрицательным числом, поставить минус, это число станет, число станет... положительным! И верное решение выглядит так.

Собственно, это и есть главная трудность в работе с корнями. В отличие от более простых разделов математики, здесь правильный ответ частенько не вытекает автоматически из формул. Необходимо подумать и лично принять верное решение.)

И как справляться со всем разнообразием заданий с корнями? А есть ещё иррациональные уравнения и неравенства, где эти пунктики играют главную роль...

Спокойно! Вникайте и запоминайте.

 

Главный практический совет по работе с квадратными корнями.

В любом задании с квадратными корнями лично контролируйте знаки подкоренного выражения и результата извлечения корня.

 

Прикидывайте, и оценивайте ситуацию, исходя из внешнего вида примера и всех дополнительных условий задания. Если под знаком корня - минус, дальше можно не решать. Выражение не имеет смысла. Что нам делать нечего, бессмысленные выражения решать?!

Если под корнем всё нормально, плюс, а в результате извлечения получается заведомый минус - сделайте из него плюс! Этого требуют правила действий с квадратными корнями.

Ну вот, основные тонкости корней мы разобрали. Теперь об одной ошибке, рассказать про которую я обещал в предыдущем уроке. Эта ошибка ничего общего с тонкостями не имеет! Это абсолютно тупой косяк, о котором и говорить-то неловко. Но надо. Слишком часто он встречается...

Обратите внимание! Все свойства корней связаны с умножением-делением. И ни одного - со сложением-вычитанием! На сложение-вычитание корней - не существует специальных формул!

Однако народ складывает... И не самый трудный народ... Поэтому громко напоминаю:

или:

Хотя одинаковые корни можно, конечно, складывать-вычитать. Как приводить подобные с буквами. Например:

или:

Но эти действия к специфическим свойствам корней не имеют никакого отношения.

 

 

А теперь попрактикуемся в корнях. От примитивных заданий до продвинутых. Все ответы даны в беспорядке.

 

Вычислить:

Ответы: 1, 9, 2.

 

Не получается? Смотрим ЗАКЛЮЧЕНИЕ этого урока.

Примитив? Тогда решаем дальше.

 

Упростить:

Ответы: 3а4 b, -4а4 b5 , 3а.

 

Не выходит? Смотрим ЗАКЛЮЧЕНИЕ урока.

Получилось? Неплохо. А как вам эти примерчики?

 

Вычислить (все буквы - неотрицательные):

Ответы (в беспорядке): выражение не имеет смысла; 5; 4; 1; -3; 0,5

 

Всё нормально!? Отлично. Корни - не ваша проблема.

Не всё понятно? Не беда. Читаем дальше.

 

ЗАКЛЮЧЕНИЕ

Не получаются даже простые примеры? Или не очень простые? Хотелось бы увидеть решение всех примеров с подробными и понятными объяснениями? Нет проблем! Идём в Особый раздел 555. Квадратные корни. Там даны все разъяснения. Которые, между прочим, годятся не только для решения этих примеров...

Это и будет последняя, четвёртая ножка для табурета.) Которая не даст свалиться и при серьёзных заданиях.

Особо ценная информация Раздела 555 помогает даже в самых запущенных случаях!) Когда не получается - и всё тут! Не говоря уж об отдельных неясностях. В этом разделе вы познакомитесь с практической работой с корнями.

 

И всё получится.

Что такое логарифм?

Внимание!К этой теме имеются дополнительныематериалы в Особом разделе 555.Для тех, кто сильно "не очень..."И для тех, кто "очень даже..." )

 

Что такое логарифм? Как решать логарифмы? Эти вопросы многих выпускников вводят в ступор. Традиционно тема логарифмов считается сложной, непонятной и страшной. Особенно - уравнения с логарифмами.

Это абсолютно не так. Абсолютно! Не верите? Хорошо. Сейчас, за какие-то 10 - 20 минут вы:

1. Поймете, что такое логарифм.

2. Научитесь решать целый класс показательных уравнений. Даже если ничего о них не слышали.

3. Научитесь вычислять простые логарифмы.

Причём для этого вам нужно будет знать только таблицу умножения, да как возводится число в степень...

Чувствую, сомневаетесь вы... Ну ладно, засекайте время! Поехали!

Для начала решите в уме вот такое уравнение:

3x = 9

Это показательное уравнение. Оно так называется потому, что х стоит в показателе степени. Если вы не в ладах с показательными уравнениями, или вообще про них ничего не слышали - не страшно. Просто подберите х, чтобы равенство сработало. Удалось? Ну да, х = 2. Три в квадрате - это девять.

А теперь решите почти то же самое:

3x = 8

Что, что-то не так? Ответ, что нету такого икса, не принимается!

Согласитесь, что это как-то нечестно – с девяткой пример решается в уме, а с восьмеркой не решается вовсе! Ну чем девятка лучше восьмерки?! Математика не терпит такой дискриминации. Для математики все числа равны! Ну, не буквально, конечно….

Можно сообразить, что икс – какое-то дробное число, между единичкой (31 = 3) и двойкой (32 = 9). И даже приближенно подобрать, найти это число. Но так возиться каждый раз.... Математика решает вопрос как всегда радикально и элегантно. Просто введением понятия логарифма. Итак, что такое логарифм?

Вернёмся к нашему загадочному примеру:

3x = 8.

х - это число, в которое надо возвести 3, чтобы получить 8. Фраза понятна? Если непонятна, прочитайте ещё раз. И ещё. Это важно.

Вот и назовём это число логарифмом восьми по основанию три. Записывается это вот как:

х = log38

Читаем ещё раз: "икс равен логарифму восьми по основанию три".

Где что пишется – запомнить легко: число 3 – называется основанием, пишется в логарифме и в показательном выражении внизу. Основание у чего угодно - оно, обычно, внизу бывает.

И это правильный ответ!

Вот и всё.

Мы решили крутое показательное уравнение 3x = 8!

Ответ: х = log38 .

И, неожиданно для себя, научились решать все показательные уравнения такого типа!

Как решить пример:

5x = 12 ?

Легко! х - это число, в которое надо возвести 5, чтобы получить 12. В математической записи:

х = log512

Ещё пример:

2x =135 ?

Элементарно!

х = log2135

И ещё:

19x = 0,352 ?

Не вопрос!

х = log190,352

Это все верные ответы! Приятно, правда?

Представьте, мы в обыденной жизни спросили, например: "как доехать до вокзала?" И нам честно и правильно ответили: "На автобусе, который идёт до вокзала!" В жизни толку с такого ответа мало.

А в математике - пожалуйста!

На вопрос: чему равен х в уравнении

3x = 8 ?

Мы честно отвечаем: х равен числу, в которое надо возвести 3, чтобы получить 8! Или, чтобы так долго не говорить, пишем в сокращённом варианте, через логарифм:

х = log38

Вас смущает, что вместо конкретного числа мы пишем какие-то значки с цифрами? Ну ладно, только для вас... Я покажу вам это конкретное число:

х = log38 = 1,892789260714.....

Легче стало? Учтите ещё, что это число никогда не кончается. Иррациональное оно...

Поэтому и записывают логарифмы вместо страшно лохматых чисел. Кому надо числовой ответ - посчитает на калькуляторе.

Так, что такое логарифм - осознали, и решать целый класс показательных уравнений - научились.

Но радость от новых знаний будет неполной без ложки дегтя. Если логарифм считается без калькулятора, его надо считать. Ответ, например, х = log24 нехорош. Этот логарифм вычисляется, и его вы обязаны посчитать. Собственно, это и есть решение логарифма.

И чему же равен log24?

Переводим с математического на русский: log24 - это число, в которое надо возвести 2 (основание), чтобы получить 4. Ну, во что надо возвести 2, чтобы получить 4!?

Да! В двойку надо возвести! Вот и ответ:

log24 = 2

А log327 чему равен? Тройка в какой степени даст 27? В третьей! Ответ:

log327 = 3

Уловили? Ну-ка разовьём успех! Решаем примеры:

log381 =

log416 =

log55 =

log6216 =

Ответы (в беспорядке, разумеется!): 2; 1; 3; 4.

Что, тяжело сообразить, в какой степени шестёрка даст 216? А я предупреждал, что здесь таблицу умножения знать надо! Более того, намекну, что таблицу умножения вообще знать надо... Не только здесь.

Ну что, смотрим на часы? Сильно я ошибся?

 

 

Вот мы и познакомились с логарифмами. На понятном уровне. Вы убедились, что они не опасны. Но есть, есть у них свои фишки! Самая важная - это ограничения.

До сих пор мы знали два жёстких ограничения. Нельзя делить на ноль и извлекать корень чётной степени из отрицательного числа. Эти ограничения играют огромную роль в решении заданий. Про ОДЗ помните? Теперь добавляются ограничения, связанные с логарифмами.

Запишем в общем виде, т.е. через буквы:

c = logab

или, что едино:

logab = c

Вспомним: а - это основание, которое нужно возвести в степень с, чтобы получить b.

Прикинем, любым ли числом может быть а? Если, к примеру, а = 1? Забавно получится, единица в любой степени - единица. Как-то оно не очень... Как не меняй с, а а и b единичками останутся... Та же история и с нулём. Не годятся эти числа в качестве основания. Отрицательные числа - капризные. В одну степень их можно возводить, в другую нельзя... Вот и поступили с ними, как со всеми капризными – вовсе исключили из рассмотрения.

В результате получилось:

а > 0; a ≠ 1

А если мы положительное число возведём в любую степень, мы получим... получим... Да! Положительное число и получим. Отсюда:

b > 0.

Вот и все ограничения. Только на а и b. с может быть совершенно любым числом.

При решении числовых логарифмов эти ограничения практически не сказываются. Но при решении логарифмических уравнений и неравенств - это настолько важно, что я здесь про ограничения сказал, в уравнениях скажу, и при любом удобном случае повторять буду!

Ещё не мешает знать, что такое десятичный логарифм и что такое натуральный логарифм? В математике два основания употребляются очень часто. Это основание 10 и основание е. Число е.

е = 2,71828182845.....

Иррациональное число. Сплошь и рядом попадается в высшей математике. Само попадается, его не придумали. Почему попадается - неизвестно...

Значки логарифмов по этим основаниям имеют своё написание.

log10b = lgb

Основание 10 не пишется, буква "о" пропадает. Такие логарифмы называются десятичными. И

logeb = lnb

Логарифмы по основанию "е" называются натуральными. Хотя чего уж там натурального....

Эти логарифмы ничем не отличаются от всех остальных! Ни по определению, ни по свойствам! Решение этих логарифмов ничем не отличается от решения обычных!

 

Пора переходить к лаконичным математическим формулировкам. К свойствам логарифмов. Популярное выражение "Решение логарифмов" предполагает не только вычисления, но и преобразования. По определённым правилам, естественно.

Запишем знакомое нам выражение:

logab = c

Мы уже хорошо знаем, что если число а (основание) возвести в степень с, то получим число b. Это из самого определения логарифма следует. Стало быть, можно записать:

ac = b

А теперь смотрим, чему же равно число с? Да вот оно:

с = logаb

Подставим это в предыдущую формулу, и получим:

И зачем нам эта перетасовка? Затем, что 4х-этажное выражение превращается в элементарное b! Это хорошее свойство!

Это первая формула свойств логарифмов. Её надо помнить! Единственная формула, где логарифм стоит в показателе степени.

Приведу ещё свойства, которые не требуют специальных выводов, а проистекают из определения логарифма и элементарной логики.

Чему равняется выражение:

logа1 = ?

В какую степень надо возвести а, чтобы получить 1? Неужто забыли? Нет? Ну, хорошо! Да, в нулевую! Вот и пишем:

logа1 = 0

Думаю, что следующее свойство уже не требует разъяснений:

logаа = 1

Оставшиеся свойства логарифмов выводить не будем, я их приведу сразу в комплекте. Этот комплект надо знать! Это основа для решения логарифмов.

 

 

Свойства логарифмов.

 

здесь х>0, y>0.

 

Такой вот джентльменский набор. Много? Да нет. Первые три - понятны. Остаётся всего пять запомнить. Но их надо знать железно. Причем слева направо и справа налево. Особо отмечу последнюю формулу. Это формула перехода к новому основанию логарифма. Ленятся ее, почему-то, запоминать. А в ЕГЭ, бывает, только она и спасает. Мы с ней дружить будем.

Обратите внимание - действия с логарифмами (формулы 4 и 5) возможны только при одинаковых основаниях! А если основания разные!? А вот тут нас как раз спасёт последняя формула.

Ещё отмечу, что эти формулы верны безо всяких оговорок для положительных х и у. В числовых логарифмах так обычно и бывает. А вот в уравнениях придётся модули использовать. Но там мы разберёмся со всеми подводными камнями, не волнуйтесь!

Ну, ладно. Формулы хорошие, решать-то как? Открываю тайну. Все задания на упрощение выражений с логарифмами решаются применением этих хороших формул (во, Америку открыл!). Попробуем, что-нибудь простенькое?

log142 + log147 = ?

Оба логарифма ровно не считаются. Смотрим на формулы - свойства и выбираем подходящую. Это четвёртая формула, только справа налево. Подумаешь! Сообразим как-нибудь.

log142 + log147 = log14(2·7) = log1414 = 1

Как видите, свойства логарифмов позволили нам перейти от несчитаемого выражения к чудному числу 1. Собственно, это и есть общая идея решения логарифмов (да и идея математики вообще!) - использование правил, свойств для преобразования плохих выражений (я про математику!) в хорошие.

Надеюсь, всё понятно? Что, слишком элементарно? Ну ладно. Вот примеры чуток посложнее. Вычислить:

log9243 =

2log63+log64 =

log28+log48 =

Ответы (в беспорядке): 2; 2,5; 4,5; 3.

Решилось? Неплохо! А ещё?

Ответы: 1; 3; -2.

Тоже без проблем? Ну ладно. А вот это?

Вычислить:

Ответы: 1; 36; 1; 2; 0,5.

И это получилось? Блеск! Ну что ж, думаю, что решение логарифмов - не самое слабое Ваше место! Можете заглянуть в Раздел 555. Особый. Есть там примерчик для Вас, на десерт... На третьем уровне.

Что, не всё решается? Или ничего не решается? Не переживайте, это дело поправимое. Вам прямая дорога в Раздел 555. Особый. Там подробно рассказано, как свойства логарифмов в дело употреблять. И не только для этих примеров, а и для всех сразу! Даны практические советы, которых вы не найдёте в учебниках. Очень рекомендую!

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

megalektsii.ru

Как извлечь корень третьей степени

Операции извлечения корня, в которых показателем служат числа два и три имеют собственные названия - квадратный и кубический корни. Если у вас есть возможность пользоваться компьютером, то наиболее простой способ извлечения из произвольного числа корня третьей степени (кубического) - задействовать программный калькулятор ОС.

Инструкция

completerepair.ru