Задачи к разделу Окислительно-восстановительные реакции. Овр химия как решать подробно


примеры и решение :: SYL.ru

Что такое ОВР? Химия состоит из множества разделов, один из них рассматривает взаимодействия веществ, в результате которых у элементов (веществ) меняются показатели их степеней окисления. Рассмотрим основные термины, связанные с данной проблемой, приведем примеры взаимодействий.

Основные определения

В школьной программе рассматривается метод ОВР. Химия базируется на составлении баланса между количеством отданных (принятых) электронов. Окислителем является ион или атом, принимающий в процессе взаимодействия отрицательные частицы. Процесс, который при этом происходит, называется восстановлением. Восстановителем считают атомы или ионы, которые лишаются своих электронов, окисляясь при этом.

Значимость ОВР

Какое значение имеют ОВР? Химия располагает множеством примеров, когда данные превращения приводили к негативным последствиям. Например, до сих пор ученые не установили истинную причину разрушения статуи Колосса Родосского. Химики убеждены в том, что именно коррозия, которая является ОВР, стала причиной разрушения уникального памятника. В организме живых существ данные превращения обеспечивают обменные процессы.

Алгоритм разбора

Как правильно разбирать реакции ОВР? Химия школьного курса основывается на составлении электронного баланса между окислителем и восстановителем. Остановимся подробнее на последовательности действий школьников. Сначала необходимо поставить степени окисления у всех элементов, имеющихся в реакции. Для того чтобы успешно справиться с поставленной задачей, важно знать правила. Далее необходимо выявить те вещества, в которых после взаимодействия значения степеней окисления изменились.

При составлении электронного баланса, с помощью знака «плюс» показывают число принятых частиц, а «минусом» показывают количество отданных электронов. Между ними определяется наименьшее общее кратное, затем вычисляются индексы. Завершающим этапом будет расстановка коэффициентов в ОВР. Химия неорганических и органических веществ тесно связана с данным типом взаимодействий, к тому же задания предлагаются школьникам на выпускных испытаниях в 9 и 11 классах.

Первый пример

Разве ОВР - химия? Как решать такие задания? Данный вопрос является актуальным для ребят, которые выбрали предмет в качестве выпускного экзамена. На примере взаимодействия оксида железа (3) и угарного газа (оксида углерода (2)) рассмотрим последовательность действий.

Итак, дана схема Fe2O3 + CO → Fe + CO2, ее нужно рассмотреть как ОВР. ЕГЭ (химия) в 11 классе предполагает самостоятельное дополнение школьниками схемы недостающими веществами, но мы начнем с более простого задания, в котором уже даны все участники процесса. Как проверить, что это ОВР? Химия отвечает на этот вопрос посредством степеней окисления. Так как железо превращается из +3 в простое вещество с нулевым показателем степени окисления, а углерод повышает ее с +2 до +4, процесс является ОВР.

Баланс данного задания имеет следующий вид:

Fe(+3)+3e=Fe(0) 2

C(+2)-2e=C(+4) 3

Наименьшее общее кратное составляет 6. Железо является окислителем, угарный газ проявляет восстановительную способность. В готовом виде процесс имеет вид:

Fe2O3 + 3CO → 2Fe + 3CO2

Второй пример

ОВР в органической химии рассматривается по такому же алгоритму, есть только некоторые отличия в расстановке степеней окисления. Одно из заданий ЕГЭ посвящено вопросам, связанным с расстановкой коэффициентов в ОВР. Для успешного выполнения данного задания сначала школьники должны подумать, какие недостающие вещества им нужно вписать, и только после этого переходить к алгоритму разбора ОВР.

Например, с помощью электронного баланса необходимо составить уравнение:

Ph4 + AgNO3 +… = Ag + HNO3

Для начала выявим, какое вещество пропущено в левой части данного взаимодействия. С учетом того, что серебро проявляет окислительные свойства, а фосфор будет восстановителем, недостающим веществом станет вода.

При составлении электронного баланса, получаем следующий вид:

P(-3) отдает 8 электронов = P(+5) 1

Ag(+) принимает электрон = Ag(0) 8

При расстановке коэффициентов, получаем запись процесса:

Ph4 + 8 AgNO3 + 4h3O = 8Ag + 8HNO3 + h4PO4

Ph4 - восстановитель, AgNO3 - окислитель

Третий пример

Воспользовавшись методом электронного баланса, решите уравнение:

Cr2 (SO4) 3 +…+ NaOH = Na2CrO4 + NaBr +…+ h3O

В данной схеме пропущено два вещества, поэтому сначала восстановим пробелы. Хром в данном процессе меняет степень окисления с +3 на +6, следовательно, им проявляются окислительные характеристики. Восстановитель в задании упущен, поэтому его функцию будет выполнять молекулярный бром. Среди продуктов реакции должна быть соль натрия, ею будет сульфат.

Электронный баланс для данного превращения имеет вид:

2Cr(+3) - 6e = 2Cr(+6) 1

Br2(0) + 2e = 2Br - 3

При расстановке в схеме коэффициентов учитываем, что атом натрия находится в составе нескольких веществ, поэтому его необходимо суммировать:

Cr2(SO4) 3+3 Br2 + 16NaOH = 2Na2CrO4 + 6 NaBr + 3Na2 SO4 + 8h3O

Четвертый пример

Воспользовавшись электронным балансом, решите уравнение:

KMnO4 + h3S + h3SO4 = S+ Mn SO4 +…+…

В задании есть два пропуска, причем оба вещества являются продуктами взаимодействия. Учитывая, что в данной схеме в качестве окислителя выступает марганец, а восстановительные свойства характерны для серы, степени окисления в пропущенных веществах остаются неизменными. Ими будет сульфат калия и вода.

Электронный баланс данного процесса:

Mn(+7) забирает 5 e = Mn(+2) 2

S(-2) отдает 2e = S(0) 5

Конечный вариант предлагаемой схемы ОВР имеет следующий вид:

2KMnO4 + 5h3S + 3h3SO4 = 5S + 2MnSO4 + 8h3O + K 2SO4

Перманганат калия проявляет окислительные свойства, сероводород является восстановителем.

Пятый пример

Заполните пропуски, расставьте коэффициенты в предложенной схеме превращений:

KMnO4 + h3SO4 + KBr = MnSO4 + Br2 +…+…

В данном взаимодействии окислительные параметры демонстрирует марганец, входящий в состав марганцовки. Бром, входящий в бромид калия, является восстановителем. Следовательно, среди продуктов реакции должны быть такие вещества, в которых не наблюдается изменений степеней окисления. Недостающими веществами будут выступать вода и сульфат калия. Процесс передачи электронов:

Mn(+7) принимает 5e = Mn(+2) 2

2Br(-) отдает 2e = Br2(0) 5

Расставим полученные коэффициенты в предложенную схему, получим следующее уравнение:

2KMnO4 + 8h3SO4 + 10KBr = 2MnSO4 + 5Br2 + 8h3O + 6K2SO4

Шестой пример

Воспользовавшись электронным балансом, поставьте коэффициенты в предложенной схеме превращений:

P + HNO3 = NO2 +…+…

Пропуски веществ даны в правой части. Чтобы выявить продукты, определяем окислитель и восстановитель. В левой части берется сильная кислота, поэтому в продуктах будет вода. Вторым пропущенным соединением будет являться фосфорная кислота.

Электронный баланс имеет вид:

P(0) отдает 5e = P(+5) 1

N(+5) принимает e = N(+4) 5

Приступаем к расстановке коэффициентов в уравнении:

P + 5HNO3 = 5NO2 + h3O + h4PO4

Заключение

Разбор окислительных и восстановительных процессов методом электронного баланса является одним из тех заданий, которые вызывают серьезные проблемы у выпускников девятого и одиннадцатого классов. Именно поэтому важно отработать алгоритм действий, чтобы ребята успешно выполняли задания данного типа. Среди типичных ошибок, которые допускаются ребятами, выделим неправильную расстановку степеней окисления у элементов в сложных веществах.

Также довольно много проблем возникает при определении количества принятых и отданных атомами (ионами) электронов. Ребята неправильно определяют окислитель и восстановитель, допускают ошибки при расстановке коэффициентов в схеме уравнения. Задания, связанные с ОВР, считаются сложными, поэтому предполагают отработку порядка действий во внеурочной деятельности.

www.syl.ru

Как решать окислительно-восстановительные реакции? | We are students

Что ответить человеку, которого интересует, как решать окислительно-восстановительные реакции? Они нерешаемы. Впрочем, как и любые другие. Химики вообще не решают ни реакции, ни их уравнения. Для окислительно-восстановительной реакции (ОВР) можно составить уравнение и расставить в нём коэффициенты. Рассмотрим, как это сделать.

Окислитель и восстановитель

Окислительно-восстановительной называют такую реакцию, в ходе которой изменяются степени окисления реагирующих веществ. Это происходит потому, что одна из частиц отдаёт свои электроны (её называют восстановителем),  а другая – принимает их (окислитель).

Восстановитель, теряя электроны, окисляется, то есть повышает значение степени окисления. Например, запись: означает, что цинк отдал 2 электрона, то есть окислился. Он восстановитель. Степень окисления его, как видно из приведённого примера, повысилась.  – здесь сера принимает электроны, то есть восстанавливается. Она окислитель. Степень окисления ее понизилась.

У кого-то может возникнуть вопрос, почему при добавлении электронов степень окисления понижается, а при их потере, напротив, повышается? Всё логично. Элеrтрон – частица с зарядом -1, поэтому с математической точки зрения запись  следует читать так: 0 – (-1) = +1, где (-1) – и есть электрон. Тогда означает: 0 + (-2) = -2, где (-2) – это и есть те два электрона, которые принял атом серы.

Теперь рассмотрим реакцию, в которой происходят оба процесса:

Натрий взаимодействует с серой с образованием сульфида натрия. Атомы натрия окисляются, отдавая по одному электрону, серы – восстанавливаются, присоединяя по два. Однако такое может быть только на бумаге. На самом же деле, окислитель должен присоединить к себе ровно столько электронов, сколько их отдал восстановитель. В природе соблюдается баланс во всем, в том числе и в окислительно-восстановительных процессах. Покажем электронный баланс для данной реакции:

Общее кратное между количеством отданных и принятых электронов равно 2. Разделив его на число электронов, которые отдает натрий (2:1=1) и сера (2:2=1) получим коэффициенты в данном уравнении. То есть в правой и в левой частях уравнения атомов серы должно быть по одному (величина, которая получилась в результате деления общего кратного на число принятых серой электронов),  а атомов натрия – по два. В записанной схеме же слева пока только один атом натрия. Удвоим его, поставив коэффициент 2 перед формулой натрия. В правой части атомов натрия уже содержится 2 (Na2S).

Мы составили уравнение простейшей окислительно-восстановительной реакции и расставили в нем коэффициенты методом электронного баланса.

Рассмотрим, как “решать” оислительно-восстановительные реакции посложнее. Например, при взаимодействии концентрированной серной кислоты с тем же натрием образуются сероводород, сульфат натрия и вода. Запишем схему:

Определим степени окисления атомов всех элементов:

Изменили ст.о. только натрий и сера. Запишем полуреакции окисления и восстановления:

Найдём наименьшее общее кратное между 1 (столько электронов отдал натрий) и 8 (количество принятых серой отрицательных зарядов), разделим его на 1, затем на 8. Результаты – это и есть количество атомов Na и S как справа, так и слева.

Запишем их в уравнение:

Перед формулой серной кислоты коэффициенты из баланса пока не ставим. Считаем другие металлы, если они есть, затем – кислотные остатки, потом Н, и в самую последнюю очередь проверку делаем по кислороду.

В данном уравнении атомов натрия справа и слева должно быть по 8. Остатки серной кислоты используются два раза. Из них 4 становятся солеобразователями (входят в состав Na2SO4)и один превращается в h3S,то есть всего должно быть израсходовано 5 атомов серы. Ставим 5 перед формулой серной кислоты.

Проверяем H: атомов H в левой части 5×2=10,  в правой – только 4, значит перед водой ставим коэффициент 4 (перед сероводородом его ставить нельзя, так как из баланса следует, что молекул h3S должно быть по 1 справа и слева. Проверку делаем по кислороду. Слева 20 атомов О, справа их 4×4 из серной кислоты и еще 4 из воды.  Все сходится, значит действия выполнены правильно.

Это один вид действий, которые мог иметь в виду тот, кто спрашивал, как решать окислительно-восстановительные реакции. Если же под этим вопросом подразумевалось  “закончите уравнение ОВР” или ” допишите продукты реакции “, то для выполнения такого задания мало уметь составлять электронный баланс. В некоторых случаях нужно знать, каковы продукты окисления/восстановления , как на них влияет кислотность среды и различные факторы, о которых пойдет речь в других статьях.

Окислительно-восстановительные реакции – видео

westud.ru

Задачи к разделу Окислительно-восстановительные реакции

В данном разделе собраны задачи по теме Окислительно-восстановительные реакции. Приведены примеры задач на составление уравнений реакций, нахождение окислительно-восстановительного потенциал, и константы равновесия ОВР и другие.

Задача 1. Какие соединения и простые вещества могут проявлять только окислительные свойства? Выберите такие вещества из предложенного перечня: Nh4, CO, SO2, K2MnO4, Сl2, HNO2. Составьте уравнение электронного баланса, расставьте коэффициенты в уравнении реакции:

HNO3 + h3S = h3SO4 + NO + h3O.

Показать решение »

Решение.

Простые вещества, атомы которых не могут отдать электрон, а могут только присоединить его в реакциях являются только окислителями. Из простых веществ только окислителем может быть фтор F2, атомы которого имеют наивысшую электроотрицательность. В сложных соединениях – если атом, входящий в состав этого соединения (и меняющий степень окисления) находится в своей наивысшей степени окисления, то данное соединение будет обладать только окислительными свойствами.

Из предложенного списка соединений, нет веществ, которые обладали бы только окислительными свойствами, т.к. все они находятся в промежуточной степени окисления.

Наиболее сильный окислитель из них – Cl2, но в реакциях с более электроотрицательными атомами будет проявлять восстановительные свойства.

 

N-3h4, C+2O, S+4O2, K2Mn+6O4, Сl02, HN+3O2

HNO3 + h3S = h3SO4 + NO + h3O.

Составим электронные уравнения:

N+5 +3e— = N+2         | 8        окислитель

S-2 — 8e— = S+6         | 3        восстановитель

Сложим два уравнения

8N+5 +3S-2— = 8N+2 + 3S+6

Подставим коэффициенты в молекулярное уравнение:

8HNO3 +3h3S = 3h3SO4 + 8NO + 4h3O.

Задача 2. Почему азотистая кислота может проявлять как окислительные, так и восстановительные свойства? Составьте уравнения реакций HNO2: а) с бромной водой; б) с HI; в) с KMnO4. Какую функцию выполняет азотистая кислота в этих реакциях?

Показать решение »

Решение.

HN+3O2 — Степень окисления азота в азотистой кислоте равна +3 (промежуточная степень окисления). Азот в этой степени окисления может как принимать, так и отдавать электроны, т.е. может являться как окислителем, так восстановителем.

а) HNO2 + Br2 + h3O = 2HBr + HNO3

N+3 – 2 e = N+5            | 1        восстановитель

Br20 + 2 e = 2Br—       | 1        окислитель   

N+3 + Br2 = N+5 + 2Br—

 

б) HNO2 + 2HI = I2 + 2NO + 2h3O

N+3 + e = N+2                | 1         окислитель

2I—  — 2 e = I2            | 1        восстановитель

N+3 + 2I—  = N+2 + I2 

 

в) 5HNO2 + 2KMnO4 + 3h3SO4 = 2MnSO4 + 5HNO3 + K2SO4 + 3h3O

N+3 – 2 e = N+5              | 5        восстановитель

Mn+7 + 5 e = Mn+2       | 2        окислитель

5N+3 + 2Mn+7 = 5N+5 + 2Mn+2

Задача 3. Определите степени окисления всех компонентов, входящих в состав следующих соединений: HСl, Cl2, HClO2 , HClO3 , Cl2O7 . Какие из веществ являются только окислителями, только восстановителями, и окислителями и восстановителями? Расставьте коэффициенты в уравнении реакции:

КСlO3 → КС1 + КСlO4.

Укажите окислитель и восстановитель.

Показать решение »

Решение.

Хлор может проявлять степени окисления от -1 до +7.

Соединения, содержащие хлор в его высшей степени окисления, могут быть только окислителями, т.е. могут только принимать электроны.

Соединения, содержащие хлор в его низшей степени окисления, могут быть только восстановителями, т.е. могут только отдавать электроны.

Соединения, содержащие хлор в его промежуточной степени окисления, могут быть как восстановителями, так и окислителями, т.е. могут отдавать, так и принимать электроны.

H+1Сl-1, Cl02, H+1Cl+3O2-2 , H+1Cl+5O3-2 , Cl2+7O7-2

Таким образом, в данном ряду

Только окислитель — Cl2O7

Только восстановитель – HСl

Могут быть как окислителем, так и восстановителем — Cl2, HClO2 , HClO3

 

КСlO3 → КС1 + КСlO4.

Составим электронные уравнения

Cl+5 +6e— = Cl—                  | 2 | 1   окислитель

Cl+5 -2e— = Cl+7            | 6 | 3   восстановитель

Расставим коэффициенты

4Cl+5 = Cl— + 3Cl+7

4КСlO3 → КС1 + 3КСlO4.

Задача 4. Какие из приведенных реакций являются внутримолекулярными? Расставьте коэффициенты в уравнениях реакций. Укажите восстановитель, окислитель.

а) KNO3 = KNO2 + O2;

б) Mq+ N2 = Mq3N2;

в) KClO3  = KCl + O2.

Показать решение »

Решение.

В реакциях внутримолекулярного окисления-восстановления перемещение электронов происходит внутри одного соединения, т.е. и окислитель и восстановитель входят в состав одного и того же сложного вещества (молекулы)

а) 2KNO3 = 2KNO2 + O2 — внутримолекулярная ОВР

N+5 +2e— = N+3               | 2        окислитель

2O-2 -4e— = O20           | 1        восстановитель

2N+5 + 2O-2 = 2N+3 + O20

 

б) 3Mq + N2 = Mq3N2 — межмолекулярная ОВР

N2 +6e— = 2N-3             | 2 | 1   окислитель

Mg0 -2e— = Mg+2         | 6 | 3   восстановитель

N2 + 3Mg0 = 2N-3 + 3Mg+2

 

в) 2KClO3  = 2KCl + 3O2 — внутримолекулярная ОВР

Cl+5 +6e— = Cl—                 | 4 | 2   окислитель

2O-2 -4e— = O20            | 6 | 3   восстановитель

2Cl+5+ 6O-2 = 2Cl— + 3O20

Задача 5. Какие  ОВР относятся к реакциям диспропорционирования? Расставьте коэффициенты в реакциях:

а) Cl2 + KOH = KCl + KClO3 + h3O;

б) KClO3 = KCl + KClO4 .

Показать решение »

Решение.

В реакциях диспропорционирования окислителем и восстановителем являются атомы одного и того же элемента в одинаковой степени окисления (обязательно промежуточной). В результате образуются новые соединения, в которых атомы этого элемента обладают различной степенью окисления.

а) 3Cl2 + 6KOH = 5KCl + KClO3 + 3h3O;

Cl20 +2e— = 2Cl—              | 10| 5  окислитель

Cl20 -10e— = 2Cl+5          | 2 | 1   восстановитель

5Cl20 + Cl20 = 10Cl— + 2Cl+5

3Cl20 = 5Cl— + Cl+5

 

б) 4KClO3 = KCl + 3KClO4

Cl+5 +6e— = Cl—                 | 2 | 1   окислитель

Cl+5 -2e— = Cl+7              | 6 | 3   восстановитель

4Cl+5 = Cl— + 3Cl+7

Задача 6. Составьте электронные уравнения и подберите коэффициенты ионно-электронным методом в реакции

KMnO4 + KNO2 + h3SO4 = K2SO4 + MnSO4 + KNO3 + h3O

Показать решение »

Решение.

Составим полуреакции:

MnO4— + 8H+ +5e— = Mn2+ + 4h3O             | 2        окислитель

NO2— + h3O — 2e— = NO3— + 2H+              | 5        восстановитель

 

Сложим две полуреакции, умножив каждую на соответствующий коэффициент:

2MnO4— + 16H+ + 5NO2—+ 5h3O = 2Mn2+ + 8h3O + 5NO3— + 10H+

 

После сокращения идентичных членов, получаем ионное уравнение:

2MnO4— + 6H+ + 5NO2— = 2Mn2+ + 3h3O + 5NO3—

 

Подставим коэффициенты в молекулярное уравнение и уравняем его правую и левую части:

2KMnO4 + 5KNO2 + 3h3SO4 = K2SO4 + 2MnSO4 + 5KNO3 + 3h3O

Задача 7. Определите методом электронного баланса коэффициенты в уравнениях окислительно-восстановительных реакций:

Zn + HNO3 = Zn(NO3)2 + Nh5NO3 + h3O

Zn + h3SO4(конц) = ZnSO4 + SO2 + h3O

Показать решение »

Решение.

4Zn + 10HNO3 = 4Zn(NO3)2 + Nh5NO3 + 3h3O

Составим электронные уравнения

Zn0 – 2 e = Zn2+          | 8 | 4 |          восстановитель

N+5 + 8 e = N3-              | 2 | 1 |           окислитель

4Zn0 + N+5 = 4Zn2+ + N3- 

 

Zn + 2h3SO4(конц) = ZnSO4 + SO2 + 2h3O

Составим электронные уравнения

Zn0 – 2 e = Zn2+          | 2 | 1            восстановитель

S+6 + 2 e = S+4                | 2 | 1           окислитель

Zn0 + S+6 =  Zn2+ + S+4

Задача 8. Можно ли в качестве окислителя в кислой среде использовать K2Cr2O7 в следующих процессах при стандартных условиях:

а) 2F— -2e— = F2, E0 = 2,85 В

б) 2Сl— -2e— = Cl2, E0 = 1,36 В

в) 2Br— -2e— = Br2, E0 = 1,06 В

г) 2I— -2e— = I2, E0 = 0,54 В

Стандартный окислительно-восстановительный потенциал системы

Cr2O72- + 14H+ + 6e— = 2Cr3+ + 7h3O равен E0 =1,33 В

Показать решение »

Решение.

Для определения возможности протекания ОВР в прямом направлении необходимо найти ЭДС гальванического элемента:

ЭДС = Е0ок — Е0восст

Если найденная величина ЭДС > 0, то данная реакция возможна.

 

Итак, определим, можно ли K2Cr2O7 использовать в качестве окислителя в следующих гальванических элементах:

F2|F— || Cr2O72-|Cr3+                  E = 1,33 – 2,85 = -1,52 В

Cl2|Cl— || Cr2O72-|Cr3+               E = 1,33 – 1,36 = -0,03 В

Br2|Br— || Cr2O72-|Cr3+              E = 1,33 – 1,06 = +0,27 В

I2|I— || Cr2O72-|Cr3+                    E = 1,33 – 0,54 = +0,79 В

 

Таким образом, в качестве окислителя дихромат калия можно использовать только для процессов:

2Br— -2e— = Br2 и 2I— -2e— = I

Задача 9. Вычислите окислительно-восстановительный потенциал для системы

MnO4— + 8H+ +5e— = Mn2+ + 4h3O

Если С(MnO4—)=10-5 М, С(Mn2+)=10-2 М, С(H+)=0,2 М.

Показать решение »

Решение.

Окислительно-восстановительный потенциал рассчитывают по уравнению Нернста:

E = E° + (0,059/n)lg(Cок/Cвос)

В приведенной системе в окисленной форме находятся MnO4— и H+, а в восстановленной форме — Mn2+, поэтому:

E = 1,51 + (0,059/5)lg(10-5*0,2/10-2) = 1,46 В

Задача 10. Рассчитайте для стандартных условий константу равновесия окислительно-восстановительной реакции:

2KMnO4 + 5HBr + 3h3SO4 = 2MnSO4 + 5HBrO + K2SO4 + 3h3O

Показать решение »

Решение.

Константа равновесия K окислительно-восстановительной реакции связана с окислительно-восстановительными потенциалами соотношением:

lgK = (E10 -E20 )n/0,059

Определим, какие ионы в данной реакции являются окислителем и восстановителем:

MnO4— + 8H+ +5e— = Mn2+ + 4h3O       | 2        окислитель

Br— + h3O — 2e— = HBrO + H+               | 5        восстановитель

 

Общее число электронов, принимающих участие в ОВР n = 10

E10 (окислителя) = 1,51 В

E20 (восстановителя) = 1,33 В

 

Подставим данные в соотношение для К:

lgK = (1,51 — 1,33 )10/0,059

lgK = 30,51

K = 3,22*1030

 

zadachi-po-khimii.ru

Примеры окислительно-восстановительных реакций с решением. ОВР: схемы

Прежде чем приводить примеры окислительно-восстановительных реакций с решением, выделим основные определения, связанные с данными превращениями.

Те атомы или ионы, которые в ходе взаимодействия меняют степень окисления с понижением (принимают электроны), называют окислителями. Среди веществ, обладающих такими свойствами, можно отметить сильные неорганические кислоты: серную, соляную, азотную.

Окислитель

Также к сильным окислителям относятся перманганаты и хроматы щелочных металлов.

Окислитель принимает то количество электронов в ходе реакции, которое необходимо ему до завершения энергетического уровня (установления завершенной конфигурации).

Восстановитель

Любая схема окислительно-восстановительной реакции предполагает выявление восстановителя. К нему относят ионы или нейтральные атомы, способные повышать в ходе взаимодействия показатель степени окисления (отдают электроны иным атомам).

В качестве типичных восстановителей можно привести атомы металлов.

Процессы в ОВР

Чем еще характеризуются ОВР? Окислительно-восстановительные реакции характеризуются изменением степеней окисления у исходных веществ.

Окисление предполагает процесс отдачи отрицательных частиц. Восстановление предполагает принятие их от других атомов (ионов).

Алгоритм разбора

Примеры окислительно-восстановительных реакций с решением предлагаются в различных справочных материалах, предназначенных для подготовки старшеклассников к выпускным испытаниям по химии.

Для того чтобы успешно справиться с предлагаемые в ОГЭ и ЕГЭ заданиями, важно владеть алгоритмом составления и разбора окислительно-восстановительных процессов.

  1. В первую очередь проставляют зарядовые величины у всех элементов в веществах, предложенных в схеме.
  2. Выписываются атомы (ионы) из левой части реакции, которые в ходе взаимодействия, поменяли показатели.
  3. При повышении степени окисления используется знак «-», а при понижении «+».
  4. Между отданными и принятыми электронами определяется наименьшее общее кратное (число, на которое они делятся без остатка).
  5. При делении НОК на электроны, получаем стереохимические коэффициенты.
  6. Расставляем их перед формулами в уравнение.

Первый пример из ОГЭ

В девятом классе далеко не все школьники знают, как решать окислительно-восстановительные реакции. Именно поэтому они допускают множество ошибок, не получают высоких баллов за ОГЭ. Алгоритм действий приведен выше, теперь попробуем отработать его на конкретных примерах.

Особенность заданий, касающихся расстановки коэффициентов в предложенной реакции, выданных выпускникам основной ступени обучения, в том, что и левая, и правая части уравнения даны.

Это существенно упрощает задачу, так как не нужно самостоятельно придумывать продукты взаимодействия, подбирать недостающие исходные вещества.

Например, предлагается с помощью электронного баланса выявить коэффициенты в реакции:

CuO+Fe=FeO+Cu

На первый взгляд, в данной реакции не требуются стереохимические коэффициенты. Но, для того, чтобы подтвердить свою точку зрения, необходимо у всех элементов зарядовые числа.

В бинарных соединениях, к которым относится оксид меди (2) и оксид железа (2), сумма степеней окисления равна нулю, учитывая, что у кислорода она -2, у меди и железа данный показатель +2. Простые вещества не отдают (не принимают) электроны, поэтому для них характерна нулевая величина степени окисления.

Составим электронный баланс, показав знаком "+" и "-" количество принятых и отданных в ходе взаимодействия электронов.

Cu2++2e=Cu0;

Fe0-2e=Fe2+.

Так как количество принятых и отданных в ходе взаимодействия электронов одинаково, нет смысла находить наименьшее общее кратное, определять стереохимические коэффициенты, ставить их в предложенную схему взаимодействия.

Для того чтобы получить за задание максимальный балл, необходимо не только записать примеры окислительно-восстановительных реакций с решением, но и выписать отдельно формулу окислителя (CuO) и восстановителя (Fe).

Второй пример с ОГЭ

Приведем еще примеры окислительно-восстановительных реакций с решением, которые могут встретиться девятиклассникам, выбравшим химию в качестве выпускного экзамена.

Допустим, предлагается расставить коэффициенты в уравнении:

Na+HCl=NaCl+h3.

Для того чтобы справиться с поставленной задачей, сначала важно определить у каждого простого и сложного вещества показатели степеней окисления. У натрия и водорода они будут равны нулю, так как они являются простыми веществами.

В соляной кислоте водород имеют положительную, а хлор - отрицательную степень окисления. После расстановки коэффициентов получим реакцию с коэффициентами.

Как дополнить окислительно-восстановительные реакции? Примеры с решением, встречающиеся на ЕГЭ (11 класс), предполагают дополнение пропусков, а также расстановку коэффициентов.

Например, нужно электронным балансом дополнить реакцию:

h3S+ HMnO4= S+ MnO2 +…

Определите восстановитель и окислитель в предложенной схеме.

Как научиться составлять окислительно-восстановительные реакции? Образец предполагает использование определенного алгоритма.

Сначала во всех веществах, данных по условию задачи, необходимо поставить степени окисления.

Далее нужно проанализировать, какое вещество может стать неизвестным продуктом в данном процессе. Поскольку в здесь присутствует окислитель (в его роли выступает марганец), восстановитель (им является сера), в искомом продукте не меняются степени окисления, следовательно, это вода.

Рассуждая о том, как правильно решать окислительно-восстановительные реакции, отметим, что следующим этапом будет составление электронного соотношения:

Mn+7 принимает 3 e= Mn+4;

S-2 отдает 2e= S0.

Катион марганца является восстановителем, а анион серы – типичный окислитель. Поскольку наименьшим кратным между принятыми и отданными электронами будет 6, получаем коэффициенты: 2, 3.

Последним этапом будет постановка коэффициентов в исходное уравнение.

3h3S+ 2HMnO4= 3S+ 2MnO2+ 4h3O.

Второй образец ОВР в ЕГЭ

Как правильно составить окислительно-восстановительные реакции? Примеры с решением помогут отработать алгоритм действий.

Предлагается методом электронного баланса заполнить пропуски в реакции:

Ph4+ HMnO4 = MnO2 +…+…

Расставляем у всех элементов степени окисления. В данном процессе окислительные свойства проявляются марганцем, входящим в состав марганцовой кислоты, а восстановителем должен быть фосфор, меняя свою степень окисления на положительную в фосфорной кислоте.

Согласно сделанному предположению, получаем схему реакции, затем составляем уравнение электронного баланса.

P-3 отдает 8 e и превращается в P+5;

Mn+7 принимает 3e, переходя в Mn+4.

НОК будет 24, поэтому у фосфора должен присутствовать стереометрический коэффициент 3, а у марганца -8.

Ставим коэффициенты в полученный процесс, получаем:

3 Ph4+ 8 HMnO4= 8 MnO2+ 4h3O+ 3 h4PO4.

Третий пример из ЕГЭ

Путем электронно-ионного баланса нужно составить реакцию, указать восстановитель и окислитель.

KMnO4+ MnSO4+…= MnO2 +…+ h3SO4.

По алгоритму расставляем у каждого элемента степени окисления. Далее определяем те вещества, что пропущены в правой и левой частях процесса. Здесь дан восстановитель и окислитель, поэтому в пропущенных соединениях степени окисления не меняются. Упущенным продуктом станет вода, а исходным соединением – сульфат калия. Получаем схему реакции, для которой составим электронный баланс.

Mn+2-2 e= Mn+4 3 восстановитель;

Mn+7+3e= Mn+4 2 окислитель.

Записываем коэффициенты в уравнение, суммируя атомы марганца в правой части процесса, так как он относится к процессу диспропорционирования.

2KMnO4+ 3MnSO4+ 2h3O= 5MnO2+ K 2SO4+ 2h3SO4.

Заключение

Окислительно-восстановительные реакции имеют особое значение для функционирования живых организмов. Примерами ОВР являются процессы гниения, брожения, нервной деятельности, дыхания, обмена веществ.

Окисление и восстановление актуальны для металлургической и химической промышленности, благодаря таким процессам можно восстанавливать металлы из их соединений, защищать от химической коррозии, подвергать обработке.

Для составления окислительно-восстановительного процесса в органической или неорганической химии необходимо использовать определенный алгоритм действий. Сначала в предложенной схеме расставляют степени окисления, потом определяют те элементы, которые повысили (понизили) показатель, записывают электронный баланс.

Далее между принятыми и отданными электронами необходимо определить наименьшее кратное, вычислить математическим путем коэффициенты.

При соблюдении последовательности действий, предложенной выше, можно без проблем справиться с заданиями, предлагаемыми в тестах.

Помимо метода электронного баланса, расстановка коэффициентов возможна также путем составления полуреакций.

fb.ru

Окислительно-восстановительные реакции | Дистанционные уроки

30-Авг-2012 | комментария 2 | Лолита Окольнова

И снова пост об овр, или

 

 

Снова, потому что раньше уже писала об этом здесь, здесь и вот здесь…

 

Хочу рассмотреть с вами вот такой пример: ЕГЭ 2012 часть С задание 1:

 

K2CrO4 + HCl = CrCl3 + … + … + h3O

 

Меня часто спрашивают, можно ли такую реакцию уравнять обычным способом для овр — по атомам…

 Наверное, можно… но это будет 1) долго,2) не всегда удается правильно подобрать таким образом продукты реакции. 

Намного лучше (это не просто мое личное мнение, а опыт, подтвержденный результатами учеников) — метод полуреакций.

 

Давайте разберем по порядку как решаются такие уравнения:

 

(Сразу условимся — заряд ионов я буду писать в скобках)

 

1) определяем участников окислительно-восстановительной реакции:

 Сr(6+) стал Cr(3+). Cтепень окисления хрома понизилась, т.е. он восстановился. Следовательно, второй участник реакции должен окислиться. 

Сl находится в минимальной степени окисления -1, если он окислится, то станет Сl2.

 2) Записываем процессы окисления и восстановления для каждого участника реакции в ионной форме с учетом среды (HCl — кислая среда) 

2|  СrO4(2-) + 8H(+) +3e(-)          =          Cr(3+) + 4h3O

3|  2Cl(-)              -2e(-)                 =          Cl2

 

3) Выписываем реагенты и продукты реакции с учетом коэффициентов: 

2СrO4(-2) + 16H(+) + 6Cl(-) = 2Cr(3+) + 8h3O + 3Cl2

 

4) Дописываем каждому иону недостающую часть:

 

2СrO4(-2) + 16H(+) + 6Cl(-) = 2Cr(3+) + 8h3O + 3Cl2

+4K(+)                     +10Cl(-) = +4K(+) + 10Cl(-)_____________________________________________2K2CrO4 + 16HCl = 2CrCl3 + 3Cl2 + 4KCl + 3Cl2

 

А теперь  — маленький совет, который сэкономит вам уйму времени на экзамене:

 Допустим, вы прошли все пункты 1-3 и, дописывая ионы к полученному уравнению, понимаете, что они не сходятся. Ошибка! 

Так вот, ни в коем случае не ищите ошибку в ходе решения. Вы еще больше запутаетесь, начеркаете и потеряете много драгоценного экзаменационного времени!

 

Берете чистый лист бумаги и решаете все с самого начала.  И не ищите, где именно вы ошиблись  — не тратьте впустую время. Обычно это обычные описки или ошибки по невнимательности. Где-то коэффициент потеряли, где-то степень окисления попутали, электроны неправильно посчитали… Повторю — главное, не исправляйте на том же листе, на котором решали в первый раз.

 

Когда меня просят посмотреть где закралась ошибка, я делаю ровно то же самое — беру лист чистой бумаги и решаю все с самого начала.

  

Еще на эту тему:

Обсуждение: "Окислительно-восстановительные реакции"

(Правила комментирования)

distant-lessons.ru

Составление уравнений реакций окисления-восстановления

Составление уравнений реакций окисления-восстановления. Для осуществления окислительно-восстановительных реакций (ОВР) необходимо одновременное присутствие веществ, взаимно противоположных по своей способности отдавать или присоединять электроны. Кроме этого, протекание некоторых реакций окисления-восстановления возможно лишь при определенных условиях (реакция среды, температура, катализатор, концентрация веществ и др).Чтобы определить вероятность протекания ОВР обычно пользуются значениями ионизационных потенциалов, сродства к электрону и электроотрицательностей. При количественном определении направления окислительно-восстановительных реакций удобно пользоваться стандартными значениями энергии Гиббса образования исходных или конечных веществ, а также изменением энергии Гиббса или Гельмгольца реакции.Мерой интенсивности реакций окисления-восстановления являются стандартные окислительно-восстановительные потенциалы.

Алгоритм cоставления уравнений реакций окисления-восстановления

При составлении уравнений реакций окисления-восстановления необходимо придерживаться определенной последовательности:

1. Найти среди исходных веществ окислитель и восстановитель

Для этого прежде всего необходимо расставить степени окисления элементов и сравнить их окислительно-восстановительные свойства.

2. Записать продукты реакции

Правильно определить продукты реакции помогут ваши знания о строении атомов элементов, их свойствах и свойствах их соединений. Важно помнить, что в реакциях межатомного и межмолекулярного окисления-восстановления, свободный кислород, как правило, не выделяется. Выделение кислорода происходит при взаимодействии пероксидов с сильными окислителями, а также в некоторых реакциях с участием озона и фтора. Например,

2KMnO4 + 5Na2O2 + 8h3SO4 = 2MnSO4 + 5O2↑ + 5 Na2SO4 + K2SO4 + 8h3OSiO2 + 2F2 = SiF4 + O2↑PbS + 4O3 = PbSO4 + 4O2↑

 

В других случаях атомы кислорода, входящие в состав молекул окислителя (или восстановителя) связываются в молекулы воды при участии ионов водорода H+, например

HNO2 + HI = NO + I2 + h3O

 

При написании продуктов реакции необходимо учитывать характер среды. Следует помнить, что в кислой среде образуются соли одно-, двух- и трехзарядных катионов – хлориды, бромиды, сульфаты, нитраты.

Для создания кислой среды, как правило используют разбавленную серную кислоту. Соляная и азотная кислоты для подкисления используются реже, т.к. азотная кислота сама является окислителем, а соляная кислота в присутствии сильных окислителей обладает восстановительными свойствами.

Щелочную среду создают, как правило, растворами KOH или NaOH. В щелочной среде не могут образовываться кислоты и кислотные оксиды, а образуются соли. Чтобы не ошибиться при написании продуктов реакций, вначале следует написать продукты окисления и восстановления, а потом только другие вещества, степень окисления которых не изменяется в процессе реакции.Итак, образуемые в результате реакции продукты, определяются условиями проведения реакции и природой окислителя и восстановителя. Ниже представлены схемы окислительно-восстановительных реакций соединений марганца и хрома в различных средах, а также азотной и серной кислот.

Схема ОВР соединений марганца

 

 

Схема ОВР соединений хрома

 

Азотная кислота.

В результате реакции азотной кислоты с металлами, в зависимости от ее концентрации и активности металла, образуются нитраты, вода и различные продукты восстановления кислоты, указанные в таблице ниже.

Металлы

Концентрация HNO3

> 60 %от 30 до 60 %< 60%

Активные (Li — Zn)

NO, NO2NO2, N2, N2ON2, Nh4, соли аммония

Средней активности

(Cr — Sn)

Не реагируютNO, NO2, N2O, Nh4NO, NO2, N2O, Nh4

Малоактивные

(Pb – Ag)

NO2NOНе реагируют

Благородные металлы (Au, Pt)

Не реагируют

 

Серная кислота.

Разбавленная серная кислота не является окислителем и реагирует с металлами, как обычная кислота. Если металл стоит в электрохимическом ряду напряжения металлов до водорода, то при его взаимодействии с кислотой происходит выделение водорода. Если металл находится после водорода в этом ряду, то взаимодействия не происходит.Концентрированная серная кислота активными металлами (до Zn) восстанавливается до S и h3S, а менее активными (расположенные после водорода и в непосредственной близости от него в ряду напряжения металлов) до SO2.

Благородные металлы — золото Au и платина Pt не окисляются даже концентрированной серной кислотой.

А такие достаточно активные металлы, как Al, Fe, Cr при обычных условиях пассивируются и не взаимодействуют с концентрированной h3SO4, однако при нагревании реакции становятся возможными.

3. Подобрать коэффициенты

Коэффициенты в ОВР подбирают, учитывая число отданных и принятых электронов. Следует помнить, что общее число электронов, отданных восстановителем, должно равняться общему числу электронов, принятых окислителем. Существует несколько методов подбора коэффициентов, из которых чаще всего используют методы, описанные в статье Метод электронного баланса и ионно-электронный метод (метод полуреакций).

zadachi-po-khimii.ru

Примеры решения задач - HimHelp.ru

Решение. НNО3 — сильный окислитель, поэтому сера будет окисляться до максимальной степени окисления S+6, а железо до Fe+3, при этом НNО3 может восстанавливаться до NO или NO2. Рассмотрим случай восстановления до NО2.

FеS2 + НNO3(конц) → Fе(NO3)3 + Н2SО4 + NО2.

Где будет находиться Н2О (в левой или правой части), пока неиз­вестно.

Уравняем данную реакцию методом  электронного баланса. Процесс восстановления описывается схемой:

N+5 + e → N+4

В полуреакцию окисления вступают сразу два элемента — Fe и S. Железо в дисульфиде имеет степень окисления +2, а сера -1. Не­обходимо учесть, что на один атом Fе приходится два атома S:

Fe+2 – e → Fe+3

2S— — 14e → 2S+6.

Вместе железо и сера отдают 15 электронов. Полный баланс имеет вид:

 

15 молекул НNО3 идут на окисление FеS2, и еще 3 молекулы НNО3 необходимы для образования Fе(NО3)3:

FеS2 + 18НNО3 → Fе(NО3)3 + 2Н2SО4 + 15NО2 .

Чтобы уравнять водород и кислород, в правую часть надо доба­вить 7 молекул Н2О:

FeS2 + 18НNО3(конц) = Fе(NО3)3 + 2Н2SО4 + 15NО2 + 7Н2О.

Используем теперь метод электронно-ионного баланса.  Рас­смотрим полуреакцию окисления. Молекула FеS2 превращается в ион Fе3+ (Fе(NО3)3 полностью диссоциирует на ионы) и два иона SO42- (диссоциация h3SO4):

FeS2 → Fe3+ + 2SO24-.

Для того, чтобы уравнять кислород, в левую часть, добавим 8 молекул h3O, а в правую – 16 ионов Н+ (среда кислая!):

FeS2 + 8h3O → Fe3+ + 2SO42- + 16H+.

Заряд левой части равен 0, заряд правой +15, поэтому FеS2 дол­жен отдать 15 электронов:

FеS2 + 8Н2О — 15е → Fе3+ + 2SО42- + 16Н+.

Рассмотрим теперь полуреакцию восстановления нитрат-иона:

NO-3 → NO2.

Необходимо отнять у NО3— один атом О. Для этого к левой части добавим 2 иона Н+ (кислая среда), а к правой — одну молекулу Н2О:

NО3— + 2Н+ → NО2 + Н2О.

Для уравнивания заряда к левой части (заряд +1) добавим один электрон:

NО3— + 2Н+ + е → NO2 + Н2О.

Полный электронно-ионный баланс имеет вид:

Сократив обе части на 16Н+ и 8Н2О, получим сокращенное ион­ное уравнение окислительно-восстановительной реакции:

FеS2 + 15NО3— + 14Н+ = Fе3+ + 2SО42- + 15NО2 + 7Н2О.

Добавив в обе части уравнения соответствующее количество ионов по три иона NО3— и Н+, находим молекулярное уравнение реакции:

FеS2 + 18НNО3(конц) = Fе(NО3)3 + 2Н2SО4 + 15NО2 + 7Н2О.

Задача 2. Напишите уравнения реакций, протекающих в вод­ной среде:

а) Na2SО3 + КМnО4 + Н2SО4 → X + …

б) Х + КОН → …

Решение.

а) Перманганат калия в кислой среде восстанавли­вается в соль марганца (/>II), а сульфит натрия окисляется до суль­фата натрия:

5Nа2SО3 + 2КМnО4 + ЗН2SО4 = 5Nа2SО4 + К2SО4 + 2МnSО4 + ЗН2О.

б) Из продуктов реакции а) только сульфат марганца (II) (вещество X) реагирует со щелочью в водном растворе:

MnSО4 + 2КОН = Мn(ОН)2↓+ К2SО4.     

Задача 3. Электролиз 400 г 8,5%-ного раствора нитрата се­ребра продолжали до тех пор, пока масса раствора не уменьши­лась на 25 г. Вычислите массовые доли соединений в растворе, полученном после окончания электролиза, и массы веществ, вы­делившихся на инертных электродах./>

Решение. При электролизе водного раствора А/>gNО3 на катоде происходит восстановление ионов Аg+, а на аноде — окисление молекул воды:

Катод: Аg+ + е = Аg.

Анод: 2Н2О — 4е = 4Н+ + О2.       

Суммарное уравнение:

4AgNО3 + 2Н2О = 4Ag↓ + 4НNО3 + О2↑.

v(АgNО3) = 400.0,085 / 170 = 0,2 моль. При полном электролити­ческом разложении данного количества соли выделяется 0,2 моль Аg массой 0,2.108 = 21,6 г и 0,05 моль О2 массой 0,05.32 = 1,6 г. Общее уменьшение массы раствора за счет серебра и кислорода составит 21,6+1,6 = 23,2 г.

При электролизе образовавшегося раствора азотной кислоты разлагается вода:

2h3O = 2Н2↑ + O2↑.

Потеря массы раствора за счет электролиза воды составляет 25 — 23,2 = 1,8 г. Количество разложившейся воды равно: v(Н20) = 1,8/18 = 0,1. На электродах выделилось 0,1 моль Н2 массой 0,1.2 = 0,2 г и 0,1/2 = 0,05 моль О2 массой 0,05.32 = 1,6 г. Общая масса кислорода, выделившегося на аноде в двух процессах, равна 1,6+1,6 = 3,2 г.

В оставшемся растворе содержится азотная кислота: v(НNO3) = v(AgNО3) = 0,2 моль, m(НNО3) = 0,2.63 = 12,6 г. Масса раство­ра после окончания электролиза равна 400-25 = 375 г. Массовая доля азотной кислоты: ω(НNО3) = 12,6/375 = 0,0336, или 3,36%.

Ответ. ω(Н/>NО3) = 3,36%, на катоде выделилось 21,6 г Аg и 0,2 г Н2, на аноде — 3,2 г О2.

Задача 4.  Составить уравнение реакции восстановления />Fe3O4 водородом.

Решение. Запишем схему процесса с указанием изменения степеней окисления элементов:/>

Составляем электронные уравнения:

Найденные коэффициенты проставляем в схему процесса, заменяя стрелку на знак равенства:

Fе3О4 + 4Н2 = ЗFе + 4Н2О

Задача 5. Составьте схемы электролиза водных растворов: а) сульфата меди б) хлорида магния; в) сульфата калия./>

Во всех случаях электролиз проводится с использованием угольных электродов.

Решение.

а) В растворе сульфат меди диссоциирует на ионы:/>

СuSО4 Сu2+ + SO42-

Ионы меди могут восстанавливаться, на катоде в водном растворе. Сульфат-ионы в водном растворе не окисляются, поэтому на аноде будет протекать окисление воды. Схема электролиза:

б) Диссоциация хлорида магния в водном растворе:

MgCl2+Mg2++2Сl—

Ионы магния не могут восстанавливаться в водном растворе (идет восстановление воды), хлорид-ионы — окисляются. Схема электролиза:

в) Диссоциация сульфата калия в водном растворе:

К2SО42К+ + SO42-

Ионы калия и сульфат-ионы не могут разряжаться на электродах в водном растворе, следовательно, на катоде будет протекать восстановление, а на аноде — окисление воды. Схема электролиза:

или, учитывая, что 4Н+ + 4ОН— = 4Н2О (осуществляется при перемешивании),

2h3O2h3 + O2

www.himhelp.ru