4.3.1. Расчеты с использованием понятия «массовая доля вещества в растворе». Массовая доля и плотность формула


Массовая доля вещества Википедия

Концентра́ция или до́ля компонента смеси — величина, количественно характеризующая содержание компонента относительное всей смеси. Терминология ИЮПАК под концентрацией компонента понимает четыре величины: соотношение молярного, или численного количества компонента, его массы, или объёма исключительно к объёму раствора[1] (типичные единицы измерения — соответственно моль/л, л−1, г/л, и безразмерная величина). Долей компонента ИЮПАК называет безразмерное соотношение одной из трёх однотипных величин — массы, объёма или количества вещества.[2] Однако в обиходе термин «концентрация» могут применять и для долей, не являющихся объёмными долями, а также к соотношениям, не описанным ИЮПАК. Оба термина могут применяться к любым смесям, включая механические смеси, но наиболее часто применяются к растворам.

Массовая доля

Массовая доля — отношение массы компонента к массе смеси. Массовая доля измеряется в долях единицы или в процентах:

ω=m1m{\displaystyle \omega ={\frac {m_{1}}{m}}} ω(%)=m1m⋅100%{\displaystyle \omega (\%)={\frac {m_{1}}{m}}\cdot 100\%}

где:

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят два измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.

Пример: зависимость плотности растворов h3SO4 от её массовой доли в водном растворе при 25 °C[источник не указан 2398 дней] ω, % ρ h3SO4, г/мл
5 10 15 20 30 40 50 60 70 80 90 95
1,032 1,066 1,102 1,139 1,219 1,303 1,395 1,498 1,611 1,727 1,814 1,834

Объёмная доля

Объёмная доля — отношение объёма компонента к объёму смеси. Объёмная доля измеряется в долях единицы или в процентах.

υ=V1V{\displaystyle \upsilon ={\frac {V_{1}}{V}}},

где:

Как было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.

Молярность (молярная объёмная концентрация)

Молярная концентрация (молярность, мольность[3]) — количество вещества (число молей) компонента в единице объёма смеси. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также используют выражение «в молярности». Возможно другое обозначение молярной концентрации CM{\displaystyle {C_{M}}} , которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным.

Примечание: После числа пишут «моль», подобно тому, как после числа пишут «см», «кг» и т. п., не склоняя по падежам.

CM=νV{\displaystyle {C_{M}}={\frac {\nu }{V}}},

где:

Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре смеси. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор, содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.

CH=CN=z⋅CM=z⋅νV=1feq⋅νV{\displaystyle {C_{H}}={C_{N}}=z\cdot {C_{M}}=z\cdot {\frac {\nu }{V}}={\frac {1}{f_{eq}}}\cdot {\frac {\nu }{V}}},

где:

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор h3SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.

Мольная (молярная) доля

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.

Xj=νj∑i=1nνi{\displaystyle X_{j}={\frac {\nu _{j}}{\sum _{i=1}^{n}\nu _{i}}}},

где:

Моляльность (молярная весовая концентрация, моляльная концентрация)

Моляльная концентрация (моляльность,[3] молярная весовая концентрация) — количество растворённого вещества (число моль) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.

Cm=νm2{\displaystyle {C_{m}}={\frac {\nu }{m_{2}}}},

где:

Следует обратить особое внимание, что, несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.

Титр раствора

Титр раствора — масса растворённого вещества в 1 мл раствора.

T=m1V{\displaystyle T={\frac {m_{1}}{V}}},

где:

В аналитической химии обычно концентрацию титранта пересчитывают применительно к конкретной реакции титрования таким образом, чтобы объём использованного титранта непосредственного показывал массу определяемого вещества; то есть титр раствора показывает, какой массе определяемого вещества (в граммах) соответствует 1 мл титрованного раствора.

Весообъёмные (массо-объёмные) проценты

Соответствуют отношению массы одной части вещества (например, 1 г) к 100 частям объёма раствора (например, к 100 мл).[4] Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.[5]

Другие способы выражения концентрации

Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, в фотометрии часто используют массовую концентрацию, равную массе растворённого вещества в 1 л раствора. При приготовлении растворов кислот в лабораторной практике часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Концентрация загрязнений в воздухе может выражаться в частях на миллион (ppm — от англ. parts per million). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).

Применимость способов выражения концентрации растворов, их свойства

В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.

Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.

Формулы перехода от одних выражений концентраций к другим

В зависимости от выбранной формулы погрешность конвертации колеблется от нуля до некоторого знака после запятой.

От массовой доли к молярности:

CM=1000⋅ρωM{\displaystyle C_{M}={\frac {1000\cdot \rho \omega }{M}}},

где:

От молярности к нормальности:

Cn=CM⋅z{\displaystyle {C_{n}}={C_{M}}\cdot {z}},

где:

От массовой доли к титру:

T=ρ⋅ω{\displaystyle {T}={\rho }\cdot {\omega }},

где:

От молярности к титру:

T=0.001CM⋅M{\displaystyle {T}=0.001{C_{M}}\cdot {M}},

где:

От молярности к моляльности:

m=CMρ{\displaystyle m={\frac {C_{M}}{\rho }}},

где:

От моляльности к мольной доле:

Xi=mimi+1000/M{\displaystyle X_{i}={\frac {m_{i}}{m_{i}+1000/M}}},

где:

Наиболее распространённые единицы

Эта статья или раздел содержит незавершённый перевод с английского языка.

Вы можете помочь проекту, закончив перевод.

Примечания

wikiredia.ru

Задачи на тему «массовая доля вещества в растворе».

Раствором называют гомогенную смесь двух или более компонентов.

Вещества, смешением которых получен раствор, называют его компонентами.

Среди компонентов раствора различают растворенное вещество, которое может быть не одно, и растворитель. Например, в случае раствора сахара в воде сахар является растворенным веществом, а вода является растворителем.

Иногда понятие растворитель может быть применимо в равной степени к любому из компонентов. Например, это касается тех растворов, которые получены смешением двух или более жидкостей, идеально растворимых друг в друге. Так, в частности, в растворе, состоящем из спирта и воды, растворителем может быть назван как спирт, так и вода. Однако чаще всего в отношении водосодержащих растворов традиционно растворителем принято называть воду, а растворенным веществом — второй компонент.

В качестве количественной характеристики состава раствора чаще всего используют такое понятие, как массовая доля вещества в растворе. Массовой долей вещества называют отношение массы этого вещества к массе раствора, в котором оно содержится:

где ω(в-ва) – массовая доля вещества, содержащегося в растворе (г), m(в-ва) – масса вещества, содержащегося в растворе (г), m(р-ра) – масса раствора (г).

Из формулы (1) следует, что массовая доля может принимать значения от 0 до 1, то есть составляет доли единицы. В связи с этим массовую долю можно также выражать в процентах (%), причем именно в таком формате она фигурирует практически во всех задачах. Массовая доля, выраженная в процентах, рассчитывается по формуле, схожей с формулой (1) с той лишь разницей, что отношение массы растворенного вещества к массе всего раствора умножают на 100%:

Для раствора, состоящего только из двух компонентов, могут быть соответственно рассчитаны массовые доли растворенного вещества ω(р.в.) и массовая доля растворителя ω(растворителя).

Массовую долю растворенного вещества называют также концентрацией раствора.

Для двухкомпонентного раствора его масса складывается из масс растворенного вещества и растворителя:

Также в случае двухкомпонентного раствора сумма массовых долей растворенного вещества и растворителя всегда составляет 100%:

Очевидно, что, помимо записанных выше формул, следует знать и все те формулы, которые напрямую из них математически выводятся. Например:

Также необходимо помнить формулу, связывающую массу, объем и плотность вещества:

m = ρ∙V

а также обязательно нужно знать, что плотность воды равна 1 г/мл. По этой причине объем воды в миллилитрах численно равен массе воды в граммах. Например, 10 мл воды имеют массу 10 г, 200 мл — 200 г и т.д.

Для того чтобы успешно решать задачи, помимо знания указанных выше формул, крайне важно довести до автоматизма навыки их применения. Достичь этого можно только прорешиванием большого количества разнообразных задач. Задачи из реальных экзаменов ЕГЭ на тему «Расчеты с использованием понятия «массовая доля вещества в растворе»» можно порешать здесь.

Примеры задач на растворы

Пример 1

Рассчитайте массовую долю нитрата калия в растворе, полученном смешением 5 г соли и 20 г воды.

Решение:

Растворенным веществом в нашем случае является нитрат калия, а растворителем — вода. Поэтому формулы (2) и (3) могут быть записаны соответственно как:

Из условия m(KNO3) = 5 г, а m(Н2O) = 20 г, следовательно:

Пример 2

Какую массу воды необходимо добавить к 20 г глюкозы для получения 10%-ного раствора глюкозы.

Решение:

Из условий задачи следует, что растворенным веществом является глюкоза, а растворителем — вода.  Тогда формула (4) может быть записана в нашем случае так:

Из условия мы знаем массовую долю (концентрацию) глюкозы и саму массу глюкозы. Обозначив массу воды как x г, мы можем записать на основе формулы выше следующее равносильное ей уравнение:

Решая это уравнение находим x:

т.е. m(h3O) = x г = 180 г

Ответ: m(h3O) = 180 г

Пример 3

К 150 г 15%-ного раствора хлорида натрия смешали со 100 г 20%-ного раствора этой же соли. Каковая массовая доля соли в полученном растворе? Ответ укажите с точностью до целых.

Решение:

Для решения задач на приготовление растворов удобно использовать следующую таблицу:

1-й раствор
2-й раствор
3-й раствор
mр.в.
mр-ра
ωр.в.

где mр.в., mр-ра и ωр.в. — значения массы растворенного вещества, массы раствора и массовой доли растворенного вещества соответственно, индивидуальные для каждого из растворов.

Из условия мы знаем, что:

m(1)р-ра = 150 г,

ω(1)р.в. = 15%,

m(2)р-ра = 100 г,

ω(1)р.в. = 20%,

Вставим все эти значения в таблицу, получим:

1-й раствор
2-й раствор
3-й раствор
mр.в.
mр-ра
150 г 100 г
ωр.в.
15% 20%  искомая величина

Нам следует вспомнить следующие формулы, необходимые для расчетов:

ωр.в. = 100% ∙ mр.в./mр-ра , mр.в. = mр-ра ∙ ωр.в./100% , mр-ра = 100% ∙ mр.в. /ωр.в.

Начинаем заполнять таблицу.

Если в строчке или столбце отсутствует только одно значение, то его можно посчитать. Исключение — строчка с ωр.в., зная значения в двух ее ячейках, значение в третьей рассчитать нельзя.

В первом столбце отсутствует значение только в одной ячейке. Значит мы можем  рассчитать его:

m(1)р.в. = m(1)р-ра ∙ ω(1)р.в. /100% = 150 г ∙ 15%/100% = 22,5 г

Аналогично у нас известны значения в двух ячейках второго столбца, значит:

m(2)р.в. = m(2)р-ра ∙ ω(2)р.в. /100% = 100 г ∙ 20%/100% = 20 г

Внесем рассчитанные значения в таблицу:

1-й раствор
2-й раствор
3-й раствор
mр.в.
22,5 г 20 г
mр-ра
150 г 100 г
ωр.в.
15% 20%  искомая величина

Теперь у нас стали известны два значения в первой строке и два значения во второй строке. Значит мы можем рассчитать недостающие значения (m(3)р.в. и m(3)р-ра):

m(3)р.в. = m(1)р.в. + m(2)р.в. = 22,5 г + 20 г = 42,5 г

m(3)р-ра = m(1)р-ра + m(2)р-ра = 150 г + 100 г = 250 г.

Внесем рассчитанные значения в таблицу, получим:

1-й раствор
2-й раствор
3-й раствор
mр.в.
 22,5 г  20 г 42,5 г
mр-ра
150 г  100 г 250 г
ωр.в.
15% 20% искомая величина

Вот теперь мы вплотную подобрались к расчету искомой величины ω(3)р.в.. В столбце, где она расположена, известно содержимое двух других ячеек, значит мы можем ее рассчитать:

ω(3)р.в. = 100% ∙ m(3)р.в./m(3)р-ра = 100% ∙ 42,5 г/250 г = 17%

Пример 4

К 200 г 15%-ного раствора хлорида натрия добавили 50 мл воды. Какова массовая доля соли в полученном растворе. Ответ укажите с точностью до сотых _______%

Решение:

Прежде всего следует обратить внимание на то, что вместо массы добавленной воды, нам дан ее объем. Рассчитаем ее массу, зная, что плотность воды равна 1 г/мл:

mдоб.(h3O) = Vдоб.(h3O) ∙ ρ(h3O) = 50 мл ∙ 1 г/мл = 50 г

Если рассматривать воду как 0%-ный раствор хлорида натрия, содержащий соответственно 0 г хлорида натрия, задачу можно решить с помощью такой же таблицы, как в примере выше. Начертим такую таблицу и вставим известные нам значения в нее:

1-й раствор
2-й раствор
3-й раствор
mр.в.
0 г
mр-ра
 200 г  50 г
ωр.в.
15% 0%  искомая величина

В первом столбце известны два значения, значит можем посчитать третье:

m(1)р.в. = m(1)р-ра ∙ ω(1)р.в./100% = 200 г ∙ 15%/100% = 30 г,

Во второй строчке тоже известны два значения, значит можем рассчитать третье:

m(3)р-ра = m(1)р-ра + m(2)р-ра = 200 г + 50 г = 250 г,

Внесем рассчитанные значения в соответствующие ячейки:

1-й раствор
2-й раствор
3-й раствор
mр.в.
30 г 0 г
mр-ра
200 г 50 г 250 г
ωр.в.
15% 0% искомая величина

Теперь стали известны два значения в первой строке, значит можем посчитать значение m(3)р.в. в третьей ячейке:

m(3)р.в. = m(1)р.в. + m(2)р.в. = 30 г + 0 г = 30 г

1-й раствор
2-й раствор
3-й раствор
mр.в.
30 г 0 г 30 г
mр-ра
200 г 50 г 250 г
ωр.в.
15% 0%  искомая величина

Теперь можем рассчитать массовую долю в третьем растворе:

ω(3)р.в. = 30/250 ∙ 100% = 12%.

scienceforyou.ru

Концентрация растворов - это... Что такое Концентрация растворов?

Концентрация  — величина, характеризующая количественный состав раствора.

Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л, г/л), то есть это отношение неоднородных величин.

Те величины, которые являются отношением однотипных величин (отношение массы растворённого вещества к массе раствора, отношение объёма растворённого вещества к объёму раствора), правильно называть долями. Однако на практике для обоих видов выражения состава применяют термин концентрация и говорят о концентрации растворов.

Существует много способов выражения концентрации растворов.

Массовая доля

Массовая доля — отношение массы растворённого вещества к массе раствора. Массовая доля измеряется в долях единицы или в процентах.

,

где:

Массовое процентное содержание компонента, m%

m%=(mi/Σmi)*100

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят 2 измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.

Пример. Зависимость плотности растворов h3SO4 от её массовой доли в водном растворе при 25 °C[источник не указан 235 дней]
ω, % 5 10 15 20 30 40 50 60 70 80 90 95
ρ h3SO4, г/мл 1,032 1,066 1,102 1,139 1,219 1,303 1,395 1,498 1,611 1,727 1,814 1,834

Объёмная доля — отношение объёма растворённого вещества к объёму раствора. Объёмная доля измеряется в долях единицы или в процентах.

,

где:

Как и было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.

Молярность (молярная объёмная концентрация)

Молярная концентрация — количество растворённого вещества (число молей) в единице объёма раствора. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также распространено выражение в «молярности». Возможно другое обозначение молярной концентрации , которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным. Примечание: единица «моль» не склоняется по падежам. После цифры пишут «моль», подобно тому, как после цифры пишут «см», «кг» и т. д.

,

где:

Нормальная концентрация (мольная концентрация эквивалента, или просто «нормальность»)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре раствора. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.

,

где:

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор h3SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.

Мольная (молярная) доля

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы.

,

где:

Моляльность (молярная весовая концентрация, моляльная концентрация)

Моляльность — количество растворённого вещества (число моль) в 1000 г растворителя. Измеряется в молях на кг, также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.

,

где:

Следует обратить особое внимание, что несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.

Титр раствора

Титр раствора — масса растворённого вещества в 1 мл раствора.

,

где:

В аналитической химии обычно концентрацию титранта пересчитывают применительно к конкретной реакции титрования таким образом, чтобы объём использованного титранта непосредственного показывал массу определяемого вещества; то есть титр раствора показывает, какой массе определяемого вещества (в граммах) соответствует 1 мл титрованного раствора.

Весообъёмные проценты

Соответствуют отношению массы одной части вещества (например, 1 г) к 100 частям объёма раствора (например, к 100 мл).[1] Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.[2]

Другие способы выражения концентрации растворов

Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, в фотометрии часто используют массовую концентрацию, равную массе растворённого вещества в 1 л раствора. При приготовлении растворов кислот часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Концентрация загрязнений в воздухе может выражаться в частях на миллион (ppm). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).

Применимость способов выражения концентрации растворов, их свойства

В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.

Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.

Формулы перехода от одних выражений концентраций растворов к другим

От массовой доли к молярности:

,

где:

От молярности к нормальности:

,

где:

От массовой доли к титру:

,

где:

От молярности к титру:

,

где:

От молярности к моляльности:

,

где:

От моляльности к мольной доле:

,

где:

Наиболее распространённые единицы

Эта статья содержит незавершённый перевод с английского языка.

Вы можете помочь проекту, переведя её до конца.

Примечания

dic.academic.ru

концентрация, массовая доля. Определение, расчет и рекомендации

Массовая концентрация раствора является одним из распространенных понятий в современной химии. В статье мы выявим особенности растворов, их виды, применение. Отметим некоторые примеры расчета разных видов концентраций.

Особенности растворов

Раствор - это однородная система, имеющая переменный состав. Из двух компонентов раствора один всегда выступает в качестве среды. Именно в ней будут растворяться структурные фрагменты других веществ. Ее называют растворителем, внутри которого и располагаются молекулы растворенного вещества.

Если смешивается два газообразных вещества, то в таком случае не выделяют растворителя. Для каждой конкретной ситуации всегда проводятся специальные расчеты.

Получение однородных систем

Для получения однородных растворов необходимо дробление растворенных веществ до структурных единиц. Только в таком случае системы будут истинными. При раздроблении до небольших капелек, песчинок, которые будут распределяться в среде, получают коллоидные растворы, эмульсии, суспензии.

Применение растворов

Кстати, в строительстве смесь песка, цемента, воды тоже называют раствором, но с химической точки зрения он представляет собой суспензию. Практическое значение растворов можно объяснить по разным причинам.

Химические реакции в жидких растворах происходят в объеме растворителя. Это делает их доступными для реакции без любого дополнительного действия на систему. В смеси, содержащей твердые частицы, невозможно провести реакцию в полном объеме. Чтобы ускорить процесс, потребуется соприкосновение частиц в некоторых точках. Для повышения скорости реакции перетирают кристаллы в ступке, затем их прессуют. Но не сразу можно достигнуть полноты протекания процесса.

В растворе же протекает процесс иначе. Молекулы движутся свободно, при их столкновениях происходят химические превращения. Энергия, которая начинает выделяться в таком взаимодействии, аккумулируется растворителем, система практически не разогревается.

Физические свойства и концентрация растворов

Массовая доля вещества позволяет определять количественное соотношение растворенного вещества и растворителя, взятое для их приготовления. Металлические сплавы, кстати, тоже являются растворами, но твердыми, характеризующимися определенными физическими параметрами.

Растворы обладают способностью менять силы действия растворенного компонента. Это делает их востребованными в сельском хозяйстве, медицине. Например, раствор марганцовки (перманганата калия) используют для обработки ссадин и ран в средней концентрации. Но практическое значение имеет и его незначительная концентрация. Так, массовая доля вещества 2-3% придает раствору слабо-розовый цвет, востребованный для промывания желудка.

Темные фиолетовые кристаллы перманганата калия не применяют в медицинских целях, поскольку они обладают сильными окислительными свойствами. Вообще, интенсивность окраски напрямую связана с тем, какова его концентрация. Массовая доля вещества позволяет регулировать токсичность готового раствора.

Массовая доля

Как вычисляется подобная концентрация? Массовая доля вещества характеризуется отношением массы вещества к массе раствора, взятого в процентах. На их органолептические свойства оказывает влияние не только то, что будет растворяться, но и количественный показатель. Например, для слабого раствора поваренной соли почти не характерен привкус, а при больших концентрациях он проявляется в разной степени.

Как на практике определяется концентрация? Массовая доля вещества в растворе рассматривается в школьном курсе неорганической химии. Задачи на ее определение включены в тестовые задания для выпускников 9 класса.

Приведем пример задания, в котором используется концентрация.

Массовая доля поваренной соли 25%. Масса раствора 250 граммов. Определите массу воды, содержащейся в нем. Для проведения вычислений сначала нужно выяснить массу вещества. Исходя из пропорции, получаем, что вещества в растворе 62,5 грамма. Для определения массы воды нужно вычесть из 250 граммов массу самого вещества, в результате получаем 187,5 г.

Виды концентраций

Что такое концентрация? Массовых долей в растворе может содержаться не более ста процентов. В химии термин «концентрация» предполагает некое содержание растворенного вещества. Существует несколько ее вариантов: молярная, массовая концентрация.

Например, если необходимо приготовить раствор из 80 граммов воды и 20 граммов поваренной соли и определить массовые доли вещества в растворе, сначала нужно определить массу раствора. Она составит сто граммов. Процентное содержание вещества получается 20 процентов.

Мы проанализировали, что представляет собой массовая доля. Молярная концентрация предполагает отношение количества вещества к объему взятого раствора. Чтобы приготовить раствор с заданной молярной концентрацией, сначала определяют массу вещества. Затем взвешивают его нужное количество и растворяют в литре растворителя.

Расчет молярной концентрации

Так, для приготовления 2 литров раствора с концентрацией 0,15 моль/л сначала рассчитывают массу соли, которая содержится в растворе. Для этого нужно разделить 0,15 моль на 2 литра, получаем 0,075 моль. Теперь вычисляем массу: 0,075 моль умножаем на 58,5 г/моль. Результат - 4,39 г.

Задачи аналитической химии

В качестве прикладной химической задачи рассматривают анализ. С его помощью выявляют состав смеси, проводят диагностические пробы, анализируют горные породы. Для этого нужно определять качественный и количественный состав раствора.

Среди тех задач, которые чаще всего встречаются в неорганической химии, выделим определение концентрации одного вещества по заданной величине у другого вещества. С помощью опытов можно осуществить постепенное добавление к раствору, у которого известна молярная концентрация, искомого раствора. Данный процесс называется титрованием.

Растворимость и растворители

Самым распространенным растворителем является вода. В ней отлично растворяются основания, кислоты, соли, некоторые органические соединения. Именно водные растворы являются самыми распространенными в природе системами. Вода выполняет функцию биологического растворителя. Она считается основой для протекания многих сред: крови, цитозолей, межклеточных жидкостей. Многие типы животных и растений живут именно в водной среде.

Растворимостью называют свойство вещества растворяться в выбранном растворителе. Это сложное явление, которое требует учета определенных нюансов и особенностей строения растворителя.

В качестве хороших органических веществ можно отметить спирты. Они в свой состав включают гидрокисльные группы, поэтому имеют высокую растворимость.

Заключение

Любая жидкость может рассматриваться в качестве растворителя. Именно поэтому часто ведут речь о взаимной растворимости разных жидких веществ. К примеру, среди органических веществ можно упомянуть о растворимости в воде сложных эфиров.

Различные виды концентраций, используемые в неорганической и органической химии, помогают проводить качественные и количественные определения веществ. Теория растворов востребована в аналитической химии, фармацевтике и современной медицине.

fb.ru

Относительные плотности растворов и массовая доля растворённого вещества

Веще–

ство

Массовая доля растворённого вещества

4

6

8

10

12

14

16

18

20

22

KCl

1,024

1,037

1,050

1,063

1,077

1,090

1,104

1,118

1,133

1,157

NaCl

1,029

1,044

1,058

1,073

1,089

1,119

1,119

1,135

1,151

1,160

NaNO3

1,025

1,039

1,053

1,067

1,082

1,097

1,119

1,127

1,143

1,159

h3SO4

1,025

1,038

1,052

1,066

1,080

1,095

1,109

1,124

1,139

1,155

Таблица 2

Пример записи результатов измерения

Испытуемый

раствор

Показания ареометра

1

2

3

Среднее

KCl

1,096

1,098

1,097

1,097

В таблице 1 для раствора KCl относительная плотность 1,097 отсутствует, но указаны величины: меньшая – 1,090 и большая -1,104. В таком случае концентрацию находят интерполяцией – определением промежуточной величины по двум крайним, поступая следующим образом:

1. Находят разность величин относительных плотностей растворов и массовых долей, выраженных в процентах, по табличным данным:

1,104 – 16%

1,090 – 14%

_______________

0,014 – 2%

2. Находят разность между величиной, определенной ареометром, и меньшей табличной: 1,097 – 1,090 = 0,007

Составляют пропорцию: 0,014 – 2%

х = 1%

0,007 – х%

3. Найденное число прибавляют к меньшей массовой доле вещества в растворе, взятой из таблицы: 14%+1%=15%, это отвечает массовой доле растворённого вещества в исследуемом растворе.

Результаты измерений записываем в виде таблицы 2.

Опыт 2. Определение молярной концентрации эквивалента раствора щелочи титрованием раствором кислоты известной концентрации.

Укрепленную в штативе бюретку заполните до нулевой отметки раствором соляной (хлороводородной) кислоты известной концентрации. В оттянутом кончике бюретки не должно оставаться пузырьков воздуха. Пипеткой налейте в три конические колбы по 20 мл раствора едкого натра (NaOH), концентрацию которого нужно определить. В каждую из колб добавьте по 2-3 капли индикатора – метилоранжа, который имеет желтую окраску в щелочной среде.

Под бюреткой на белый лист бумаги поставьте одну из колб с раствором. Жидкость из бюретки приливайте медленно по каплям, перемешивая содержимое колбы. Постепенно щелочь нейтрализуется кислотой. При этом происходит реакция, описываемая уравнением:

NaOH + HCl = NaCl + h3O

Титрование ведите до изменения окраски раствора до оранжево-розового цвета. Запишите объем раствора кислоты, пошедшей на титрование, с точностью до 0,1 мл. Титрование проведите 3 раза, каждый раз начиная титрование от нулевой метки. Результаты титрования не должны отличаться друг от друга более чем на 0,1 мл. Взяв среднее арифметическое значение объема раствора кислоты, пошедшего на титрование, рассчитайте молярную концентрацию эквивалента (формула 11) и титр раствора едкого натра (формуле 10).

Результаты опыта оформите в виде таблицы 2.

Таблица 2.

Объём взятого раствора щелочи, см3

Объем р-ра кислоты, пошедший на титрование, см3

Среднее значение

см3

1 – е титрование

2 – е титрование

3 – е титрование

studfiles.net

Массовая доля - Википедия

Материал из Википедии — свободной энциклопедии

Концентрация — величина, характеризующая количественный состав раствора.

Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л, г/л), то есть это отношение неоднородных величин.

Те величины, которые являются отношением однотипных величин (отношение массы растворённого вещества к массе раствора, отношение объёма растворённого вещества к объёму раствора), правильно называть «долями». Однако на практике для обоих видов выражения состава применяют термин «концентрация» и говорят о концентрации растворов.

Существует много способов выражения концентрации растворов.

Массовая доля[ | ]

Массовая доля — отношение массы растворённого вещества к массе раствора. Массовая доля измеряется в долях единицы или в процентах:

ω=m1m{\displaystyle \omega ={\frac {m_{1}}{m}}} ω(%)=m1m⋅100%{\displaystyle \omega (\%)={\frac {m_{1}}{m}}\cdot 100\%}

где:

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят два измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, ), предназначенные для определения концентрации растворов веществ.

Пример: зависимость плотности растворов h3SO4 от её массовой доли в водном растворе при 25 °C[источник не указан 1958 дней] ω, % ρ h3SO4, г/мл
5 10 15 20 30 40 50 60 70 80 90 95
1,032 1,066 1,102 1,139 1,219 1,303 1,395 1,498 1,611 1,727 1,814 1,834

Объёмная доля[ | ]

encyclopaedia.bid

Задачи на массовую долю вещества в растворе

13-Фев-2013 | комментариев 15 | Лолита Окольнова

 

Есть очень простая формула массовой доли — масса части разделить на массу целого, но в задачах на нахождение массовой доли в растворах есть несколько небольших, но очень существенных нюансов.

 

 

Давайте рассмотрим несколько примеров задач на эту тему.

 

 

1. Выделение газа из среды реакции:

 

 

В задачу закралась опечатка — дан нитрат калия, а получают карбонат натрия… давайте сделаем расчет на натрий.

 

Запишем реакцию:                   Na2CO3 + 2HNO3 = 2NaNO3 + CO2↑ + h3O

 

В результате реакции выделяется углекислый газ — CO2. Обозначим массу полученной соли m, 

 

n(NaNO3)= m\Mr = m\ 85 моль.

 

Тогда, по уравнению реакции  количество азотной кислоты будет равно количеству соли:

 

n(HNO3) = n (NaNO3)= m \85 моль.

 

m(HNO3)= Mr•n  = 63 •m \85 г

 

Это количество вещества, вступившего в реакцию, нам дано, что это количество соответствует 6.3 %, значит, масса 100% — масса раствора азотной кислоты равна 63 •m •100\(6.3 •85)  г

 

Формула массовой доли вещества в растворе:

 

 

m(вещества)=m(NaNO3)=63 •m \85 гА масса всего раствора будет слагаться из масс реагентов и надо вычесть массу выделившегося газа:

 

m( раствора HNO3) + m(Na2CO3)- m(CO2)

 

m(раствора)= 63 •m •100\(6.3 •85) + 106• m\ 2•85  — 44•m\ 2•85 = 1031•m\85 г

 

w=m(HNO3) \ m(раствора) =63 •m \1031• m = 0,0611 или 6.11%

 

Важно понимать, что происходит при протекании заданной реакции — если выделяется газ, то он уходит из среды раствора, значит, при вычислении массовой доли надо вычесть массу газа из массы раствора.

 

2. Выпадение осадка:

 

 

Реакция:                          NaCl + AgNO3 = AgCl↓ + NaNO3

 

В ходе реакции выпадает осадок, значит, при расчете массовой доли, надо будет вычесть массу осадка из массы раствора.

 

m(NaCl)= m(раствора) • w = 117 • 0.05  = 5,85 г

 

n(NaCl)= m\Mr=5,85\58,5=0.1 моль

 

m(AgNO3)=m(раствора) • w=127.5 • 0.02 = 2,55 г

 

n(AgNO3)= m\Mr=2,55\170 = 0,015 моль

 

Т.к. количество молей двух реагентов не одинаковое, то надо решить, какое вещество дано в недостатке и по этому количеству молей рассчитать количество полученной соли.

 

NaCl  +   AgNO3    =    AgCl↓ + NaNO3

 

0.1 моль  0.015 моль -> 0.015 моль

 

Очевидно, что хлорид натрия у нас в избытке, значит, считаем по нитрату серебра — n(AgCl)=n(AgNO3 )=0.015 моль.

 

m(AgCl)=n•Mr=0.015•143,5=2,1525 г

 

Этот осадок уйдет из раствора, поэтому при вычислении массовой доли это число надо вычесть из массы раствора:

 

m(раствора) = m(раствора NaCl) + m(раствора AgNO3) — m(AgCl) = 117+127.5-2,1525=242,3475 г

 

Находим массовую долю вещества в растворе:

 

w=m(NaNO3) \ m(раствора)=1.275\242,3475 = 0,00526 или 0.526%

 

 

   

Еще на эту тему:

Обсуждение: "Задачи на массовую долю вещества в растворе"

(Правила комментирования)

distant-lessons.ru