Как найти значение производной в точке функции. Как вычислить значение функции в точках


Как найти значение функции по значению аргумента

Как найти значение функции по значению аргумента? Это можно сделать с помощью формулы, задающей функцию.

Если функция задана формулой y=f(x), чтобы найти значение функции по данному значению аргумента, надо в формулу функции вместо каждого икса подставить это значение и вычислить значение y.

Пример.

1) Линейная функция задана формулой y=10x-7.

Найти значение функции, соответствующее значению аргумента, равному 3; -2,5; 1,4; 0.

Решение:

При x=3 

   

при x=-2,5 

   

при x=1,4 

   

при x=0 

   

2) Функция задана формулой

   

Найти значение функции при x, равном 10; -2; 1; 0.

Решение:

При x=10 

   

   

при x=-2 

   

   

при x=1

   

при x=0 

   

   

Значение функции по данному значению аргумента можно найти также по графику. Как это сделать, мы рассмотрим в следующий раз.

www.algebraclass.ru

Онлайн калькулятор: Вычисление значений функции

Данный онлайн калькулятор вычисляет значения функции одной переменной для заданных значений переменной . Функция задается при помощи формулы, в которой могут участвовать математические операции, константы и математические функции. Синтаксис описания формулы см. ниже.

Значения переменной x через запятую, для указания десятичной точки используйте точку.

Точность вычисления

Знаков после запятой: 1

Результат расчета

Сохранить share extension

В формуле допускается использование одной переменной (обозначается как x), числа пи ( pi), следующих математических операторов:+ — сложение- — вычитание* — умножение/ — деление^ — возведение в степень

и следующих функций:

planetcalc.ru

как найти минимум функции?? какой порядок действий должен быть??? помогите плиз!

Находим производную функции Приравниваем эту производную к нулю Находим значения переменной получившегося выражения Разбиваем этими значениями координатную прямую на промежутки (при этом не нужно забывать о точках разрыва, которые также надо наносить на прямую) , все эти точки называются точками «подозрительными» на экстремум Вычисляем, на каких из этих промежутков производная будет положительной, а на каких – отрицательной. Для этого нужно подставить значение из промежутка в формулу с производной. Из точек подозрительных на экстремум надо найти именно экстремумы. Для этого смотрим на наши промежутки на координатной прямой. Если при прохождении через какую-то точку знак производной меняется с плюса на минус, то эта точка будет максимумом, а если с минуса на плюс, то минимумом. Чтобы найти наибольшее и наименьшее значение функции, нужно вычислить значение функции на концах отрезка и в точках экстремума. Затем выбрать наибольшее и наименьшее значение.

находишь производную от функции приравниваешь к 0 отмечаешь иксы на оси ОХ подставлешь пробные точки

Посмотреть по графику или 1) Найти производную функции 2) Приравнять производную к нулю и найти точки в кот. производная равна нулю - это будут точки максимумов и минимумов. 3) Чтобы найти минимум - надо сравнить знак производной функции до точки и после нее - если знак до - (функция спадала) а после + (функция начала возрастать) - это и есть точка минимума.

touch.otvet.mail.ru

Найти значение производной функции в точке х0

Производная функции в точке

Как найти производную функции в точке? Из формулировки следуют два очевидных пункта этого задания:

1) Необходимо найти производную.

2) Необходимо вычислить значение производной в заданной точке.

Пример 1

Вычислить производную функции 

 в точке 

Справка: Следующие способы обозначения функции эквивалентны:

В некоторых заданиях бывает удобно обозначить функцию «игреком», а в некоторых через «эф от икс».

Сначала находим производную:

Надеюсь, многие уже приноровились находить такие производные устно.

На втором шаге вычислим значение производной в точке 

:

Готово.

Небольшой разминочный пример для самостоятельного решения:

Пример 2

Вычислить производную функции 

 в точке 

Полное решение и ответ в конце урока.

Необходимость находить производную в точке возникает в следующих задачах: построение касательной к графику функции (следующий параграф), исследование функции на экстремум, исследование функции на перегиб графика, полное исследование функции и др.

Но рассматриваемое задание встречается в контрольных работах и само по себе. И, как правило, в таких случаях функцию дают достаточно сложную. В этой связи рассмотрим еще два примера.

Пример 3

Вычислить производную функции 

 в точке . Сначала найдем производную:

Производная, в принципе, найдена, и можно подставлять требуемое значение 

. Но что-то делать это не сильно хочется. Выражение очень длинное, да и значение «икс» у нас дробное. Поэтому стараемся максимально упростить нашу производную. В данном случае попробуем привести к общему знаменателю три последних слагаемых:

Ну вот, совсем другое дело. Вычислим значение производной в точке 

:

В том случае, если Вам не понятно, как найдена производная, вернитесь к первым двум урокам темы. Если возникли трудности (недопонимание) с арктангенсом и его значениями, обязательно изучите методический материал Графики и свойства элементарных функций – самый последний параграф. Потому-что арктангенсов на студенческий век ещё хватит.

Пример 4

Вычислить производную функции 

 в точке .

Это пример для самостоятельного решения.

Уравнение касательной к графику функции

Чтобы закрепить предыдущий параграф, рассмотрим задачу нахождения касательной кграфику функции в данной точке. Это задание встречалось нам в школе, и оно же встречается в курсе высшей математики.

Рассмотрим «демонстрационный» простейший пример.

Составить уравнение касательной к графику функции 

 в точке с абсциссой . Я сразу приведу готовое графическое решение задачи (на практике этого делать в большинстве случаев не надо):

Строгое определение касательной даётся с помощью определения производной функции, но пока мы освоим техническую часть вопроса. Наверняка практически всем интуитивно понятно, что такое касательная. Если объяснять «на пальцах», то касательная к графику функции – это прямая, которая касается графика функции в единственнойточке. При этом все близлежащие точки прямой расположены максимально близко к графику функции.

Применительно к нашему случаю: при 

 касательная  (стандартное обозначение) касается графика функции в единственной точке .

И наша задача состоит в том, чтобы найти уравнение прямой 

.

StudFiles.ru>

Производная функции в точке

Как найти производную функции в точке? Из формулировки следуют два очевидных пункта этого задания:

1) Необходимо найти производную.

2) Необходимо вычислить значение производной в заданной точке.

Пример 1

Вычислить производную функции

в точке

Справка: Следующие способы обозначения функции эквивалентны: В некоторых заданиях бывает удобно обозначить функцию «игреком», а в некоторых через «эф от икс».

Сначала находим производную:

Надеюсь, многие уже приноровились находить такие производные устно.

На втором шаге вычислим значение производной в точке

:

Готово.

Небольшой разминочный пример для самостоятельного решения:

Пример 2

Вычислить производную функции

в точке

Полное решение и ответ в конце урока.

Необходимость находить производную в точке возникает в следующих задачах: построение касательной к графику функции (следующий параграф), исследование функции на экстремум, исследование функции на перегиб графика, полное исследование функции и др.

Но рассматриваемое задание встречается в контрольных работах и само по себе. И, как правило, в таких случаях функцию дают достаточно сложную. В этой связи рассмотрим еще два примера.

Пример 3

Вычислить производную функции

в точке . Сначала найдем производную:

Производная, в принципе, найдена, и можно подставлять требуемое значение

. Но что-то делать это не сильно хочется. Выражение очень длинное, да и значение «икс» у нас дробное. Поэтому стараемся максимально упростить нашу производную. В данном случае попробуем привести к общему знаменателю три последних слагаемых:

Ну вот, совсем другое дело. Вычислим значение производной в точке

:

В том случае, если Вам не понятно, как найдена производная, вернитесь к первым двум урокам темы. Если возникли трудности (недопонимание) с арктангенсом и его значениями, обязательно изучите методический материал Графики и свойства элементарных функций – самый последний параграф. Потому-что арктангенсов на студенческий век ещё хватит.

Пример 4

Вычислить производную функции

в точке .

Это пример для самостоятельного решения.

studopedia.ru>

Как найти значение производной функции F(x) в точке Хо? Как вообще это решать?

Sfash

Если формула задана, то найти производную и вместо Х подставить Х-нулевое. Посчитать Если речь идет о б-8 ЕГЭ, график, то надо найти тангенс угла (острый или тупой) , который образует касательная с осью Х (с помощью мысленного построения прямоугольного треугольника и определения тангенса угла)

Тимур адильходжаев

Во-первых, надо определиться со знаком. Если точка х0 находится в нижней части координатной плоскости, то знак в ответе будет минус, а если выше, то +. Во-вторых, надо знать что такое тангес в прямоугольном прямоугольнике. А это соотношение противолежащей стороны (катета) к прилежащей стороне (тоже катета) . На картине обычно есть несколько черных отметок. Из эти отметок составляешь прямоугольный треугольник и находишь тангес.

Как найти значение производной функции f x в точке x0?

нет конкретно поставленного вопроса — 3 года назад

Bk.Ru

В общем случае, что бы найти значение производной какой-либо функции по некоторой переменной в какой-либо точке, нужно продифференцировать заданную функцию по этой переменной. В вашем случае по переменной Х. В полученное выражение вместо Х поставить значение икса в той точке, для которой надо найти значение производной, т.е. в Вашем случае подставить нулевой Х и вычислить полученное выражение.

Ну а ваше стремление разобраться в этом вопросе, на мой взгляд, бесспорно заслуживает +, который ставлю с чистой совестью.

Lady v

Такая постановка задачи на нахождение производной часто ставится для закрепления материала на геометрический смысл производной. Предлагается график некоей функции, совершенно произвольной и не заданной уравнением и требуется найти значение производной (не саму производную заметьте!) в указанной точке Х0. Для этого строится касательная к заданной функции и находится точки ее пересечения с осями координат. Потом составляется уравнение этой касательной в виде y=кx+b.

В этом уравнении коэффициент к и будет являться значением производной. остается лишь найти значение коэффициента b. Для этого находим значение у при х=о, пусть оно равно 3 - это и есть значение коэффициента b. Подставляем в исходное уравнение значения Х0 и У0 и находим к - нашу значение производной в этой точке.

bolshoyvopros.ru>

Читайте также

zna4enie.ru

Как вычислить функцию

Функция определяет зависимость между несколькими величинами таким образом, что заданным значениям ее аргументов ставятся в соответствие значения других величин (значений функции). Вычисление функции заключается в определении области ее возрастания или убывания, поиске значений на каком-либо интервале или в заданной точке, в построении графика функции, нахождении ее экстремумов и других параметров.

Спонсор размещения P&G Статьи по теме "Как вычислить функцию" Как построить диаграмму Как проверить функцию на четность и нечетность Как построить график заданной функции

Инструкция

1

Определите признаки возрастания или убывания заданной функции. Для линейной функции вида f(x) = k*а+b имеет значение знак коэффициента при аргументе х. Если k>0, функция возрастает, при k 0, функция возрастающая, при f'(х)

2

Найдите значения функции в заданном интервале [n, m]. Для этого подставьте граничные значения в качестве аргумента х в выражение функции. Произведите вычисления f (х), запишите результаты. Обычно поиск значений выполняется для построения графика функции. Однако двух пограничных точек для этого недостаточно. На указанном интервале задайте шаг в 1 или 2 единицы, в зависимости от промежутка, прибавляйте значение х на величину шага и каждый раз высчитывайте соответствующее значение функции. Оформите результаты в табличном виде, где одной строкой будет аргумент х, второй – значения функции.

3

Постройте график функции на координатной плоскости ОХУ. Здесь горизонтальная ОХ является осью абсцисс, на которой отображаются все аргументы, вертикальная ОУ – ось ординат со значениями функции. Отложите на осях все полученные данные х и у (f(x)). Поставьте точки функции на пересечении соответствующих значений х и у. Плавной линией последовательно соедините точки и подпишите рядом с графиком выражение функции.

4

Найдите экстремумы функции. Экстремумами называются максимальные или минимальные значения функции f(x) на определенном интервале, а аргумент х при этом – точкой максимума или минимума соответственно. Используйте необходимое условие экстремума: если аргумент х является точкой экстремума функции f(x), то дифференциал данной функции f'(x) равен нулю или не существует.

5

Дифференцируйте заданную функцию. Приравняйте полученное выражение к нулю и найдите аргументы, при которых равенство истинно. Подставьте поочередно каждое из полученных значений х в уравнение дифференцированной функции, вычислите выражение и определите его знак. Если производная f'(x) меняет знак с плюса на минус, найденная точка является точкой максимума, при обратном результате – определена точка минимума. Найденные аргументы хmin и xmax подставьте в первоначальную функцию f(x) и вычислите ее значения в обоих случаях. Вы найдете соответствующие экстремумы функции. Как просто

masterotvetov.com

Как найти значение производной в точке функции

Периметр квадрата равен 1) 11см 2) 17см 3) 21см найдите длину его стороны. вопрос опубликован 01.01.2017 05:53:08. >. 1)2.75см 2)4.25см 3)8.25см.

Как найти значение производной в точке функции

Тип 5. Дан график функции и касательная к нему, найти значение производной.

Задача: На рисунке изображены график функции и касательная к нему в точке с абсциссой. Найдите значение производной функции в точке.

Помним, что производная равна тангенсу угла наклона касательной (т. е. угловому коэффициенту касательной)

Касательная есть, осталось найти тангенс её наклона к положительному направлению оси абсцисс.

Требуется изобразить какой-либо прямоугольный треугольник, в котором касательная была бы гипотенузой, а вершины лежали бы в узлах сетки.

Например, вот такой треугольник:

Угол для исследования : .

Известно, что тангенс угла в прямоугольном треугольнике равен отношению длины противолежащего катета к длине прилежащего.

Считаем клеточки, и получаем, что:

.

Итого:

Ответ: Производная в этой точке равна 4.

Задача: На рисунке изображены график функции и касательная к нему в точке с абсциссой. Найдите значение производной функции в точке.

Замечание: Задача аналогична предыдущей с тем отличием, что касательная «наклонена влево» и мы понимаем, что её угловой коэффициент отрицателен.

Замечание: Нужные точки касательной, точно расположенные в узлах координатной решетки, как бы невзначай обозначены жирненькими точками. Их то мы и возьмем за вершины треугольника.

Требуется найти. Из чертежа видно, что.

А из тригонометрии известно, что

Считаем клеточки, и получаем, что:

.

Итого:

Ответ: Производная в этой точке равна.

Как найти значение производной в точке функции

Простейшие типовые задачи с производной. Примеры решений

После изучения азов нахождения производной в статьях Как найти производную? Примеры решений и Производная сложной функции мы рассмотрим типовые задачи, связанные с нахождением производной. Желающие улучшить свои навыки дифференцирования также могут ознакомиться с уроком Сложные производные. Логарифмическая производная.

Помимо нового материала у вас есть возможность дополнительно «набить руку» на нахождении производных. Действительно, если речь пойдет о типовых задачах на производную, то, как минимум, во всех примерах нужно будет найти эту самую производную. Я постараюсь рассмотреть приёмы решения и хитрости, которые не встречались в других статьях.

Вот наше аппетитное меню:

Производная функции в точке

Уравнение касательной к графику прямой

Дифференциал функции одной переменной

Повар на раздаче.

Производная функции в точке

Как найти производную функции в точке? Из формулировки следуют два очевидных пункта этого задания:

1) Необходимо найти производную.

2) Необходимо вычислить значение производной в заданной точке.

Вычислить производную функции в точке

Справка: Следующие способы обозначения функции эквивалентны:

В некоторых заданиях бывает удобно обозначить функцию «игреком», а в некоторых через «эф от икс».

Сначала находим производную:

Надеюсь, многие уже приноровились находить такие производные устно.

На втором шаге вычислим значение производной в точке :

Небольшой разминочный пример для самостоятельного решения:

Вычислить производную функции в точке

Полное решение и ответ в конце урока.

Необходимость находить производную в точке возникает в следующих задачах: построение касательной к графику функции (следующий параграф), исследование функции на экстремум, исследование функции на перегиб графика, полное исследование функции и др.

Но рассматриваемое задание встречается в контрольных работах и само по себе. И, как правило, в таких случаях функцию дают достаточно сложную. В этой связи рассмотрим еще два примера.

Вычислить производную функции в точке.

Сначала найдем производную:

Производная, в принципе, найдена, и можно подставлять требуемое значение. Но что-то делать это не сильно хочется. Выражение очень длинное, да и значение «икс» у нас дробное. Поэтому стараемся максимально упростить нашу производную. В данном случае попробуем привести к общему знаменателю три последних слагаемых:

Ну вот, совсем другое дело. Вычислим значение производной в точке :

В том случае, если Вам не понятно, как найдена производная, вернитесь к первым двум урокам темы. Если возникли трудности (недопонимание) с арктангенсом и его значениями, Обязательно изучите методический материал Графики и свойства элементарных функций – самый последний параграф. Потому что арктангенсов на студенческий век ещё хватит.

Вычислить производную функции в точке.

Это пример для самостоятельного решения.

Уравнение касательной к графику функции

Чтобы закрепить предыдущий параграф, рассмотрим задачу нахождения касательной к графику функции в данной точке. Это задание встречалось нам в школе, и оно же встречается в курсе высшей математики.

Рассмотрим «демонстрационный» простейший пример.

Составить уравнение касательной к графику функции в точке с абсциссой. Я сразу приведу готовое графическое решение задачи (на практике этого делать в большинстве случаев не надо):

Строгое определение касательной даётся с помощью определения производной функции, но пока мы освоим техническую часть вопроса. Наверняка практически всем интуитивно понятно, что такое касательная. Если объяснять «на пальцах», то касательная к графику функции – это Прямая, которая касается графика функции в Единственной точке. При этом все близлежащие точки прямой расположены максимально близко к графику функции.

Применительно к нашему случаю: при касательная (стандартное обозначение) касается графика функции в единственной точке.

И наша задача состоит в том, чтобы найти уравнение прямой.

Как составить уравнение касательной в точке с абсциссой?

Общая формула знакома нам еще со школы:

Значение нам уже дано в условии.

Теперь нужно вычислить, чему равна Сама функция в точке :

На следующем этапе находим производную:

Находим производную в точке (задание, которое мы недавно рассмотрели):

Подставляем значения, и в формулу :

Таким образом, уравнение касательной:

Это «школьный» вид уравнения прямой с угловым коэффициентом. В высшей математике уравнение прямой на плоскости принято записывать в так называемой общей форме, поэтому перепишем найденное уравнение касательной в соответствии с традицией:

Очевидно, что точка должна удовлетворять данному уравнению:

– верное равенство.

Следует отметить, что такая проверка является лишь частичной. Если мы неправильно вычислили производную в точке, то выполненная подстановка нам ничем не поможет.

Рассмотрим еще два примера.

Составить уравнение касательной к графику функции в точке с абсциссой

Уравнение касательной составим по формуле

1) Вычислим значение функции в точке :

2) Найдем производную. Дважды используем правило дифференцирования сложной функции:

3) Вычислим значение производной в точке :

4) Подставим значения, и в формулу :

Выполним частичную проверку:

Подставим точку в найденное уравнение:

– верное равенство.

Составить уравнение касательной к графику функции в точке с абсциссой

Полное решение и образец оформления в конце урока.

В задаче на нахождение уравнения касательной очень важно ВНИМАТЕЛЬНО и аккуратно выполнить вычисления, привести уравнение прямой к общему виду. И, конечно же, ознакомьтесь со Строгим определением касательной, после чего закрепите материал на уроке Уравнение нормали, где есть дополнительные примеры с касательной.

Дифференциал функции одной переменной

С формально-технической точки зрения найти дифференциал функции – это «почти то же самое, что найти производную».

Производная функции чаще всего обозначается через.

Дифференциал функции стандартно обозначается через (так и читается – «дэ игрек»)

Дифференциал функции одной переменной записывается в следующем виде:

Другой вариант записи:

Простейшая задача: Найти дифференциал функции

1) Первый этап. Найдем производную:

2) Второй этап. Запишем дифференциал:

Дифференциал функции одной или нескольких переменных чаще всего используют для приближенных вычислений.

Помимо «комбинированных» задач с дифференциалом время от времени встречается и «чистое» задание на нахождение дифференциала функции:

Найти дифференциал функции

Перед тем, как находить производную или дифференциал, всегда целесообразно посмотреть, а нельзя ли как-нибудь упростить функцию (или запись функции) ещё До дифференцирования? Смотрим на наш пример. Во-первых, можно преобразовать корень:

(корень пятой степени относится именно к синусу).

Во-вторых, замечаем, что под синусом у нас дробь, которую, очевидно, предстоит дифференцировать. Формула дифференцирования дроби очень громоздка. Нельзя ли избавиться от дроби? В данном случае – можно, почленно разделим числитель на знаменатель:

Функция сложная. В ней два вложения: под степень вложен синус, а под синус вложено выражение. Найдем производную, используя правило дифференцирования сложной функции два раза:

Запишем дифференциал, при этом снова представим в первоначальном «красивом» виде:

Когда производная представляет собой дробь, значок обычно «прилепляют» в самом конце числителя (можно и справа на уровне дробной черты).

Найти дифференциал функции

Это пример для самостоятельного решения.

Следующие два примера на нахождение дифференциала в точке:

Вычислить дифференциал функции в точке

Опять, производная вроде бы найдена. Но в эту бодягу еще предстоит подставлять число, поэтому результат максимально упрощаем:

Труды были не напрасны, записываем дифференциал:

Теперь вычислим дифференциал в точке :

В значок дифференциала единицу подставлять не нужно, он немного из другой оперы.

Ну и хорошим тоном в математике считается устранение иррациональности в знаменателе. Для этого домножим числитель и знаменатель на. Окончательно:

Вычислить дифференциал функции в точке. В ходе решения производную максимально упростить.

Это пример для самостоятельного решения. Примерный образец оформления и ответ в конце урока.

Вторая производная

Всё очень просто. Вторая производная – это Производная от первой производной:

Стандартные обозначения второй производной: , или (дробь читается так: «дэ два игрек по дэ икс квадрат»). Чаще всего вторую производную обозначают первыми двумя вариантами. Но третий вариант тоже встречается, причем, его очень любят включать в условия контрольных заданий, например: «Найдите функции…». А студент сидит и битый час чешет репу, что это вообще такое.

Рассмотрим простейший пример. Найдем вторую производную от функции.

Для того чтобы найти вторую производную, как многие догадались, нужно сначала найти первую производную:

Теперь находим вторую производную:

Рассмотрим более содержательные примеры.

Найти вторую производную функции

Найдем первую производную:

На каждом шаге всегда смотрим, нельзя ли что-нибудь упростить? Сейчас нам предстоит дифференцировать произведение двух функций, и мы избавимся от этой неприятности, применив известную Тригонометрическую формулу . Точнее говоря, использовать формулу будем в обратном направлении: :

Находим вторую производную:

Можно было пойти другим путём – понизить степень функции еще перед дифференцированием, используя формулу :

Если интересно, возьмите первую и вторую производные снова. Результаты, естественно, совпадут.

Отмечу, что понижение степени бывает очень выгодно при нахождении Частных производных функции. Здесь же оба способа решения будут примерно одинаковой длины и сложности.

Как и для первой производной, можно рассмотреть Задачу нахождения второй производной в точке.

Например: Вычислим значение найденной второй производной в точке :

Необходимость находить вторую производную и вторую производную в точке возникает при исследовании графика функции на выпуклость/вогнутость и перегибы.

Найти вторую производную функции. Найти

Это пример для самостоятельного решения.

Аналогично можно найти третью производную, а также производные более высоких порядков. Такие задания встречаются, но встречаются чуть реже.

Решения и ответы:

Пример 2: Найдем производную:

Вычислим значение функции в точке :

Пример 4: Найдем производную:

Вычислим производную в заданной точке:

Пример 6: Уравнение касательной составим по формуле

1) Вычислим значение функции в точке :

2) Найдем производную. Перед дифференцированием функцию выгодно упростить:

3) Вычислим значение производной в точке :

4) Подставим значения, и в формулу :

Пример 8: Преобразуем функцию:

Пример 10: Найдем производную:

Вычислим дифференциал в точке :

Пример 12: Найдем первую производную:

Найдем вторую производную:

Вычислим:

Автор: Емелин Александр

(Переход на главную страницу)

Как найти значение производной в точке функции

Геометрический смысл производной. Уравнение касательной к графику функции. Задание 7

Геометрический смысл производной. Уравнение касательной к графику функции. Задание 7.

Производной функции называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю:

Посмотрите ВИДЕОУРОК, в котором я подробно объясняю, в чем заключается геометрический смысл производной, и как выводится уравнение касательной. А затем мы рассмотрим решение задач из Открытого банка заданий для подготовки к ЕГЭ по математике.

Геометрический смысл производной.

В этом уравнении:

Приведем несколько примеров решения задач из Открытого банка заданий для подготовки к ЕГЭ по математике, в которых используется знание геометрического смысла производной.

Проведем через точку А прямую параллельно оси ОХ, а через точку В — параллельно оси OY. Получим прямоугольный треугольник ABC:

Угол А треугольника АВС равен углу между касательной и положительным направлением оси ОХ.

Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему.

Длины катетов считаем по количеству клеточек.

Построим, как предыдущей задаче, прямоугольный треугольник АВС:

Запомните, если прямая наклонена влево, то коэффициент наклона прямой отрицателен.

Соединим отрезком точку начала координат с точкой касания:

Производная функции в точке касания равна тангенсу угла между касательной и положительным направлением оси ОХ:

Для вас другие записи этой рубрики:

Отзывов ( 25 )

Большое спасибо за объяснение!

Раньше боялся смотреть на В8, а сейчас, как орешки щелкаю.

Очень доступно и понятно!

А что если, дан график производной функции, а не сама функция?

«Запомните, если прямая наклонена влево, то коэффициент наклона прямой отрицателен.» Это написано под 2 примером. — наоборот мне кажется.. На 1 примере прямая наклонена влево, а на втором примере вправо.

Ты путаешь право и лево 🙂

Спасибо вам большое:)

Ваш сайт очень помогает подготовке к экзамену)

Откуда АВ=10 в примере 3 ?

Считаем по клеточкам.

Спасибо за ответ, уже нашла в банке заданий, там нарисованы клеточки, так что разобралась. И конечно, присоединяюсь к общим похвалам в адрес вашего прекрасного сайта.

Инна! Большое Вам спасибо за вашу работу! Благодаря Вам многие вопросы становятся более доступными. Когда у меня появляются какие-то проблемные вопросы-я захожу к Вам на сайт и часто нахожу ответы на вопросы. Дай Бог Вам здоровья и энергии!

poiskvstavropole.ru

Как найти максимальное значение функции

Пусть дана некоторая функция, заданная аналитически, то есть выражением вида f(x). Требуется исследовать функцию и вычислить максимальное значение, которое она принимает на заданном отрезке [a, b].

Инструкция

completerepair.ru