Как определить полярность связи? Прямая и обратная полярность. Как определить наиболее полярную связь


Полярная связь - Справочник химика 21

    В отличие от полярности, поляризуемость молекул определяется динамическими эффектами которые возникают, когда на атомы, соединенные в молекуле а-связью, воздействуют другие полярные молекулы, ионы или электрические поля, / -эффект играет важную роль в процессах адсорбции и хемосорбции ПАВ на металлических поверхностях, несущих значительные заряды. Имеет особое значение тот факт, что 1а- и / -эффекты меняются в противоположных направлениях. Чем более полярна связь атомов, тем менее она поляризуема, т. е. чем выше разность электроотрицательностей атомов в молекуле, тем больше / -эффект и тем меньше / -эффект. Например, энергия связи С—Р выше, чем у связи С—I, но последняя легче поляризуется. [c.200]     Возможна различная степень полярности связи. Однако здесь нет непрерывного перехода, как может показаться на первый взгляд ...B природе нет скачков именно потому, что она слагается сплошь из скачков . Любые два соединения, хотя бы и самые близкие между собой, отличаются по полярности связи на какую-то конечную величину, т. е. эти переходы происходят не плавно, а скачкообразно. [c.64]

    Гетеролитический распад происходит тем легче, чем больше электрическая асимметрия разрываемой связи. Гомолитический разрыв ковалентных связей в растворах наблюдается только в том случае, если растворитель имеет небольшую диэлектрическую проницаемость, когда реагирующие связи мало полярны (например, С—С, С—Н, С—Ы). При сильно полярных связях, таких, как О—Н, N—Н, С—С1, обычно наблюдается гетеролитический распад, даже если растворитель имеет низкую диэлектрическую проницаемость. [c.84]

    Энергия связи 51—О (461 33 кДж/моль) гораздо выше, чем у связей С—С и С—О (335 4-356 кДж/моль), а ее полярность 1 = (4,35,0) 10 ° Кл-м намного меньше вычисленной из электроотрицательностей кремния и кислорода, хотя и выше полярности связи С—О [д, = (3,03,7) 10 ° Кл-м. Длина связи (0,163 нм) ца (Ц)2 нм меньше суммы ковалентных радиусов 51 и О. В силоксанах угол связи 51—О—51 (130—160°) значительно больше обычного валентного угла кислорода в 5/ -гибридизации (109°) и не является жестким. Электронодонорные свойства кислорода в них заметно ослаблены по сравнению с их углеродными аналогами. Эти аномалии объясняются участием р-электронов си-локсанового кислорода и вакантных З -орбиталей кремния в Рл — л-сопряжении, которое усиливается под влиянием электроноакцепторных и ослабляется под влиянием электронодонорных заместителей у кремния. Оно не препятствует свободному вращению вокруг связи 51—О, потенциальный барьер которого очень мал (не более нескольких десятых килоджоуля на моль). В цикло- [c.462]

    Неполярные и полярные молекулы. В зависимости от характера распределения электронной плотности молекулы могут быть неполярными и полярными. В неполярных молекулах центры тяжести положительных и отрицательных зарядов совпадают. Полярные молекулы являются диполями, т. е. системами, состоящими из двух равных по величине и противоположных по знаку зарядов - -q и —q), находящихся на некотором расстоянии I друг от друга. Расстояние между центрами тяжести положительного и отрицательного зарядов назывгется длиной диполя. Полярность молекулы, как и полярность связи, оценивают величиной ее электрического момента диполя х, представляющего собой произведение длины диполя I на величину электрического заряда х = Iq. [c.83]

    Все три молекулы имеют тригонально-пирамидальное строение (атомы N и Р 5рЗ-гибридизованы), поэтому дипольные моменты их связей не компенсируют друг друга. Молекула ЫНз имеет максимальный дипольный момент, поскольку связь N—Н самая полярная (она образована атомами с наибольшей разностью электроотрицательностей) менее полярны связи Р—Н и минимальная полярность у связи К—Р. [c.526]

    Зная экспериментальные значения электрического момента диполя, можно рассчитать полярность связей и эффективные заряды атомов. В простейшем случае двухатомных молекул можно приближенно считать, что центры тяжести зарядов совпадают с ядрами, т. е. I равно межъядерному расстоянию или длине связи. Так, в молекуле НС1 НС1 = 0,127 нм. Если бы хлорид водорода был чисто ионным соединением q равно заряду электрона), то его электрический момент диполя был бы равен [c.85]

    Еще более широкие возможности открывает варьирование состава минералов в силу их исключительного многообразия. Кварц и силикаты, слагающие подавляющее большинство-пород, содержат в основном связи Si—О и связи катион — кислород атомы алюминия могут быть катионами или заменять Si. Эти связи играют различную роль при разрушении силикатных минералов разных структурных типов [275]. В кварце и каркасных силикатах (полевых шпатах) обязательно рвутся силоксановые связи в цепочечных и ленточных си-ликатах возможно скольжение и разрыв по определенным плоскостям, образованным только связями Ме—О в островных силикатах связи Si—О—Si отсутствуют. Перечисленные связи различаются по геометрическим параметрам (длина, валентные углы), распределению электронной плотности и энергии связи колебания этих величин для отдельных классов силикатов имеют более узкие пределы, [276]. Важно, что во всем диапазоне изменений полярности связей Si—О они остаются существенно ковалентными, несмотря на большую разницу [c.93]

    Полярная связь не является самостоятельным видом химической связи. Ее следует рассматривать как видоизмененную ковалентную связь, от которой она отличается некоторой асимметрией электронного облака, центр которого смещен от середины межъядерного расстояния в сторону одного из ядер атомов — партнеров по связн. [c.48]

    Кратные связи, такие, как С = С, С=0, С = С, С = N1 и сопряженные ароматические системы благодаря избытку электронов могут действовать как основания, предоставляя электроны кислотам Льюиса. С другой стороны, в виде отрицательных ионов они могут действовать как кислоты Льюиса по отношению к достаточно сильным основаниям. Такое поведение более характерно для полярных связей, таких, как С = О, а не С = и или С = С. [c.499]

    Напротив, Б угловой молекуле НаО полярные связи О—Н располагаются под углом 104,5°. Поэтому их моменты взаимно не компенсируются и молекула оказывается полярной ([л = 0,61- 10" Кл-м)  [c.84]

    Аналогичным образом взаимодействуют между собой и другие одно тинные соединения с резким различием в полярности связи  [c.250]

    На величину электрического момента диполя молекулы сильно влияют несвяэывающие электронные пары. Например, молекулы h4N и NF3 имеют одинаковую тригонально-пирамидальную форму, полярность связей N—Н и N—F также примерно одинакова, однако электрический момент диполя h4N равен 0,49-10" Кл-м, а NF3— всего 0,07-10 Кл-м. Это объясняется тем, что в h4N направление электрического момента диполя связывающей N—Н и несвязываю- [c.84]

    По данным, приведенным в табл. 1.9, можио проследить, как меняется данное свойство в группе сходных веществ. Так, в ряде НС1, НВг и HI дипольные моменты уменьшаются. Снижение (х в этом ряду объясняется тем, что уменьшение различия в электроотрицательностях уменьшает степень полярности связи. [c.71]

    Полярная связь и электроотрицательность. Связи в молекулах А2 и Вг, содержащих одинаковые атомы, ковалентны. Если бы в молекуле АВ связь также была ковалентной, то, по предположению Полинга, соблюдалось бы равенство [c.115]

    Поэтому гидролитическое расщепление кремнекислородных связей затруднено по сравнению с гидролизом более полярных связей катион — кислород [278]. [c.94]

    Представление о том, что полярность молекул зависит от их геометрии и от полярности связей, легко усваивается всеми студентами. Раздел, посвященный молекулярной спектроскопии, может быть обсужден подробно, пройден бегло или вообще опущен без ущерба для непрерывности курса. [c.577]

    Наличие элементов кристаллической структуры наряду с большим дипольным моментом молекулы Н2О обусловливает очень большое значение относительной диэлектрической проницаемости воды е при 25 °С она равна 79,5." Таким образом, взаимодействие между заряженными частицами в водной среде приблизительно в 80 раз слабее, чем в вакууме. Благодаря этому все ионные соединения в водных растворах диссоциируют. В отличие от растворителей с меньшим значением е диссоциация в водной среде является практически полной. В водном растворе диссоциируют на ионы также многие соединения с полярной связью в молекулах, такие, как галогеноводороды, НгЗ и др., хотя для подобных соединений степень диссоциации может не равняться 100%. [c.156]

    В отличие от принятых ранее представлений, опытные данные приводят в настоящее время к заключению, что устойчивая конфигурация электронной оболочки может достигаться не только при полном присоединении электрона (типично ионная связь), но и при связывании его путем образования соответствующей полярной связи. Типично ионная связь образуется только между щелочными металлами и галогенами (и то главным образом между элементами, которые наиболее сильно различаются по своей электроотрицательности). При переходе же к более центральным группам периодической системы это различие постепенно уменьшается. [c.59]

    Р зличие в энергии исходных атомных орбиталей определяет полярность связи. Величина Ь (рис. 32) является мерой ионности, а величина а—ковалентности связи. [c.57]

    Следует, однако, обратить внимание на то, что только молекулы первых трех соединений не содержат полярных связей. Молекулы же последних двух соединений содержат полярные ковалентные [c.63]

    В ljOy эффективный заряд на атоме кислорода ничтожно мал и связь С1—О близка к неполярной, тогда как в Na O эффективный заряд на атоме кислорода составляет —0,81, т. е. в этом соединении химическая связь сильно полярна. Понижение полярности связи в этом ряду соответствует уменьшению различия в электроотрицательностях элементов, образующих соединения. [c.81]

    При полярной связи электронное облако связывающей электронной пары не располагается симметрично по отношению к обоим связываемым атомам, как при неполярной и не концентрируется полностью при одном из них, как в случае ионной связи. Связывая оба атома, оно обнаруживает более высокую плотность у одного из них, т. е. смещается в той или другой степени в сторону одного атома. Так, в молекуле НС1 электронная пара в большей степени смещена к атому хлора, поэтому он приобретает некоторый отрицательный заряд, а атом водорода — положительный заряд. Несимметричное распределение электронной пары в молекуле НС1 приводит к большему выделению энергии при образовании молекулы, чем это было бы при симметричном распределении электронной пары или при переходе ее целиком к хлору. Этим и обусловливается образование такой молекулы и большая ее устойчивость. [c.64]

    Наиболее важной характеристикой полярной связи является степень асимметрии расположения электронной пары. Она определяется в первую очередь различием в электроотрицательности элементов. Чем больше это различие, тем менее симметрично располагается электронное облако и тем полярнее образованная им связь. Легко видеть, что полярность связи между двумя атомами двух данных элементов зависит и от валентного состояния так, например, в различных окислах серы (SO2, SO3 и др.) она будет неодинаковой. Полярность. Связи между двумя данными атомами в известной степени зависит и от того, с какими другими атомами они связаны. Это объясняется влиянием на них других атомов, содержащихся в молекуле. [c.64]

    Введение электронодонорных растворителей вследствие сольватации активных центров и увеличения полярности связи Ь —С приводит к переходу от координационного механизма полимеризации к полимеризации на ионных парах или свободных карбанио-нах. Понижается координирующая роль металла в построении цепи и, как следствие, увеличивается присоединение бутадиена в положение 1,2, [c.273]

    Таким образом, по степени смещения (поляризации) связующего электронного облака связь может быть неполярной, полярной и ионной. Неполярная и ионная связи представляют собой крайние случаи полярной связи. По сравнению с последней они встречаются зна- Чртельно реже. [c.81]

    Наличие, как и в бензоле, нелокализованной л-связи объясняет уменьшение М1 жъядерного расстояния й/вЫ в боразоле до 0,144 нм ио сравнению с нор.мальпой длиной связи В — N 0,154 нм. Распределение электронной плотности отвечает эффективным зарядам N2 —и разной полярности связей Н —Н + п В8+—Н . Реакционная способность боразола выше, чем бензола. Боразол разлагается при нагревании на воздухе, в воде и ири действии кислот. Его можно получить нагреванием тетрагид )ИДобората лития и хлорида аммония  [c.449]

    СВЯЗЬ. Так, молекула воды, имеющая две полярные связи О—Н и две направленные несвязывающие электронные пары, может образовывать четыре водородные связи. Поэтому в кристалле льда (рис. 67) каждая молекула воды тетраэдрическн соединена водородными связями с четырьмя ближайшими к ней молекулами, что в плоскостном изображении можно представить схемой [c.103]

    В соответствии с изменением химической природы элемента закономерно изменяются и химические свойства соединений, в частности их основно-кислотная активность. Так. в случае оксидов в ряду — ВеО — В2О3 — СО2 — N,05 по мере уменьшения степени полярности связи (уменьшения отрицательного эффективного заряда атома кислорода б) ослабляются основные и нарастают кислотные свойства Ы О — сильно основный оксид, ВеО — амфотерный, а В2О3, СО и ЫзОй — кислотные. [c.250]

    Промежуточное положение между ионными и ковалентными фторидами занимают фториды с пысокой степенью полярности связи, которые можно назвать ионно-ковалентными соединениями, К последним, например, можно отнести кристаллические 2пр2, МпР , СоР , Nip2, в которых эффективные заряды электроположительных атомов составляют 1,56 1,63 1,46 1,40 соответственно. [c.282]

    Полярность связи N — Н обусловливает между молекулами ИдЫ водородную связь. Поэтому температуры плавления (—77,75 С) и кипения (—33,42°С) аммиака довольно высоки, он характеризуется значительной энтальпией испарения и легко сжижается. На этом основано его применение в холодильных маитинах. Жидкий аммиак хранят в стальных баллонах. [c.347]

    Полярность связей в соединениях с ростом ш уменьшается для ш = 1 и 2 связь близка к ионной, для гю — и> акс она приближается к ковалентной. Поэтому, ыапример, низшие оксиды и гидроксиды являются основными, высшие —кислотными, мно. -ие низшие галогениды — ионные кристаллы (хорошо растворимые соли), ВЫСШИ1 галогениды — легкоплавкие, легколетучие вещества, подвергающиеся гидролизу. Граница между ними отвечает ш 3. [c.492]

    Связь 51—С, менее прочная и менее полярная, чем связь 51—0, может при высоких температурах подвергаться гомолитическому расщеплению. Однако в силоксанах она более устойчива к действию свободных радикалов или уоблучения, чем менее полярная, хотя и более прочная (413 кДж/моль) связь С—Н в метильной группе. Благодаря своей полярности связь 51—С может расщепляться и гетеролитически, хотя она гораздо менее реакционноспособна, чем связь 51—О. Так, метилсилоксаны выделяют метан под действием концентрированного КОН при 200 °С или при нагревании с серной кислотой. Сравнительно легко расщепляется кислотами связь кремний — арил. К нуклеофильным реагентам она более устойчива, но расщепление ими сильно ускоряется при введении в ядро электроноакцепторных заместителей [3, с. 14]. [c.463]

    Взаимное влияние в молекулах органических веществ проявляют прежде всего атомы, непосредственно связанные друг с другом. В этом случае оно определяется характером химической связи между пши, степенью различия в их относительной злек-троотрицательности и, следовательно, степенью полярности связи. [c.463]

    Определить характер связей в молекулах S I4, Si l4, IF3 и 1Вг и указать для каждой из них направление смещения электронной плотности связи. Расположить молекулы в ряд в порядке увеличения полярности связи. [c.51]

    В двухатомных молекулах тина АВ, например НС1, СО, N0 и т. п., связи имеьзт ковалентно-полярный характер и сами молекулы являются полярными. Для молекул подобного тина понятия полярности связи и молекулы являются однозначными и их моменты электрических диполей численно совпадают. [c.52]

    В линейно построенных мо.иекулах АВ , треугольных ABj, тетраэдрических и квадратно-н/1оскоетных молекулах АВ4 дипольные моменты связей А—В взаимно компенсируют друг друга и результирующие момент , электрических диполей молекул равны нулю. Такие молекулы с полярными связями имеют в целом неполярный характер, что отражает их симмет[)ичную пространственную структуру. [c.52]

    Примером полярной многоатомной молекулы является h4 I. Поскольку углеро,т и водород имеют приблизительно одинаковые электроотрицательности. вклад трех связей С—Н в суммарный диполь молекулы должен быть пренебрежимо мал. Разность электроотрицательностей углерода и хлора, наоборот, велика, и наличие сильно полярной связи С— i [c.579]

    Эффективный заряд одного и того же атома в различных соединениях уменьшается с увеличением степени его окисления (Сг+ СЬ—Сг+ С1з —КгСг+ 04), т. е. чем выше формальная валентность, тем больи1е доля ковалентной связи (что обусловлено уменьшением полярности связей по мере увеличения их числа). [c.73]

    АЕ равнялось бы 0. Энергия несим метрнчиой связп, вычисленная по уравнению (1.58)., всегда меньше найденной из опыта. Это объясняется тем, что ковалентная связь между различными атомами всегд-а в гой или иной степени полярна. По степени оТ клонения величины АЕ от нуля можио судить о степени полярности ковалентной связи и тем самым о способности атомов притягивать к себе электроны (характеры изменения АЕ и дипольного момента одинаковы, а последний возрастает с увеличением степени полярности связи). [c.116]

    С галогенами водород связывает гораздо большее число признаков газообразное состояние (при обычных условиях), двух-атомность, ковалентность связи в молекуле Нг, наличие в большинстве соединений полярных связей, например в НС1 в отличие от Na l, неэлектропроводность (как в газообразном, так и в жидком и твердом состояниях), близость энергий ионизации /н и /г. в то время как /м С/н. К перечисленным признакам можно прибавить и другие, в частности сходство гидридов с галогенидами, закономерное изменение свойств в ряду Н — At (рис. 3.77). Можно привести много других примеров линейной взаимосвязи свойств в ряду Нг —Гг, аналогичной показанной на рис. 3.77. В ряду водород — щелочные металлы подобные зависимости обычно не наблюдаются. [c.463]

chem21.info

Вопрос 15. Неполярная связь, полярная связь.

Полярность ковалентной связи. Если ковалентная связь образо­вана одинаковыми атомами, например Н—Н, О=О, Сl—Сl, N=N, то обобществленные электроны равномерно распределены между ними. Такая связь называется ковалентной неполярной связью . Если же один из атомов сильнее притягивает электроны, то электронная пара смещается в сторону этого атома. В этом случае возникает полярная ковалентная связь. Критерием спо­собности атома притягивать электрон может служить электроотрица­тельность. Чем выше ЭО у атома, тем более вероятно смещение элек­тронной пары в сторону ядра данного атома. Поэтому разность электроотрицательности атомов характеризует полярность связи.

Ковалентная неполярная связь.

При взаимодействии атомов с одинаковой электроотрицательностью образуются молекулы с ковалентной неполярной связью. Такая связь существует в молекулах следующих простых веществ: h3, F2, Cl2, O2, N2. Химические связи в этих газах образованы посредством общих электронных пар, т.е. при перекрывании соответствующих электронных облаков, обусловленном электронно-ядерным взаимодействием, которые осуществляет при сближении атомов.

Составляя электронные формулы веществ, следует помнить, что каждая общая электронная пара – это условное изображение повышенной электронной плотности, возникающей в результате перекрывания соответствующих электронных облаков.

Ковалентная полярная связь.

При взаимодействии атомов, значение электроотрецательностей которых отличаются, но не резко, происходит смещение общей электронной пары к более электроотрицательному атому. Это наиболее распространенный тип химической связи, которой встречается как в неорганических, так и органических соединениях.

К ковалентным связям в полной мере относятся и те связи, которые образованы по донорно-акцепторному механизму, например в ионах гидроксония и аммония.

Вопрос 16. π и σ связи.

Связь, образованная перекрыванием АО по линии, соединяющей ядра взаимодействующих атомов, называется σ связью. Сигма-связь может возникать при перекрывании s орбиталей, а также d-s и d-p и f-f и f с другими орбиталями. Сигма-связь обычно охватывает два атома и не простирается за их пределы, поэтому является локализованной двухцентровой связью. Связь, образованная перекрыванием АО по обе стороны линии, соединяющей ядра атомов (боковые перекрывания), называется π связью. Пи- связь может образовываться при перекрывании p-p; p-d; d-d; f-p;f-d;f-f орбиталей.

Похожие статьи:

poznayka.org

Ковалентная полярная и неполярная связи, что это такое и как различать связь

Ни для кого не секрет, что химия — наука довольно сложная и к тому же разнообразная. Множество различных реакций, реагентов, химикатов и прочих сложных и непонятных терминов — все они взаимодействуют друг с другом. Но главное, что с химией мы имеем дело каждый день, неважно, слушаем ли мы учителя на уроке и усваиваем новый материал или же завариваем чай, который в целом тоже представляет собой химический процесс.

Можно сделать вывод, что химию знать просто необходимо, разбираться в ней и знать, как устроен наш мир или какие-то отдельные его части — интересно, и, более того, полезно.

Сейчас нам предстоит разобраться с таким термином, как ковалентная связь, которая, кстати говоря, может быть как полярной, так и неполярной. Кстати говоря, само слово «ковалентная», образуется от латинского «co» — совместно и «vales» — имеющий силу.

Это интересно: механизм образования металлической химической связи, примеры.

Появления термина

Начнём с того, что сам термин «ковалентная» впервые ввёл в 1919 году Ирвинг Ленгмюр — лауреат Нобелевской премии. Понятие «ковалентной» предполагает химическую связь, при которой оба атома обладают электронами, что называется совместным обладанием. Таким образом, она, к примеру, отличается от металлической, в которой электроны свободны, или же от ионной, где и вовсе один отдаёт электроны другому. Нужно заметить, что образуется она между неметаллами.

Исходя из вышесказанного, можно сделать небольшой вывод о том, что из себя представляет этот процесс. Она возникает между атомами за счёт образования общих электронных пар, причём пары эти возникают на внешних и предвнешних подуровнях электронов.

Примеры, вещества с полярной:

  1. h3.
  2. HCl.
  3. h3O.
  4. O2.

Это интересно: водородная связь образуется между молекулами, химический механизм.

Виды ковалентной связи

Также различаются два вида — это полярная, и, соответственно, неполярная связи. Особенности каждой из них мы разберём отдельно.

Ковалентная полярная — образование

Что из себя представляет термин «полярная»?

Обычно происходит так, что два атома имеют разную электроотрицательность, следовательно, общие электроны не принадлежат им в равной степени, а находятся они всегда ближе к одному, чем к другому. К примеру, молекула хлороводорода, в ней электроны ковалентной связи располагаются ближе к атому хлора, так как его электроотрицательность выше чем у водорода. Однако, на самом деле, разница в притяжении электронов невелика настолько, чтобы произошёл полный перенос электрона от водорода к хлору.

В итоге при полярной электронная плотность смещается к более электроотрицательному, на нём же возникает частичный отрицательный заряд. В свою очередь, у того ядра, чья электроотрицательность ниже, возникает, соответственно, частичный положительный заряд.

Делаем вывод: полярная возникает между различными неметаллами, которые отличаются по значению электроотрицательности, а электроны располагаются ближе к ядру с большей электроотрицательностью.

Электроотрицательность – способность одних атомов притягивать к себе электроны других, тем самым образуя химическую реакцию.

Примеры ковалентной полярной, вещества с ковалентной полярной связью:

  1. HCl.
  2. h3O.

Формула вещества с ковалентной полярной связью

Ковалентная неполярная, разница между полярной и неполярной

И наконец, неполярная, скоро мы узнаем что же она из себя представляет.

Основное отличие неполярной от полярной — это симметрия. Если в случае с полярной электроны располагались ближе к одному атому, то при неполярной связи, электроны располагаются симметрично, то есть в равной степени по отношению к обоим.

Примечательно, что неполярная возникает между атомами неметалла одного химического элемента.

К примеру, вещества с неполярной ковалентной связью:

Также совокупность электронов зачастую называют просто электронным облаком, исходя из этого делаем вывод, что электронное облако связи, которое образует общая пара электронов, распределяется в пространстве симметрично, или же равномерно по отношению к ядрам обоих.

Примеры ковалентной неполярной связи и схема образования ковалентной неполярной связи

Свойства связи

  1. Длина — расстояние между ядрами атомов, которые её образуют.
  2. Энергия — количество энергии, необходимой для её разрыва.
  3. Насыщаемость — способность атомов н-ное определённое количество связей.

Но Также полезно знать, как же различать ковалентную полярную и неполярную.

Ковалентная неполярная — это всегда атомы одного и того же вещества. h3. CL2.

В остальных случаях можно считать полярной.

На этом статья подошла к концу, теперь мы знаем, что из себя представляет этот химический процесс, умеем определять его и его разновидности, знаем формулы образования веществ, и в целом чуточку больше о нашем сложном мире, успехов в химии и образовании новых формул.

obrazovanie.guru

Как определить ковалентную полярную и неполярную связь?

Прежде, чем отвечать на поставленный вопрос «как определить ковалентную полярную и неполярную связь», разберемся с понятием «ковалентной связи» в общем. Итак, этот тип химической связи относится к внутримолекулярным взаимодействиям и реализуется в молекулах, образованных атомами неметаллов за счет образования общего электронного облака (электронной пары).Выделяют два механизма образования ковалентной связи: обменный и донорно-акцепторный. В первом случае общая электронная пара образуется посредством соединения двух электронов с противоположно направленными спинами, предоставленных каждым атомом. Во втором случае, один атом предоставляет пару электронов (донор), а второй – вакантную орбиталь (акцептор).Если двухатомная молекула построена из атомов одного неметалла, как, например, молекулы водорода (), азота (), хлора () и т.д., то общая электронная пара распределяется в пространстве симметрично относительно ядер обоих атомов и связь носит название ковалентной неполярной (гомеополярной).Если двухатомная молекула построена из атомов различных неметаллов, то общее электронное облако смещено в сторону одного из атомов, имеющего большее значение электроотрицательности, а связь называется ковалентной полярной (гетерополярной) (, , , ).

ru.solverbook.com

Тема 10. Ковалентная полярная химическая связь.

Часть I

1. Электроотрицательность (ЭО) — это способность атомов оттягивать к себе электронные пары.

2.

3. Если  ковалентная химическая связь образуется между атомами разных элементов-неметаллов, то общие электронные пары смещены в сторону более электроотрицательного  элемента. На нём возникает избыточный отрицательный  заряд, а на атоме-партнёре — избыточный положительный  заряд. Такая связь называется ковалентной полярной.

4.

5. Дополните таблицу «Ковалентная полярная связь».

Часть II

1. Поиграйте в «крестики-нолики». Покажите выигрышный путь, состоящий из формул веществ с ковалентной полярной связью, и запишите схемы их образования.

2. Выберите формулы соединений с ковалентной полярной химической связью. Из букв, соответствующих правильным ответам, вы составите слово, означающее имитацию алмаза или другого драгоценного камня, выполненного из стекла:  страз.1) HF           С3) FeBr3      Т5) SO2        Р7) CO2        А9) PCl5        З

3. Постройте график зависимости порядкового номера химического элемента от электроотрицательности элементов одного периода. Точные значения электроотрицательности найдите с помощью Интернета. Сделайте вывод:С увеличением порядкового номера ЭО растёт.

4. Постройте график зависимости порядкового номера химического элемента от электроотрицательности элементов одной главной подгруппы. Точные значения электроотрицатель¬ности найдите с помощью Интернета.В группе с увеличением порядкового номера ЭО уменьшается.

5. Наиболее полярной является химическая связь в молекуле:4) фтороводорода — HF

6. Расположите следующие вещества в порядке уменьшения полярности химической связи.4) фосфид калия — К3Р2) фосфид алюминия — АlР3) хлорид фосфора (V) — РСl51) белый фосфор — Р4

superhimik.ru

Как определить полярность связи? Прямая и обратная полярность

Узнаем сегодня, как определить полярность связи и зачем это нужно. Раскроем физический смысл рассматриваемой величины.

Химия и физика

Когда-то все дисциплины, посвященные изучению окружающего мира, объединялись одним определением. И астрономы, и алхимики, и биологи были философами. Но сейчас существует строгое распределение по разделам науки, а большие университеты точно знают, что нужно знать математикам, а что – лингвистам. Впрочем, в случае химии и физики четкой границы нет. Часто они взаимно проникают друг в друга, а бывает, что идут параллельными курсами. В частности, спорным объектом является полярность связи. Как определить, относится эта область знания к физике или химии? По формальному признаку – ко второй науке: сейчас школьники изучают это понятие как часть химии, но без знаний по физике им не обойтись.

Строение атома

Для того чтобы понять, как определить полярность связи, сначала надо вспомнить, как устроен атом. В конце девятнадцатого века было известно, что любой атом нейтрален в целом, но содержит в разных обстоятельствах разные заряды. Резерфод установил, что в центре любого атома располагается тяжелое и положительно заряженное ядро. Заряд атомного ядра всегда целочисленный, то есть он составляет +1, +2 и так далее. Вокруг ядра располагается соответствующее количество легких отрицательно заряженных электронов, число которых строго соответствует заряду ядра. То есть если заряд ядра +32, то вокруг него должны располагаться тридцать два электрона. Они занимают определенные позиции вокруг ядра. Каждый электрон как бы «размазан» вокруг ядра на своей орбитали. Ее форма, позиция и расстояние до ядра определяются четырьмя квантовыми числами.

Почему возникает полярность

В нейтральном атоме, расположенном вдалеке от других частиц (например, в глубоком космосе, вне галактики), все орбитали симметричны относительно центра. Несмотря на довольно сложную форму некоторых из них, орбитали любых двух электронов не пересекаются в одном атоме. Но если наш отдельно взятый атом в вакууме встретит на своем пути другой (например, войдет в облако газа), то он захочет взаимодействовать с ним: орбитали валентных внешних электронов вытянутся в сторону соседнего атома, сольются с ним. Возникнет общее электронное облако, новое химическое соединение и, следовательно, полярность связи. Как определить, какой атом возьмет себе большую часть общего электронного облака, расскажем далее.

Какими бывают химические связи

В зависимости от типа взаимодействующих молекул, разности в зарядах их ядер и силы возникающего притяжения, существуют следующие типы химических связей:

Для того чтобы задаваться вопросом о том, как определить полярность связи в соединении, она должна быть ковалентной или ионной (как, например, у соли NaCl). В целом эти два типа связи различаются только тем, насколько сильно смещается электронное облако в сторону одного из атомов. Если ковалентная связь не образована двумя одинаковыми атомами (например, О2), то она всегда слегка поляризована. В ионной связи смещение сильнее. Считается, что ионная связь приводит к образованию ионов, так как один из атомов «забирает» электроны другого.

Но на самом деле полностью полярных соединений не существует: просто один ион очень сильно притягивает к себе общее электронное облако. Настолько сильно, что оставшимся кусочком равновесия можно пренебречь. Итак, надеемся, стало понятно, что определить полярность ковалентной связи можно, а полярность ионной связи не имеет смысла определять. Хотя в данном случае различие между этими двумя типами связи – это приближение, модель, а не истинное физическое явление.

Определение полярности связи

Надеемся, читатель уже понял, что полярность химической связи – это отклонение распределения в пространстве общего электронного облака от равновесного. А равновесное распределение существует в изолированном атоме.

Способы измерения полярности

Как определить полярность связи? Вопрос этот далеко не однозначный. Для начала надо сказать, что раз симметрия электронного облака поляризованного атома отличается от аналогичной нейтрального, то и рентгеновский спектр изменится. Таким образом, смещение линий в спектре даст представление о том, какова полярность связи. А если требуется понять, как определить полярность связи в молекуле более точно, то надо знать не только спектр испускания или поглощения. Требуется выяснить:

Полярность связи обозначается как верхний знак следующего вида: 0,17+ или 0,3-. Стоит также помнить, что один и тот же вид атомов будет иметь непохожую полярность связи в соединении с различными веществами. Например, в оксиде BeO у кислорода полярность 0,35-, а в MgO – 0,42-.

Полярность атома

Читатель может задать и такой вопрос: "Как определить полярность химической связи, если факторов так много?" Ответ одновременно и прост, и сложен. Количественные меры полярности определяются как эффективные заряды атома. Эта величина является разностью между зарядом находящегося в определенной области электрона и соответствующей области ядра. В целом эта величина достаточно хорошо показывает некую асимметричность электронного облака, которая возникает при образовании химической связи. Сложность состоит в том, что определить, какая именно область нахождения электрона принадлежит именно этой связи (особенно в сложных молекулах) почти что невозможно. Так что, как и в случае разделения химических связей на ионные и ковалентные, ученые прибегают к упрощениям и моделям. При этом отбрасываются те факторы и значения, которые влияют на результат незначительно.

Физический смысл полярности соединения

Каков же физический смысл значения полярности связи? Рассмотрим один пример. Атом водорода H входит как во фтороводородную кислоту (HF), так и в соляную (HCl). Его полярность в HF равна 0,40+, в HCl – 0,18+. Это значит, что общее электронное облако гораздо сильнее отклоняется в сторону фтора, чем в сторону хлора. И значит, что электроотрицательность атома фтора намного сильнее электроотрицательности атома хлора.

Полярность атома в молекуле

Но вдумчивый читатель вспомнит, что, помимо простых соединений, в которых присутствуют два атома, существуют и более сложные. Например, чтобы образовать одну молекулу серной кислоты (h3SO4), требуется два атома водорода, один – серы, и целых четыре кислорода. Тогда возникает другой вопрос: как определить наибольшую полярность связи в молекуле? Для начала надо помнить, что любое соединение имеет некоторую структуру. То есть серная кислота – это не нагромождение всех атомов в одну большую кучу, а некая структура. К центральному атому серы присоединяются четыре атома кислорода, образуя подобие креста. С двух противоположных сторон атомы кислорода присоединяются к сере двойными связями. С двух остальных сторон атомы кислорода присоединяются к сере одинарными связями и «держат» с другой стороны по водороду. Таким образом, в молекуле серной кислоты существуют следующие связи:

Определив по справочнику полярность каждой из этих связей, можно найти наибольшую. Однако стоит помнить, что если в конце длинной цепочки атомов стоит сильно электроотрицательный элемент, то он может «перетягивать» на себя электронные облака соседних связей, повышая их полярность. В более сложной, чем цепочка, структуре вполне возможны иные эффекты.

Чем полярность молекулы отличается от полярности связи?

Как определить полярность связи, мы рассказали. В чем состоит физический смысл понятия, мы раскрыли. Но эти слова встречаются и в других словосочетаниях, которые относятся к данному разделу химии. Наверняка читателей интересует, каким образом взаимодействуют химические связи и полярность молекул. Отвечаем: эти понятия взаимно дополняют друг друга и невозможны по отдельности. Это мы продемонстрируем на классическом примере воды.

В молекуле h3O две одинаковые связи H-O. Между ними угол в 104,45 градуса. Так что структура молекулы воды представляет собой нечто вроде двузубой вилки с водородами на концах. Кислород – это более электроотрицательный атом, он оттягивает на себя электронные облака двух водородов. Таким образом, при общей электронейтральности, зубчики вилки получаются немного более положительными, а основание – немного более отрицательным. Упрощение приводит к тому, что молекула воды имеет полюса. Это и называется полярностью молекулы. Поэтому вода - такой хороший растворитель, эта разница в зарядах позволяет молекулам чуть-чуть оттягивать на себя электронные облака других веществ, разъединяя кристаллы на молекулы, а молекулы – на атомы.

Чтобы понять, почему у молекул при отсутствии заряда существует полярность, надо помнить: важна не только химическая формула вещества, но и строение молекулы, виды и типы связей, которые в ней возникают, разница в электроотрицательности входящих в нее атомов.

Наведенная или вынужденная полярность

Помимо собственной полярности, существует еще и наведенная или вызванная факторами извне. Если на молекулу действует внешнее электромагнитное поле, которое значительнее существующих внутри молекулы сил, то оно способно изменить конфигурацию электронных облаков. То есть если молекула кислорода тянет на себя облака водорода в h3O, и внешнее поле сонаправлено с этим действием, то поляризация усиливается. Если поле как бы мешает кислороду, то полярность связи немного уменьшается. Надо отметить, что требуется приложить достаточно большое усилие, чтобы как-то повлиять на полярность молекул, и еще большее – чтобы повлиять на полярность химической связи. Достигается этот эффект только в лабораториях и космических процессах. Обычная микроволновка лишь усиливает амплитуду колебаний атомов воды и жиров. Но это никак не влияет на полярность связи.

В каком случае имеет смысл направление полярности

В связи с термином, который рассматривается нами, нельзя не упомянуть, что такое прямая и обратная полярность. Если речь идет о молекулах, то полярность имеет знак «плюс» или «минус». Это значит, что атом либо отдает свое электронное облако и таким образом становится чуть более положительным, либо, наоборот, тянет облако на себя и приобретает отрицательный заряд. А направление полярности имеет смысл только тогда, когда заряд движется, то есть когда по проводнику идет ток. Как известно, электроны движутся от их источника (отрицательно заряженного) к месту притяжения (положительно заряженного). Стоит напомнить, что существует теория, согласно которой электроны на самом деле движутся в обратную сторону: от положительного источника к отрицательному. Но в целом это не имеет значения, важен лишь факт их движения. Так вот, в некоторых процессах, например при сварке металлических частей, важно, куда именно присоединены какие полюса. Следовательно, важно знать, как подключена полярность: напрямую или в обратную сторону. В некоторых приборах, даже бытовых, это тоже имеет значение.

fb.ru