Корень n-ой степени: определения, обозначение, примеры. Корень из числа 3 степени


Кубический корень

  Кубический корень. Как извлечь квадратный корень из большого числа без калькулятора мы уже разобрали. В этой статье рассмотрим как извлечь кубический корень (корень третьей степени). Оговорюсь, что речь идёт о натуральных числах. Как вы думаете, сколько времени нужно, чтобы устно вычислить такие корни как:

Совсем немного, а если потренируетесь  два-три раза минут по 20, то любой такой корень вы сможете извлечь за 5 секунд устно.

*Нужно отметить, что речь идёт о таких числах стоящих под корнем, которые являются результатом возведения в куб натуральных чисел от 0 до 100.

Мы знаем, что:

Так вот, число а, которое мы будем находить – это натуральное число от 0 до 100. Посмотрите на таблицу кубов этих чисел (результаты возведения в третью степень):

Вы без труда  сможете извлечь кубический корень из любого числа в этой таблице. Что нужно знать?

1. Это кубы чисел кратных десяти:

Я бы даже сказал, что это «красивые» числа, запоминаются они легко. Выучить несложно.

2. Это свойство чисел при произведении.  

Его суть заключается в том, что при возведении в третью степень какого-либо определённого числа, результат будет иметь особенность. Какую?

Например, возведём в куб 1, 11, 21, 31, 41 и т.д. Можно посмотреть по таблице.

13 = 1,   113 = 1331,   213 = 9261,   313 = 26791,   413 = 68921   …

То есть, при возведении в куб числа с единицей на конце в результате  у нас всегда получится число с единицей в конце.

При возведении в куб числа с двойкой на конце в результате всегда получится число с восьмёркой в конце.

Покажем соответствие в табличке для всех чисел:

Знания представленных двух моментов вполне достаточно.

Рассмотрим примеры:

Извлечь кубический корень из 21952.

Данное число находится в пределах от 8000 до 27000. Это означает, что результат корня лежит в пределах от 20 до 30. Число 29952 заканчивается на 2. Такой вариант возможен только тогда, когда в куб возводится число с восьмёркой в конце. Таким образом, результат корня равен 28.

Извлечь кубический корень из 54852.

Данное число находится в пределах от 27000 до 64000. Это значит, что результат корня лежит в пределах от 30 до 40. Число 54852 заканчивается на 2. Такой вариант возможен только тогда, когда в куб возводится число с восьмёркой в конце. Таким образом, результат корня равен 38.

Извлечь кубический корень из 571787.

Данное число находится в пределах от 512000 до 729000. Это значит, что результат корня лежит в пределах от 80 до 90. Число 571787 заканчивается на 7. Такой вариант возможен только тогда, когда в куб возводится число с тройкой в конце. Таким образом, результат корня равен 83.

Извлечь кубический корень из 614125.

Данное число находится в пределах от 512000 до 729000. Это значит, что результат корня лежит в пределах от 80 до 90. Число 614125 заканчивается на 5. Такой вариант возможен только тогда, когда в куб возводится число с пятёркой в конце. Таким образом, результат корня равен 85.

Думаю, что вы теперь без труда сможете извлечь кубический корень из числа 681472.

Конечно, чтобы извлекать такие корни устно, нужна небольшая практика. Но восстановив две указанные таблички на бумаге, вы без труда в течение минуты, в любом случае, такой корень извлечь сможете.

После того, как нашли результат обязательно сделайте проверку (возведите его с третью степень). *Умножение столбиком никто не отменял 😉

На самом ЕГЭ задач с такими «страшненькими» корнями  нет. Например, в Задаче 27125 требуется извлечь кубический корень из 1728. Думаю, что это теперь для вас не проблема.

Если вы знаете какие-то интересные приёмы вычислений без калькулятора, присылайте, со временем опубликую. На этом всё. Успеха Вам!

С уважением, Александр Крутицких. 

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

matematikalegko.ru

Возведение в степень и извлечение корня из числа онлайн.

Корень нечётной степени из положительного числа

В результате вычисления корня нечётной степени из положительного числа будет положительное число: .

Пример Вычислим корни нечётной степени из 8, 27, 125, 243

Корни 3 степени также называют кубическими корнями.

В результате вычисления корней 5-ой степени из положительных чисел, получили также положительные числа.

Корень нечётной степени из отрицательного числа

В результате вычисления корня нечётной степени из отрицательного числа будет отрицательное число: .

Пример Найдем корни 3 и 5 степеней из отрицательных чисел.
Корень четной степени из положительного числа

Корень чётной степени из положительного числа имеет два значения, положительное и отрицательное: .

Пример Вычислим корни 2 и 4 степени.

Корень 2-й степени называют квадратный корнем.

Корень четной степени из отрицательного числа

Корень четной степени из отрицательного числа не существует для вещественных чисел.

Корень любой степени из нуля

calcs.su

Простые и не очень способы того, как вычислить кубический корень :: SYL.ru

Сколько гневных слов произнесено в его адрес? Порой кажется, что кубический корень невероятно сильно отличается от квадратного. На самом деле разница не настолько велика. Особенно, если понять, что они только частные случаи общего корня n-ой степени.

Зато с его извлечением могут возникнуть проблемы. Но чаще всего они связаны с громоздкостью вычислений.

Что нужно знать о корне произвольной степени?

Во-первых, определение этого понятия. Корнем n-ой степени из некоторого «а» называется такое число, которое при возведении в степень n дает исходное «а».

Причем бывают четные и нечетные степени у корней. Если n — четное, то подкоренное выражение может быть только нулем или положительным числом. В противном случае вещественного ответа не будет.

Когда же степень нечетная, то существует решение при любом значении «а». Оно вполне может быть и отрицательным.

Во-вторых, функцию корня всегда можно записать, как степень, показателем которой является дробь. Иногда это бывает очень удобным.

Например, «а» в степени 1/n как раз и будет корнем n-ой степени из «а». В этом случае основание степени всегда больше нуля.

Аналогично «а» в степени n/m будет представлено, как корень m-ой степени из «аn».

В-третьих, для них справедливы все действия со степенями.

В чем сходства и различия квадратного и кубического корней?

Они похожи, как родные братья, только степень у них разная. И принцип их вычисления одинаков, различие только в том, сколько раз должно число на себя умножиться, чтобы получить подкоренное выражение.

А о существенном отличии было сказано чуть выше. Но повториться не будет лишним. Квадратный извлекается только из неотрицательного числа. В то время, как вычислить кубический корень из отрицательной величины не составит труда.

Извлечение кубического корня на калькуляторе

Каждый человек хоть раз делал это для квадратного корня. А как быть если степень «3»?

На обычном калькуляторе имеется только кнопочка для квадратного, а кубического — нет. Здесь поможет простой перебор чисел, которые трижды умножаются на себя. Получилось подкоренное выражение? Значит, это ответ. Не получилось? Подбирать снова.

А что в инженерном виде калькулятора в компьютере? Ура, здесь есть кубический корень. Эту кнопочку можно просто нажать, и программа выдаст ответ. Но это не все. Здесь можно вычислить корень не только 2 и 3 степени, но и любой произвольной. Потому что есть кнопка у которой в степени корня стоит «у». То есть после нажатия этой клавиши потребуется ввести еще одно число, которое будет равно степени корня, а уже потом «=».

Извлечение кубического корня вручную

Этот способ потребуется, когда калькулятора под рукой нет или воспользоваться им нельзя. Тогда для того чтобы вычислить кубический корень из числа, потребуется приложить усилия.

Сначала посмотреть, а не получается ли полный куб от какого-нибудь целого значения. Может быть под корнем стоит 2, 3, 5 или 10 в третьей степени?

В противном случае нужно будет считать столбиком. Алгоритм не самый простой. Но если немного попрактиковаться, то действия легко запомнятся. И вычислить кубический корень больше не будет проблемой.

  1. Мысленно разделить подкоренное выражение на группы по три цифры от десятичной запятой. Чаще всего нужна дробная часть. Если ее нет, то нули нужно дописать.
  2. Определить число, куб которого меньше целой части подкоренного выражения. Его записать в промежуточный ответ над знаком корня. А под этой группой расположить его куб.
  3. Выполнить вычитание.
  4. К остатку приписать первую группу цифр после запятой.
  5. В черновике записать выражение: а2 * 300 * х + а * 30 * х2 + х3. Здесь «а» — это промежуточный ответ, «х» является числом, которое меньше получившегося остатка с приписанными к нему числами.
  6. Число «х» нужно записать после запятой промежуточного ответа. А значение всего этого выражения записать под сравниваемым остатком.
  7. Если точности достаточно, то расчеты прекратить. В противном случае нужно возвращаться к пункту под номером 3.

Наглядный пример вычисления кубического корня

Он нужен потому, что описание может показаться сложным. На рисунке ниже показано, как извлечь кубический корень из 15 с точностью до сотых.

Единственной сложностью, которую имеет этот метод, заключается в том, что с каждым шагом числа увеличиваются многократно и считать в столбик становится все сложнее.

  1. 15> 23, значит под целой частью записана 8, а над корнем 2.
  2. После вычитания из 15 восьми получается остаток 7. К нему нужно приписать три нуля.
  3. а = 2. Поэтому: 22 * 300 * х +2 * 30 * х2 + х3 < 7000, или 1200 х + 60 х2 + х3< 7000.
  4. Методом подбора получается, что х = 4. 1200 * 4 + 60 * 16 + 64 = 5824.
  5. Вычитание дает 1176, а над корнем появилось число 4.
  6. Приписать к остатку три нуля.
  7. а = 24. Тогда 172800 х + 720 х2 + х3< 1176000.
  8. х = 6. Вычисление выражения дает результат 1062936. Остаток: 113064, над корнем 6.
  9. Снова приписать нули.
  10. а = 246. Неравенство получается таким: 18154800х + 7380х2 + х3< 113064000.
  11. х = 6. Расчеты дают число: 109194696, Остаток: 3869304. Над корнем 6.

Ответом получается число: 2, 466. Поскольку ответ должен быть дан до сотых, то его нужно округлить: 2,47.

Необычный способ извлечения кубического корня

Его можно использовать тогда, когда ответом является целое число. Тогда кубический корень извлекается разложением подкоренного выражения на нечетные слагаемые. Причем таких слагаемых должно быть минимально возможное число.

К примеру, 8 представляется суммой 3 и 5. А 64 = 13 + 15 + 17 + 19.

Ответом будет число, которое равно количеству слагаемых. Так корень кубический из 8 будет равен двум, а из 64 — четырем.

Если под корнем стоит 1000, то его разложением на слагаемые будет 91 + 109 + 93 + 107 + 95 + 105 + 97 + 103 + 99 + 101. Всего 10 слагаемых. Это и есть ответ.

www.syl.ru

Как извлекать корень?

В математике вопрос о том, как извлекать корень, считается относительно несложным. Если возвести в квадрат числа из натурального ряда: 1, 2, 3, 4, 5 …n, то у нас получится следующий ряд квадратов: 1, 4, 9, 16 …n2. Ряд квадратов является бесконечным, и если внимательно посмотреть на него, то вы увидите, что в нем нет очень многих целых чисел. Почему это так, объясним немного позже.

Корень из числа: правила вычисления и примеры

Итак, мы возвели число 2 в квадрат, то есть умножили его само на себя и получили 4. А как извлечь корень из числа 4? Сразу скажем, что корни могут быть квадратными, кубическими и какой угодно степени до бесконечности.

Степень корня – всегда натуральное число, то есть нельзя решить такое уравнение: корень в степени 3,6 из n.

Квадратный корень

Вернемся к вопросу о том, как извлечь корень квадратный из 4. Так как возводили мы число 2 именно в квадрат, то и корень будем извлекать квадратный. Для того чтобы правильно извлечь корень из 4, нужно просто правильно подобрать число, которое при возведении в квадрат дало бы число 4. И это, конечно же, 2. Посмотрите на пример:

Этот пример довольно простой. Попробуем извлечь корень квадратный из 64. Какое число при умножении самого на себя дает 64? Очевидно, что это 8.

Кубический корень

Как выше было сказано, корни бывают не только квадратными, на примере попробуем более понятно объяснить, как извлечь кубический корень или корень третьей степени. Принцип извлечения кубического корня тот же самый, что и у квадратного, разница лишь в том, что искомое число изначально было умножено само на себя не единожды, а дважды. То есть, допустим, мы взяли следующий пример:

Допустим, необходимо найти кубический корень из 64. Для решения этого уравнения достаточно найти такое число, которое при возведении в третью степень дало бы 64.

elhow.ru

Решение корней в онлайн калькуляторе

Решение корней — одна из многих функций, которой обладает бесплатный калькулятор, размещенный на нашем сайте. Извлечение корня из числа часто используется в различных расчетах, а наш калькулятор — это отличный инструмент для подобных математических вычислений.

Онлайн калькулятор с корнями позволит быстро и просто сделать любые расчеты, содержащие извлечение корня. Корень третьей степени калькулятор онлайн посчитает также легко, как и квадратный корень из числа, корень из отрицательного числа, корень из комплексного числа, корень из числа пи и т.д.

Вычисление корня из числа возможно вручную. Если есть возможность вычислить целый корень числа, то просто находим значение подкоренного выражения по таблице корней. В остальных случаях приближенное вычисление корней сводится к разложению подкоренного выражения на произведение более простых множителей, которые являются степенями и их можно убрать за знак корня, максимально упрощая выражение под корнем.

Но не стоит использовать такое решение корня. И вот, почему. Во-первых, придется потратить массу времени на подобные расчеты. Числа в корне, а точнее сказать, выражения могут быть достаточно сложными, а степень не обязательно квадратичной или кубической. Во-вторых, не всегда устраивает точность таких вычислений. И, в-третьих, есть онлайн калькулятор корней, который сделает за вас любое извлечение корня в считанные секунды.

Извлечь корень из числа — значит найти такое число, которое при его возведении в степень n будет равно значению подкоренного выражения, где n — это степень корня, а само число — основание корня. Корень 2 степени называют простым либо квадратным, а корень третьей степени — кубическим, опуская в обоих случаях указание степени.

Решение корней в онлайн калькуляторе сводится лишь к написанию математического выражения в строке ввода. Извлечение из корня в калькуляторе обозначается как sqrt и выполняется с помощью трех клавиш — извлечение квадратного корня sqrt(x), извлечение корня кубического sqrt3(x) и извлечение корня n степени sqrt(x,y). Более детальная информация о панели управления представлена на странице кнопки калькулятора онлайн.

Извлечение квадратного корня

Нажатие этой кнопки вставит в строке ввода запись извлечения из квадратного корня: sqrt(x), вам нужно только внести подкоренное выражение и закрыть скобку.

Пример решения квадратных корней в калькуляторе:

Если под корнем отрицательное число, а степень корня четная, то ответ будет представлен в виде комплексного числа с мнимой единицей i.

Квадратный корень из отрицательного числа:

Корень третьей степени

Используйте эту клавишу, когда нужно извлечь кубический корень. Она вставляет в строке ввода запись sqrt3(x).

Корень 3 степени:

Корень степени n

Естественно, онлайн калькулятор корней позволяет извлекать не только квадратный и кубический корень из числа, но также корень степени n. Нажатие этой кнопки выведет запись вида sqrt(x x,y).

Корень 4 степени:

Точный корень n степени из числа можно извлечь только, если само число является точным значением степени n. В противном же случае расчет получится приблизительным, хотя и очень близким к идеалу, так как точность вычислений онлайн калькулятора достигает 14 знаков после запятой.

Корень 5 степени с приблизительным результатом:

Корень из дроби

Вычислить корень калькулятор может из различных чисел и выражений. Нахождение корня дроби сводится к отдельному извлечению корня из числителя и знаменателя.

Квадратный корень из дроби:

Корень из корня

В случаях когда корень выражения находится под корнем, по свойству корней их можно заменить одним корнем, степень которого будет равняться произведению степеней обоих. Проще говоря, чтобы извлечь корень из корня, достаточно перемножить показатели корней. В приведенном на рисунке примере выражение корень третьей степени корня второй степени можно заменить одним корнем 6-ой степени. Указывайте выражение так, как вам удобно. Калькулятор в любом случае все рассчитает верно.

Пример, как извлечь корень из корня:

Степень в корне

Выполняя извлечение корня степени, следует помнить, что по свойству корней степень самого корня и степень под корнем по возможности сокращаются на наибольший общий делитель (НОД). Кстати, функционал калькулятора включает также нахождение НОД, подробнее на странице дополнительные функции.

Корень степени калькулятор позволяет рассчитать в одно действие, без предварительного сокращения показателей корня и степени.

Квадратный корень из степени:

Все функции нашего бесплатного калькулятора собраны в одном разделе. Функции онлайн калькулятора >>

Решение корней в онлайн калькуляторе was last modified: Март 3rd, 2016 by Admin

compuzilla.ru

Корень из числа: определения, примеры

Квадратный корень, арифметический квадратный корень

Чтобы понять определение корня из числа, и квадратного корня в частности, нужно иметь представление о степени с натуральным показателем. В этом пункте мы часто будем сталкиваться со второй степенью числа - квадратом числа.

Начнем с определения квадратного корня.

Определение

Квадратный корень из числа a - это число, квадрат которого равен a.

Чтобы привести примеры квадратных корней, возьмем несколько чисел, например, 5, −0,3, 0,3, 0, и возведем их в квадрат, получим соответственно числа 25, 0,09, 0,09 и 0 (52=5·5=25, (−0,3)2=(−0,3)·(−0,3)=0,09, (0,3)2=0,3·0,3=0,09 и 02=0·0=0). Тогда по данному выше определению число 5 является квадратным корнем из числа 25, числа −0,3 и 0,3 есть квадратные корни из 0,09, а 0 – это квадратный корень из нуля.

Следует отметить, что не для любого числа a существует действительное число, квадрат которого равен a. А именно, для любого отрицательного числа a не существует ни одного действительного числа b, квадрат которого равнялся бы a. В самом деле, равенство a=b2 невозможно для любого отрицательного a, так как b2 – неотрицательное число при любом b. Таким образом, на множестве действительных чисел не существует квадратного корня из отрицательного числа. Иными словами, на множестве действительных чисел квадратный корень из отрицательного числа не определяется и не имеет смысла.

Отсюда вытекает логичный вопрос: «А для любого ли неотрицательного a существует квадратный корень из a»? Ответ – да. Обоснованием этого факта можно считать конструктивный способ, используемый для нахождения значения квадратного корня.

Тогда встает следующий логичный вопрос: «Каково число всех квадратных корней из данного неотрицательного числа a – один, два, три, или еще больше»? Вот ответ на него: если a равно нулю, то единственным квадратным корнем из нуля является нуль; если же a – некоторое положительное число, то количество квадратных корней из числа a равно двум, причем корни являются противоположными числами. Обоснуем это.

Начнем со случая a=0. Сначала покажем, что нуль действительно является квадратным корнем из нуля. Это следует из очевидного равенства 02=0·0=0 и определения квадратного корня.

Теперь докажем, что 0 – единственный квадратный корень из нуля. Воспользуемся методом от противного. Предположим, что существует некоторое число b, отличное от нуля, которое является квадратным корнем из нуля. Тогда должно выполняться условие b2=0, что невозможно, так как при любом отличном от нуля b значение выражения b2 является положительным. Мы пришли к противоречию. Это доказывает, что 0 – единственный квадратный корень из нуля.

Переходим к случаям, когда a – положительное число. Выше мы сказали, что всегда существует квадратный корень из любого неотрицательного числа, пусть квадратным корнем из a является число b. Допустим, что существует число c, которое тоже является квадратным корнем из a. Тогда по определению квадратного корня справедливы равенства b2=a и c2=a, из них следует, что b2−c2=a−a=0, но так как b2−c2=(b−c)·(b+c), то (b−c)·(b+c)=0. Полученное равенство в силу свойств действий с действительными числами возможно лишь тогда, когда b−c=0 или b+c=0. Таким образом, числа b и c равны или противоположны.

Если же предположить, что существует число d, являющееся еще одним квадратным корнем из числа a, то рассуждениями, аналогичными уже приведенным, доказывается, что d равно числу b или числу c. Итак, число квадратных корней из положительного числа равно двум, причем квадратные корни являются противоположными числами.

Для удобства работы с квадратными корнями отрицательный корень «отделяется» от положительного. С этой целью вводится определение арифметического квадратного корня.

Определение

Арифметический квадратный корень из неотрицательного числа a – это неотрицательное число, квадрат которого равен a.

Для арифметического квадратного корня из числа a принято обозначение . Знак называется знаком арифметического квадратного корня. Его также называют знаком радикала. Поэтому можно часть слышать как «корень», так и «радикал», что означает один и тот же объект.

Число под знаком арифметического квадратного корня называют подкоренным числом, а выражение под знаком корня – подкоренным выражением, при этом термин «подкоренное число» часто заменяют на «подкоренное выражение». Например, в записи число 151 – это подкоренное число, а в записи выражение a является подкоренным выражением.

При чтении слово «арифметический» часто опускается, например, запись читают как «квадратный корень из семи целых двадцати девяти сотых». Слово «арифметический» произносят лишь тогда, когда хотят особо подчеркнуть, что речь идет именно о положительном квадратном корне из числа.

В свете введенного обозначения из определения арифметического квадратного корня следует, что и для любого неотрицательного числа a.

Квадратные корни из положительного числа a с помощью знака арифметического квадратного корня записываются как и . Например, квадратные корни из числа 13 есть и . Арифметический квадратный корень из нуля равен нулю, то есть, . Для отрицательных чисел a записи мы не будем придавать смысла вплоть до изучения комплексных чисел. Например, лишены смысла выражения и .

На базе определения квадратного корня доказываются свойства квадратных корней, которые часто применяются на практике.

Нахождение квадратных корней заслуживает детального изучения, этой теме посвящена отдельная статья извлечение квадратных корней.

В заключение этого пункта заметим, что квадратные корни из числа a являются решениями квадратного уравнения вида x2=a относительно переменной x.

К началу страницы

www.cleverstudents.ru

Арифметический корень натуральной степени

Арифметический корень второй степени

Определение 1

Корнем второй степени (или квадратным корнем) из числа $a$ называют такое число, которое при возведении в квадрат станет равным $a$.

Пример 1

$7^2=7 \cdot 7=49$, значит число $7$ является корнем 2-й степени из числа $49$;

$0,9^2=0,9 \cdot 0,9=0,81$, значит число $0,9$ является корнем 2-й степени из числа $0,81$;

$1^2=1 \cdot 1=1$, значит число $1$ является корнем 2-й степени из числа $1$.

Замечание 1

Заметим, что существуют числа, для которых невозможно найти действительное число, квадрат которого может быть равно этому числу.

Замечание 2

Проще говоря, для любого числа $a

$a=b^2$ при отрицательном $a$ неверно, т.к. $a=b^2$ не может быть отрицательным при любом значении $b$.

Можно сделать вывод, что для действительных чисел не может существовать корень 2-й степени из отрицательного числа.

Замечание 3

Т.к. $0^2=0 \cdot 0=0$, то из определения следует, что нуль – корень 2-й степени из нуля.

Определение 2

Арифметическим корнем 2-й степени из числа $a$ ($a \ge 0$) является неотрицательное число, которое при возведении в квадрат будет равно $a$.

Корни 2-й степени еще называются квадратными корнями.

Обозначают арифметический корень 2-й степени из числа $a$ как $\sqrt{a}$ или можно встретить обозначение $\sqrt[2]{a}$. Но чаще всего для квадратного корня число $2$ – показатель корня – не указывается. Знак «$\sqrt{ }$» – знак арифметического корня 2-й степени, который еще называют «знак радикала». Понятия «корень» и «радикал» – это названия одного и того же объекта.

Если под знаком арифметического корня стоит число, то его называют подкоренным числом, а если выражение, то – подкоренным выражением.

Читается запись $\sqrt{8}$ как «арифметический корень 2-й степени из восьми», причем слово «арифметический» зачастую не называют.

Определение 3

Согласно определению арифметического корня 2-й степени можно записать:

Для любого $a \ge 0$:

$(\sqrt{a})^2=a$,

$\sqrt{a} \ge 0$.

Мы показали разницу между корнем второй степени и арифметическим корнем второй степени. Далее будем рассматривать только корни из неотрицательных чисел и выражений, т.е. только арифметические.

Арифметический корень третьей степени

Определение 4

Арифметическим корнем 3-й степени (или кубическим корнем) из числа $a$ ($a \ge 0$) называют неотрицательное число, которое при возведении в куб станет равным $a$.

Часто слово арифметический опускают и говорят «корень 3-й степени из числа $а$».

Обозначают арифметический корень 3-й степени из $а$ как $\sqrt[3]{a}$, знак «$\sqrt[3]{ }$» – знак арифметического корня 3-й степени, а число $3$ в этой записи называется показателем корня. Число или выражение, которое стоит под знаком корня, называют подкоренным.

Пример 2

$\sqrt[3]{3,5}$ – арифметический корень 3-й степени из $3,5$ или кубический корень из $3,5$;

$\sqrt[3]{x+5}$ – арифметический корень 3-й степени из $x+5$ или кубический корень из $x+5$.

Арифметический корень n-ной степени

Определение 5

Арифметическим корнем n-й степени из числа $a \ge 0$ называют неотрицательное число, которое при возведении в $n$-ную степень станет равным $a$.

Обозначение арифметического корня степени $n$ из $a \ge 0$:

$\sqrt[n]{a}$,

где $a$ – подкоренное число или выражение,

$n$ – показатель корня.

Определение 6

Теперь арифметический корень n-ной степени можно определить с помощью символов:

$(\sqrt[n]{a})^n=a$.

Пример 3

$\sqrt[7]{1,5}$ – арифметический корень седьмой степени из $1,5$, для которого $1,5$ – подкоренное число, а $7$ – показатель корня;

$\sqrt[6]{y^2+6}$ – арифметический корень шестой степени из $y^2+6$, для которого $y^2+6$ – подкоренное выражение, а $6$ – показатель корня.

По определению арифметического корня степени $n$ под корнем должно стоять неотрицательное число или выражение. Из равенства $(\sqrt[n]{a})^n=a$ следует, что если умножить обе его части на $(–1)$, то мы получим равносильное равенство:

$–(\sqrt[n]{a})^n=–a$.

Пример 4

Рассмотрим пример:

$-125=-5 \cdot 5 \cdot 5=-5^3=(-5)^3$.

Замечание 4

Следовательно, для нечетных показателей арифметического корня можно записать:

$\sqrt[n]{-a}=-\sqrt[n]{a}$ при нечетном значении $а$.

Для четных показателей корня данное свойство не применимо, поэтому выражение $\sqrt[6]{-1}$ не имеет смысла.

spravochnick.ru