Методы решения иррациональных уравнений. Как решается уравнение с корнем


Решить уравнение с корнем онлайн решателем

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Довольно часто в уравнениях встречается знак корня и многие ошибочно считают, что такие уравнения сложные в решении. Для таких уравнений в математике существует специальный термин, которым и именуют уравнения с корнем - иррациональные уравнения.

Главным отличием в решении уравнений с корнем от других уравнений, например, квадратных, логарифмических, линейных, является то, что они не имеют стандартного алгоритма решения. Поэтому чтобы решить иррациональное уравнение необходимо проанализировать исходные данные и выбрать более подходящий вариант решения.

решение уравнений с корнем

Так же читайте нашу статью "Решить уравнения онлайн решателем"

В большинстве случаев для решения данного рода уравнений используют метод возведения обеих частей уравнения в одну и ту же степень

Допустим, дано следующее уравнение:

\[\sqrt{(5x-16)}=x-2\]

Возводим обе части уравнения в квадрат:

\[\sqrt{(5х-16))}^2 =(x-2)^2\], откуда последовательно получаем:

\[5x-16=x^2-4х+4\]

\[x^2-4x+4-5x+16=0\]

\[x^2-9x+20=0\]

Получив квадратное уравнение, находим его корни:

\[x=(9\pm\sqrt{(81-4\cdot1\cdot20)\div(2\cdot1)}\]

\[x=(9\pm1)\div 2\]

Ответ: \[x1=4, x2=5\]

Если выполнить подстановку данных значений в уравнение, то получим верное равенство, что говорит о правильности полученных данных.

Где можно решить уравнение с корнями онлайн решателем?

Решить уравнение вы можете на нашем сайте pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

pocketteacher.ru

Как решать уравнения с корнями: решение уравнений с корнем

#1

Каждое новое действие в математике мгновенно порождает обратное ему. Когда-то давно древние греки обнаружили, что квадратный кусок земли длиной и шириной в 2 метра будет иметь площадь 2*2 = 4 квадратных метра (в дальнейшем будет обозначаться m^2) . А теперь наоборот, если бы грек знал, что его участок земли квадратный и имеет площадь 4 m^2, как бы он узнал, какая длина и ширина его участка? Была введена операция, являющейся обратной к операции возведения в квадрат и стала называться извлечением квадратного корня. Люди стали понимать, что 2 в квадрате (2^2) равно 4. И наоборот, квадратный корень из 4 (далее будет обозначаться √(4) ) будет равен двойке. Модели усложнялись, записи, описывающие процессы с корнями, также усложнялись. Многократно возникал вопрос, как решить уравнение с корнем.

#2

Пусть некоторая величина x при умножении самой на себя один раз даёт 9. Это можно записать как x*x=9. Или же через степень: x^2=9. Чтобы найти х, следует извлечь корень из 9, что уже в какой-то степени является уравнением с радикалом: x=√(9) . Корень можно извлекать устно или использовать для этого калькулятор. Далее следует рассмотреть обратную задачу. Некая величина, при извлечении из неё квадратного корня, даёт значение 7. Если записать это в виде иррационального уравнения, получится: √(x) = 7. Для решения такой задачи необходимо обе части выражения возвести в квадрат. Учитывая, что √(x) *√(x) =x, получается x = 49. Корень сразу готов в чистом виде. Далее следует разобрать более сложные примеры уравнения с корнями.

#3

Пусть от некой величины отняли 5, затем выражение возвели в степень 1/2. В итоге было получено число 3. Теперь данное условие необходимо записать как уравнение: √(x-5) =3. Далее следует умножить каждую часть уравнения саму на себя: x-5 = 3. После возведения во вторую степень, выражение было избавлено от радикалов. Теперь стоит решить простейшее линейное уравнение, перенеся пятёрку в правую часть и поменяв её знак. x = 5+3. x = 8. К сожалению, не все жизненные процессы можно описать такими простыми уравнениями. Очень часто можно встретить выражения с несколькими радикалами, иногда степень корня может быть выше второй. Для таких тождеств не существует единого алгоритма решений. К каждому уравнению стоит искать особый подход. Приводится пример, в котором уравнение с корнем имеет третью степень.

#4

Корень кубический будет обозначаться 3√. Найти объём контейнера, имеющего форму куба со стороной 5 метров. Пусть объём равен x m^3. Тогда кубический корень из объёма будет равен стороне куба и равняться пяти метрам. Получено уравнение: 3√(x) =5. Для его решения необходимо возвести обе части в третью степень, x = 125. Ответ: 125 кубометров. Дальше пример уравнения с суммой корней. √(x) +√(x-1) =5. Сначала необходимо возвести обе части в квадрат. Для этого стоит вспомнить формулу сокращенного умножения для квадрата суммы: (a+b) ^2=a^2+2*ab+b^2. Применив к уравнению, получается: x + 2*√(x) *√(x-1) +x-1 = 25. Далее корни оставляются в левой части, а всё остальное переносится в правую: 2*√(x) *√(x-1) = 26 - 2x. Удобно поделить обе части выражения на 2: √((x) (x-1) ) = 13 - x. Получено более простое иррациональное уравнение.

#5

Далее снова следует возвести обе части в квадрат: x*(x-1) = 169 - 26x + x^2. Надо раскрыть скобки и привести подобные слагаемые: x^2 - x = 169 - 26x + x^2. Вторая степень пропадает, отсюда 25x = 169. x = 169/25 = 6,6. Выполнив проверку, подставив полученный корень в изначальное уравнение: √(6,6) +√(6,6-1) = 2,6 + √(5,6) = 2,6 + 2,4 = 5, можно получить удовлетворительный ответ. Также очень важно понимать, что выражение с корнем чётной степени не может быть отрицательным. Действительно, умножая любое число само на себя чётное число раз, невозможно получить значение меньше нуля. Поэтому такие уравнения, как √(x^2+7x-11) = -3 можно смело не решать, а писать что уравнение корней не имеет. Как упоминалось выше, решение уравнений с радикалами может иметь самые разнообразные формы.

#6

Простой пример уравнения, где необходимо проводить замену переменных. √(y) - 5*4√(y) +6 = 0, где 4√(y) - корень четвёртой степени из y. Предлагаемая замена выглядит следующим образом: x = 4√(y) . Проведя таковую, получится: x^2 - 5x + 6 = 0. Получено приведённое квадратное уравнение. Его дискриминант: 25 - 4*6 = 25 - 24 = 1. Первый корень x1 будет равен (5 + √1) /2 = 6/2 = 3. Второй корень x2 = (5 - √1) /2 = 4/2 = 2. Также можно найти корни, воспользовавшись следствием из теоремы Виета. Корни найдены, следует провести обратную замену. 4√(y) = 3, отсюда y1 = 1,6. Также 4√(y) = 2, извлекая корень 4 степени получается что y2 = 1,9. Значения вычислены на калькуляторе. Но их можно и не делать, оставив ответ в виде радикалов.

uznay-kak.ru

Методы решения иррациональных уравнений

Разделы: Математика

Я бы почувствовал настоящее удовлетворение лишь в том случае, если бы смог передать ученику гибкость ума, которая дала бы ему в дальнейшем возможность самостоятельно решать задачи.

У.У.Сойер.

Определение. Уравнение с одной переменной называют иррациональным, если хотя бы одна из функций или содержит переменную под знаком радикала.

При решении иррациональных уравнений необходимо установить область допустимых значений переменных, исходя из условия, что все радикалы, входящие в уравнение, должны быть арифметическими.

1. Метод пристального взгляда

Этот метод основан на следующем теоретическом положении: “Если функция возрастает в области определения и число входит в множество значений, то уравнение имеет единственное решение.”

Для реализации метода, основанного на этом утверждении требуется:

а) Выделить функцию, которая фигурирует в уравнении.

b) Записать область определения данной функции.

c) Доказать ее монотонность в области определения.

d) Угадать корень уравнения.

t) Обосновать, что других корней нет.

f) Записать ответ.

Пример 1. .

Наличие радикалов четной степени говорит о том, что подкоренные выражения должны быть неотрицательными. Поэтому сначала найдем область допустимых значение переменной .

Очевидно, что левая часть уравнения не существует ни при одном значении неизвестного . Таким образом, вопрос о решении уравнения снимается – ведь нельзя же осуществить операцию сложения в левой части уравнения, так как не существует сама сумма. Каков же вывод? Уравнение не может иметь решений, так как левая часть не существует ни при одном значении неизвестного .

Пример 2.

Рассмотрим функцию .

Найдем область определения данной функции:

Данная функция является монотонно возрастающей.

Для эта функция будет принимать наименьшее значение при , а далее только возрастать.. Число 5 принадлежит области значения, следовательно, согласно утверждению .

Проверкой убеждаемся, что это действительный корень уравнения..

2. Метод возведения обеих частей уравнений в одну и ту же степень.

Теорема.

Если возвести обе части уравнения (1) в натуральную степень , то уравнение (2) является следствием уравнения (1).

Доказательство. Если выполняется числовое равенство , то по свойствам степени выполняется равенство , т.е. каждый корень уравнения (1) является и корнем уравнения (2), это значит, что уравнение (2) является следствием уравнения (1).

Если , то справедливо и обратная теорема. В этом случае уравнения (1) и (2) равносильны.

Если , равенство справедливо, если выполняется хотя бы одно из равенств и . Значит уравнения (1) и (2) в этом случае не равносильны. Поэтому, если в ходе решения иррационального уравнения приходилось возводить обе его части в степень с четным показателем, то могли появиться посторонние корни. Чтобы отделить их, проверки можно избежать, введя дополнительное требование . В этом случае уравнение равносильно системе . В системе отсутствует требование , обеспечивающее существование корня степени , т.к. оно было бы излишним в связи с равенством .

Пример 1.

,

,

.

Ответ:

Если в уравнение входят несколько радикалов, то их можно последовательно исключать с помощью возведения в квадрат, получая в итоге уравнение вида При этом полезно учитывать область допустимых значений исходного уравнения.

Пример 2. 

Ответ:

3. Решение уравнений с использованием замены переменной.

Введение вспомогательной переменной в ряде случаев приводит к упрощению уравнения. Чаще всего в качестве новой переменной используют входящий в уравнение радикал. При этом уравнение становится рациональным относительно новой переменной.

Пример1. 

Пусть тогда исходное уравнение примет вид:

, корни которого и Решая уравнение , получаем и

Ответ:

В следующих примерах используется более сложная замена переменной.

Пример 2

Перенесем в левую часть все члены уравнения и произведем дополнительные преобразования: .

Замена приводит уравнение к виду корнями которого являются и

Осталось решить совокупность двух уравнений:

Ответ:

4. Метод разложения на множители выражений, входящих в уравнение.

Теорема.

Уравнение , определенное на всей числовой оси, равносильно совокупности уравнений

Пример1.

При уравнение принимает вид: которое равносильно совокупности двух уравнений:

Ответ:

Выделить общий множитель часто бывает очень трудно. Иногда это удается сделать после дополнительных преобразований. В приведенном ниже примере для этого рассматриваются попарные разности подкоренных выражений.

Пример 2.

Если внимательно посмотреть на уравнение, то можно увидеть, что разности подкоренных выражений первого и третьего , а также второго и четвертого членов этого уравнения равны одной и той же величине

В таком случае далее следует воспользоваться тождеством:

Уравнение примет вид:

или

Корень уравнения т.е. число при подстановке в исходное уравнение дает верное равенство.

Уравнение не имеет решений, так как его левая часть положительна в своей области определения.

Ответ:

5. Метод выделения полных квадратов при решении иррациональных уравнений.

При решении некоторых иррациональных уравнений полезна формула

Пример 1.

Преобразуем уравнение следующим образом:

или

Обозначим и решим полученное уравнение

методом интервалов.

Разбирая отдельно случаи , находим,

что решениями последнего уравнения являются .

Возвращаясь к переменной , получаем неравенства

Ответ:

6. Метод оценки.

Этот способ применим в том случае, когда подкоренные выражения представляют собой квадратный трехчлен, не раскладывающийся на линейные множители. Поэтому целесообразно оценить левую и правую части уравнения.

Пример 1.

Оценим обе части уравнения:

,

,

Левая часть уравнения существует при всех значениях переменной , не меньших 5, а правая – при всех значениях, не больших 5, следовательно, уравнение будет иметь решение, если обе части уравнения одновременно равны 5, т. е. справедлива следующая система:

Корнем второго уравнения системы является число

Проверим, является ли это число корнем второго уравнения:

.

Ответ:

Пример 2.

Для всех имеем

Используя неравенство Коши, можем записать:

причем равенство достигается при и

Таким образом, -корень исходного уравнения.

Ответ:

7. Иррациональные уравнения, содержащие степени выше второй.

Если уравнение имеет вид то его можно решить , возводя обе части этого уравнения в степень . Полученное уравнение при нечетном равносильно данному уравнению, а при четном является нго следствием, аналогично рассмотренному выше случаю при

Пример 1

Возведем обе части уравнения в куб:

или

которое равносильно совокупности двух уравнений:

Ответ:

При решении иррациональных уравнений очень часто пользуются следующим приемом.

Если то

В последнем равенстве заменяют на и получают

Далее легко избавиться от кубической иррациональности , возводя обе части в куб.

Пример 2.

Здесь, очевидно,

Возведем в куб обе части уравнения, получим:

,

или

или

или

или

Проверка подтверждает, что это корень уравнения.

Ответ:

Замечание.

Замена в конкретном примере левой части на правую, вообще говоря , неправомерна –ведь нам неизвестно ни одно значение , при котором это уравнение превращается в верное числовое равенство. Возможно, таких решений нет вообще. Допуская в практических действиях такую замену, мы фактически расширяем возможное множество решений. Поэтому все найденные решения следует проверять и только те, которые превращают исходное уравнение в верное равенство, следует записать в ответ.

От того, что школьник решит лишний десяток задач, умнее и сообразительнее он не станет, Результат обучения оценивается не количеством сообщаемой информации, а качеством ее усвоения. Это качество будет выше, если на один и тот же пример посмотреть с разных сторон. Решение задач разными способами способствует развитию активного мышления учащихся. Хорошую почву для этого дает решение примеров разными способами.

Пример 3. Способ 1.

(1)

Возведем обе части уравнения в куб:

Группируя, получаем:

Используя равенство (1) имеем:

или

или

или

корни которого

Ответ:

Способ 2.

Иногда полезно ввести не одну вспомогательную переменную, а несколько, сводя исходное уравнение к системе уравнений.

Пусть Тогда

Таким образом справедлива следующая система:

Возвращаясь к переменной находим

Ответ:

В следующем примере введение вспомогательной переменной сводит исходное уравнение к однородному.

Пример 4.

Положим

Тогда исходное уравнение примет вид:

Поскольку при котором переменная обращается в нуль, не является решением исходного уравнения ( в чем можно убедиться подстановкой), делим обе части уравнения на

решая которое , находим:

Осталось решить уравнения и

Корнями этих уравнений являются числа

Ответ:

Пример 5.

Область допустимых значений задается неравенством

Преобразуем уравнение следующим образом:

Один корень этого уравнения

Для решения второго уравнения положим

и решим

Корни этого уравнения

Последний корень не принадлежит указанному промежутку, поэтому, решая уравнение , получим

Ответ :

xn--i1abbnckbmcl9fb.xn--p1ai

Как решать уравнения с корнями

Изредка в уравнениях встречается знак корня. Многим школьникам кажется, что решать такие уравнения «с корнями» либо, положительнее выражаясь, иррациональные уравнения дюже трудно, но это не так.

Инструкция

1. В различие от других типов уравнений, скажем, квадратных либо систем линейных уравнений, для решения уравнений с корнями, либо вернее, иррациональных уравнений, не существует стандартного алгорифма. В всем определенном случае нужно подобрать особенно подходящий способ решения, исходя из «внешнего вида» и особенностей уравнения.Возведение частей уравнения в идентичную степень.Почаще каждого для решения уравнений с корнями (иррациональных уравнений) используется возведение обеих частей уравнения в одну и ту же степень. Как водится, в степень, равную степени корня (в квадрат для корня квадратного, в куб для корня кубического). При этом следует иметь ввиду, что при возведении левой и правой части уравнения в четную степень у него могут возникнуть «лишние» корни. Следственно, в этом случае следует проверять полученные корни путем подстановки их в уравнение. Специальное внимание при решении уравнений с квадратными (четными) корнями следует уделить области возможных значений переменной (ОДЗ). Изредка одной только оценки ОДЗ довольно для решения либо значительного «облегчения» уравнения.Пример. Решить уравнение:?(5х-16)=х-2Возводим обе части уравнения в квадрат:(?(5х-16))?=(х-2)?, откуда ступенчато получаем:5х-16=х?-4х+4х?-4х+4-5х+16=0х?-9х+20=0Решая полученное квадратное уравнение, находим его корни:х=(9±?(81-4*1*20))/(2*1)х=(9±1)/2х1=4, х2=5Подставив оба обнаруженных корня в начальное уравнение, получаем правильное равенство. Следственно оба числа являются решениями уравнения.

2. Способ вступления новой переменной.Изредка обнаружить корни «уравнения с корнями» (иррационального уравнения) комфортнее способом вступления новых переменных. Реально, суть этого способа сводится примитивно к больше суперкомпактной записи решения, т.е. взамен того, дабы всякий раз писать массивное выражение, его заменяют условным обозначением.Пример. Решить уравнение: 2х+?х-3=0Можно решить данное уравнение и возведением обеих частей в квадрат. Впрочем, сами вычисления при этом будут выглядеть достаточно-таки массивно. При вступлении новой переменной процесс решения получится гораздо изящнее:Введем новую переменную: у=?хПосле чего получаем обычное квадратное уравнение:2у?+у-3=0, с переменной у.Решив полученное уравнение, находим два корня:у1=1 и у2=-3/2,подставляя обнаруженные корни в выражение для новой переменной (у), получаем:?х=1 и ?х=-3/2.Потому что значение квадратного корня не может быть негативным числом (если не затрагивать область комплексных чисел), то получаем исключительное решение:х=1.

Видео по теме

jprosto.ru

Решение иррациональных уравнений

Решение  иррациональных уравнений.

В этой статье мы поговорим о способах решения простейших иррациональных уравнений.

Иррациональным  уравнением  называется уравнение, которое содержит неизвестное под знаком корня.

Давайте рассмотрим два вида иррациональных уравнений, которые очень похожи на первый взгляд, но по сути  сильно друг от друга отличаются.

root{3}{f(x)}=g(x)  (1)

и

sqrt{f(x)}=g(x)   (2)

В первом уравнении root{3}{f(x)}=g(x)  мы видим, что  неизвестное стоит под знаком корня третьей степени. Мы можем извлекать корень нечетной степени из отрицательного числа, поэтому в этом уравнении нет никаких ограничений ни на выражение, стоящее под знаком корня, ни на выражение, стоящее в правой части уравнения.  Мы можем возвести обе части уравнения в третью степень, чтобы избавиться от корня. Получим равносильное уравнение:

f(x)=g^3{(x)}

При возведении правой и левой части уравнения в нечетную степень  мы можем не опасаться  получить посторонние корни.

Пример 1. Решим уравнение root{3}{3x^2-2x}=x

Возведем обе части уравнения в третью степень. Получим равносильное уравнение:

3x^2-2x=x^3

Перенесем все слагаемые в одну сторону и вынесем за скобки х:

x^3-3x^2+2 x=0

x(x^2-3x+2)=0

Приравняем каждый множитель к нулю, получим:

x_1=0,   x_2=1,    x_3=2

Ответ: {0;1;2}

Посмотрим внимательно на второе  уравнение: sqrt{f(x)}=g(x). В левой части уравнения стоит квадратный корень, который принимает только  неотрицательные значения. Поэтому, чтобы уравнение имело решения, правая часть тоже должна быть неотрицательной. Поэтому на правую часть уравнения накладывается условие:

g(x)>=0 - это условие существования корней.

Чтобы решить уравнение такого вида, нужно обе части уравнения возвести в квадрат:

f(x)=g^2{(x)}  (3)

Возведение в квадрат может привести к появлению посторонних корней, поэтому нам надо учесть ОДЗ уравнения:

f(x)>=0  (4)

Однако, неравенство (4) следует из условия (3): если в правой части равенства стоит квадрат какого-то выражения, а квадрат любого выражения может принимать только неотрицательные значения, следовательно левая часть тоже должна быть неотрицательна. Поэтому условие (4) автоматически следует из условия (3) и наше уравнение sqrt{f(x)}=g(x) равносильно системе:

delim{lbrace}{matrix{2}{1}{{f(x)=g^2{(x)}} {g(x)>=0} }}{ }  

Пример 2. Решим уравнение:

sqrt{2x^2-7x+5}=1-x.

Перейдем к равносильной системе:

delim{lbrace}{matrix{2}{1}{{2x^2-7x+5={(1-x)}^2} {1-x>=0} }}{ }  

Решим первое уравнение системы и проверим, какие корни удовлетворяют неравеству.

2x^2-7x+5={(1-x)}^2

2x^2-7x+5=x^2-2x+1

x^2-5x+4=0

x_1=1,   x_2=4

Неравеству 1-x>=0удовлетворяет только корень x=1

Ответ: x=1

Внимание! Если мы в процессе решения  возводим обе части уравнения в квадрат, то нужно помнить, что могут появиться посторонние корни. Поэтому либо нужно переходить к равносильной системе, либо в конце решения СДЕЛАТЬ ПРОВЕРКУ: найти корни и подставить их в исходное уравнение.

Пример 3. Решим уравнение:

sqrt{2x+5}=8-sqrt{x-1}

Чтобы решить это уравнение, нам также нужно возвести обе части в квадрат. Давайте в этом уравнении не будем заморачиваться с ОДЗ и условием существования корней, а просто в конце решения сделаем проверку.

Воозведем обе части уравнения в квадрат:

2x+5=64-16sqrt{x-1}+(x-1)

Перенесем слагаемое, содержащее корень влево, а все остальные слагаемые вправо:

16sqrt{x-1}=64+x-1-2x-5

16sqrt{x-1}=58-x

Еще раз возведем обе части уравнения в квадрат:

16sqrt{x-1}={(58-x)}^2

256(x-1)=3364-116x+x^2

x^2-372x+3620=0

По тереме Виета:

x_1=10,   x_2=362

Сделаем проверку. Для этого подставим найденные  корни в исходное уравнение. Очевидно, что при  x=362 правая часть исходного уравнения отрицательна, а левая положительна.

При x=10 получаем верное равенство.

Ответ: x=10

И.В. Фельдман, репетитор по математике.

ege-ok.ru

Как решать уравнения с корнем

Хотя пугающий вид символа квадратного корня и может заставить съежиться человека, не сильного в математике, задачи с квадратным корнем не такие уж и трудные, как это может вначале показаться. Простые задачи с квадратным корнем довольно часто можно решить так же легко, как обычные задачи с умножением или делением. С другой стороны, более сложные задачи могут потребовать некоторых усилий, но с правильным подходом даже они не составят вам труда. Начните решать задачи с корнем уже сегодня, чтобы научиться этому радикально новому математическому умению!

Определение. Уравнение с одной переменной  называют иррациональным, если хотя бы одна из функций  или  содержит переменную под знаком радикала.

При решении иррациональных уравнений необходимо установить область допустимых значений переменных, исходя из условия, что все радикалы, входящие в уравнение, должны быть арифметическими.

1. Метод пристального взгляда

Этот метод основан на следующем теоретическом положении: “Если функция  возрастает в области определения и число  входит в множество значений, то уравнение имеет единственное решение.”

Для реализации метода, основанного на этом утверждении требуется:

а) Выделить функцию, которая фигурирует в уравнении.

b) Записать область определения данной функции.

c) Доказать ее монотонность в области определения.

d) Угадать корень уравнения.

t) Обосновать, что других корней нет.

f) Записать ответ.

Пример 1. .

Наличие радикалов четной степени говорит о том, что подкоренные выражения должны быть неотрицательными. Поэтому сначала найдем область допустимых значение переменной .

Очевидно, что левая часть уравнения не существует ни при одном значении неизвестного . Таким образом, вопрос о решении уравнения снимается – ведь нельзя же осуществить операцию сложения в левой части уравнения, так как не существует сама сумма. Каков же вывод? Уравнение не может иметь решений, так как левая часть не существует ни при одном значении неизвестного х.

bichka.info

Как решать корни?

Очень не нравятся, некоторым, школьникам уравнения и задачи, в которых встречается знак корня. А ведь решить пример с корнем не так сложно, важно знать, с какой стороны подойти к проблеме. Сам значок, который обозначает извлечение корня, называется радикалом. Как решать корни? Извлечь квадратный корень из числа – это значит, подобрать такое число, которое в квадрате даст то самое значение под знаком радикала.

Итак, как решать квадратные корни

Решать квадратные корни несложно. Например, требуется выяснить, сколько будет корень из 16. Для того чтобы решить этот простой пример, нужно вспомнить, сколько будет 2 в квадрате - 22, затем 32, и, наконец, 42. Только теперь мы увидим, что результат (16) соответствует запросу. То есть, для того, чтобы извлечь корень, нам пришлось подбирать возможные значения. Оказывается, для того, чтобы решать корни, не существует точного и проверенного алгоритма. Для облегчения труда "решателя", математики рекомендуют заучить наизусть (именно назубок, как таблицу умножения) значения квадратов чисел до двадцати. Тогда можно будет запросто извлекать корень из чисел, которые больше сотни. И, наоборот, видеть сразу, что корень из этого числа извлечь нельзя, то есть ответ не будет иметь целое число.

Мы разобрались, как решать квадратные корни. А теперь давайте разберемся, какие квадратные корни решения не имеют. Например, отрицательные числа. Здесь понятно, что если два отрицательных числа перемножить – ответ получится со знаком плюс. Далее что следует знать. Корень извлечь можно из любого числа (кроме отрицательного, как упоминалось выше). Просто ответ может обернуться десятичной дробью. То есть содержать какое-то количество цифр после запятой. Например, корень из двух имеет значение 1.41421 и это еще не все цифры после запятой. Такие значения округляются для облегчения расчетов, иногда до второй цифры после запятой, иногда до третьей или четвертой. Кроме того частенько практикуется так и оставлять число под корнем в качестве ответа, если оно хорошо и компактно смотрится. Ведь и так ясно, что оно означает.

elhow.ru