Шаблоны, связанные с металлическими и неметаллическими свойствами элементов. В какую сторону усиливаются металлические свойства


Изменение металлических и неметаллических свойств в таблице Менделеева

Периодическая таблица Дмитрия Ивановича Менделеева очень удобна и универсальна в своём использовании. По ней можно определить некоторые характеристики элементов, и что самое удивительное, предсказать некоторые свойства ещё неоткрытых, не обнаруженных учёными, химических элементов (например, мы знаем некоторые свойства предполагаемого унбигексия, хотя его ещё не открыли и не синтезировали).

Что такое металлические и неметаллические свойства

Эти свойства зависят от способности элемента отдавать или притягивать к себе электроны. Важно запомнить одно правило, металлы – отдают электроны, а неметаллы – принимают. Соответственно металлические свойства – это способность определённого химического элемента отдавать свои электроны (с внешнего электронного облака) другому химическому элементу. Для неметаллов всё в точности наоборот. Чем легче неметалл принимает электроны, тем выше его неметаллические свойства.

Металлы никогда не примут электроны другого химического элемента. Такое характерно для следующих элементов;

С неметаллами дела обстоят похожим образом. Фтор больше всех остальных неметаллов проявляет свои свойства, он может только притянуть к себе частицы другого элемента, но ни при каких условиях не отдаст свои. Он обладает наибольшими неметаллическими свойствами. Кислород (по своим характеристикам) идёт сразу же после фтора. Кислород может образовывать соединение с фтором, отдавая свои электроны, но у других элементов он забирает отрицательные частицы.

Список неметаллов с наиболее выраженными характеристиками:

  1. фтор;
  2. кислород;
  3. азот;
  4. хлор;
  5. бром.

Неметаллические и металлические свойства объясняются тем, что все химические вещества стремятся завершить свой энергетический уровень. Для этого на последнем электронном уровне должно быть 8 электронов. У атома фтора на последней электронной оболочке 7 электронов, стремясь завершить ее, он притягивает ещё один электрон. У атома натрия на внешней оболочке один электрон, чтобы получить 8, ему проще отдать 1, и на последнем уровне окажется 8 отрицательно заряженных частиц.

Благородные газы не взаимодействуют с другими веществами именно из-за того, что у них завершён энергетический уровень, им не нужно ни притягивать, ни отдавать электроны.

Как изменяются металлические свойства в периодической системе

Периодическая таблица Менделеева состоит из групп и периодов. Периоды располагаются по горизонтали таким образом, что первый период включает в себя: литий, бериллий, бор, углерод, азот, кислород и так далее. Химические элементы располагаются строго по увеличению порядкового номера.

Группы располагаются по вертикали таким образом, что первая группа включает в себя: литий, натрий, калий, медь, рубидий, серебро и так далее. Номер группы указывает на количество отрицательных частиц на внешнем уровне определённого химического элемента. В то время, как номер периода указывает на количество электронных облаков.

Металлические свойства усиливаются в ряду справа налево или, по-другому, ослабевают в периоде. То есть магний обладает большими металлическими свойствами, чем алюминий, но меньшими, нежели натрий. Это происходит потому, что в периоде количество электронов на внешней оболочке увеличивается, следовательно, химическому элементу сложнее отдавать свои электроны.

В группе все наоборот, металлические свойства усиливаются в ряду сверху вниз. Например, калий проявляется сильнее, чем медь, но слабее, нежели натрий. Объяснение этому очень простое, в группе увеличивается количество электронных оболочек, а чем дальше электрон находится от ядра, тем проще элементу его отдать. Сила притяжения между ядром атома и электроном в первой оболочке больше, чем между ядром и электроном в 4 оболочке.

Сравним два элемента – кальций и барий. Барий в периодической системе стоит ниже, чем кальций. А это значит, что электроны с внешней оболочки кальция расположены ближе к ядру, следовательно, они лучше притягиваются, чем у бария.

Сложнее сравнивать элементы, которые находятся в разных группах и периодах. Возьмём, к примеру, кальций и рубидий. Рубидий будет лучше отдавать отрицательные частицы, чем кальций. Так как он стоит ниже и левее. Но пользуясь только таблицей Менделеева нельзя однозначно ответить на этот вопрос сравнивая магний и скандий (так как один элемент ниже и правее, а другой выше и левее). Для сравнения этих элементов понадобятся специальные таблицы (например, электрохимический ряд напряжений металлов).

Как изменяются неметаллические свойства в периодической системе

Неметаллические свойства в периодической системе Менделеева изменяются с точностью до наоборот, нежели металлические. По сути, эти два признака являются антагонистами.

Неметаллические свойства усиливаются в периоде (в ряду справа налево). Например, сера способна меньше притягивать к себе электроны, чем хлор, но больше, нежели фосфор. Объяснение этому явлению такое же. Количество отрицательно заряженных частиц на внешнем слое увеличивается, и поэтому элементу легче закончить свой энергетический уровень.

Неметаллические свойства уменьшаются в ряду сверху вниз (в группе). Например, фосфор способен отдавать отрицательно заряженные частицы больше, чем азот, но при этом способен лучше притягивать, нежели мышьяк. Частицы фосфора притягиваются к ядру лучше, чем частицы мышьяка, что даёт ему преимущество окислителя в реакциях на понижение и повышение степени окисления (окислительно-восстановительные реакции).

Сравним, к примеру, серу и мышьяк. Сера находится выше и правее, а это значит, что ей легче завершить свой энергетический уровень. Как и металлы, неметаллы сложно сравнивать, если они находятся в разных группах и периодах. Например, хлор и кислород. Один из этих элементов выше и левее, а другой ниже и правее. Для ответа придётся обратиться к таблице электроотрицательности неметаллов, из которой мы видим, что кислород легче притягивает к себе отрицательные частицы, нежели хлор.

Периодическая таблица Менделеева помогает узнать не только количество протонов в атоме, атомную массу и порядковый номер, но и помогает определить свойства элементов.

Видео

Видео поможет вам разобраться в закономерности свойств химических элементов и их соединений по периодам и группам.

liveposts.ru

Как изменяются свойства хим. элементов в периодах и группах?

Группы короткопериодной таблицы делятся на подгруппы (главные и побочные) , совпадающие с группами длиннопериодной таблицы.

У всех атомов элементов одного периода одинаковое число электронных слоев, равное номеру периода.

Число элементов в периодах: 2, 8, 8, 18, 18, 32, 32. Большинство элементов восьмого периода получены искусственно, последние элементы этого периода еще не синтезированы. Все периоды, кроме первого начинаются с элемента, образующего щелочной металл (Li, Na, K и т. д.) , а заканчиваются элементом, образующим благородный газ (He, Ne, Ar, Kr и т. д.) .

В короткопериодной таблице - восемь групп, каждая из которых делится на две подгруппы (главную и побочную) , в длиннопериодной таблице - шестнадцать групп, которые нумеруются римскими цифрами с буквами А или В, например: IA, IIIB, VIA, VIIB. Группа IA длиннопериодной таблицы соответствует главной подгруппе первой группы короткопериодной таблицы; группа VIIB - побочной подгруппе седьмой группы: остальные - аналогично.

Характеристики химических элементов закономерно изменяются в группах и периодах.

В периодах (с увеличением порядкового номера)

увеличивается заряд ядра, увеличивается число внешних электронов, уменьшается радиус атомов, увеличивается прочность связи электронов с ядром (энергия ионизации) , увеличивается электроотрицательность, усиливаются окислительные свойства простых веществ ("неметалличность"), ослабевают восстановительные свойства простых веществ ("металличность"), ослабевает основный характер гидроксидов и соответствующих оксидов, возрастает кислотный характер гидроксидов и соответствующих оксидов.В группах (с увеличением порядкового номера)

увеличивается заряд ядра, увеличивается радиус атомов (только в А-группах) , уменьшается прочность связи электронов с ядром (энергия ионизации; только в А-группах) , уменьшается электроотрицательность (только в А-группах) , ослабевают окислительные свойства простых веществ ("неметалличность"; только в А-группах) , усиливаются восстановительные свойства простых веществ ("металличность"; только в А-группах) , возрастает основный характер гидроксидов и соответствующих оксидов (только в А-группах) , ослабевает кислотный характер гидроксидов и соответствующих оксидов (только в А-группах) , снижается устойчивость водородных соединений (повышается их восстановительная активность; только в А-группах) .

Подробнее посмотрите здесь: http://www.samfact.com/Mendeelev_system_of_chemical_elements

otvet.mail.ru

Металлические и неметаллические свойства химических элементов.

а) Закономерности, связанные с металлическими и неметаллическими свойствами элементов.

1. При перемещении вдоль периода СПРАВА НАЛЕВО металлические свойства элементов УСИЛИВАЮТСЯ. В обратном направлении возрастают неметаллические.

Слева направо в периоде также увеличивается и заряд ядра. Следовательно, увеличивается притяжение к ядру валентных электронов и затрудняется их отдача.

2. При перемещении СВЕРХУ ВНИЗ вдоль групп УСИЛИВАЮТСЯ МЕТАЛЛИЧЕСКИЕ свойства элементов. Это связано с тем, что ниже в группах расположены элементы, имеющие уже довольно много заполненных электронных оболочек. Их внешние оболочки находятся дальше от ядра.

б) Закономерности, связанные с окислительно-восстановительными свойствами. Изменения электроотрицательности элементов.

1. СЛЕВА НАПРАВО УСИЛИВАЮТСЯ ОКИСЛИТЕЛЬНЫЕ свойства, а при движении СВЕРХУ ВНИЗ - ВОССТАНОВИТЕЛЬНЫЕ свойства элементов.

2. ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ ВОЗРАСТАЕТ тоже СЛЕВА НАПРАВО, достигая максимума у галогенов.

3. При перемещении СВЕРХУ ВНИЗ по группам ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ УМЕНЬШАЕТСЯ. Это связано с возрастанием числа электронных оболочек, на последней из которых электроны притягиваются к ядру все слабее и слабее.

в) Закономерности, связанные с размерами атомов.

1. Размеры атомов (АТОМНЫЕ РАДИУСЫ) при перемещении СЛЕВА НАПРАВО вдоль периода УМЕНЬШАЮТСЯ.

2. При перемещении СВЕРХУ ВНИЗ АТОМНЫЕ РАДИУСЫ элементов РАСТУТ, потому что заполнено больше электронных оболочек.

Вопрос 3.

Строение вещества. Гибридизация орбиталей. Типы химических связей. Потенциал ионизации и электроотрицательность.

Строение вещества

Все тела состоят из отдельных частиц — молекул и атомов. Молекулы — это наименьшие частицы вещества. Молекулы состоят из атомов.

Основные сведения о составе вещества:

1) Все тела состоят из отдельных частиц (молекул и атомов), между которыми есть промежутки.

2) Молекулы непрерывно и хаотично движутся.

3) Молекулы взаимодействуют между собой (притягиваются и отталкиваются).

Свойства молекул:

1) Молекулы одного и того же вещества одинаковы.

2) При нагревании промежутки между молекулами увеличиваются, а при охлаждении — уменьшаются.

3) С увеличением температуры, скорость движения молекул возрастает.

По типу строения все вещества делятся на молекулярные и немолекулярные. Среди органических веществ преобладают молекулярные вещества, среди неорганических - немолекулярные.

По типу химической связи вещества делятся на вещества с ковалентными связями, вещества с ионными связями (ионные вещества) и вещества с металлическими связями (металлы).

Вещества с ковалентными связями могут быть молекулярными и немолекулярными. Это существенно сказывается на их физических свойствах.

Молекулярные вещества состоят из молекул, связанных между собой слабыми межмолекулярными связями, к ним относятся: h3, O2, N2, Cl2, Br2, S8, P4 и другие простые вещества; CO2, SO2, N2O5, h3O, HCl, HF, Nh4, Ch5, C2H5OH, органические полимеры и многие другие вещества. Эти вещества не обладают высокой прочностью, имеют низкие температуры плавления и кипения, не проводят электрический ток, некоторые из них растворимы в воде или других растворителях.

Немолекулярные вещества с ковалентными связями или атомные вещества (алмаз, графит, Si, SiO2, SiC и другие) образуют очень прочные кристаллы (исключение - слоистый графит), они нерастворимы в воде и других растворителях, имеют высокие температуры плавления и кипения, большинство из них не проводит электрический ток (кроме графита, обладающего электропроводностью, и полупроводников - кремния, германия и пр.)

Все ионные вещества, естественно, являются немолекулярными. Это твердые тугоплавкие вещества, растворы и расплавы которых проводят электрический ток. Многие из них растворимы в воде.

Гибридизация орбиталей

Гибридизация орбиталей - это изменение формы некоторых орбиталей при образовании ковалентной связи для достижения более эффективного перекрывания орбиталей.

sp3- Гибридизация. Одна s- орбиталь и три p- орбитали превращаются в четыре одинаковые "гибридные" орбитали, угол между осями которых равен 109°28'. Молекулы, в которых осуществляется sp3- гибридизация, имеют тетраэдрическую геометрию (Ch5, Nh4). sp2- Гибридизация. Одна s- орбиталь и две p- орбитали превращаются в три одинаковые "гибридные" орбитали, угол между осями которых равен 120°. Молекулы, в которых осуществляется sp2- гибридизация, имеют плоскую геометрию. sp- Гибридизация. Одна s- орбиталь и одна p- орбиталь превращаются в две одинаковые "гибридные" орбитали, угол между осями которых равен 180°. Молекулы, в которых осуществляется sp- гибридизация, имеют линейную геометрию.

Типы химических связей.

1) Ионная (металл + неметалл)

2) Ковалентная (неметалл + неметалл с помощью общих электронных пар)Виды: * полярная (разные неметаллы)* неполярная (одинаковые неметаллы)Виды: * образована обменным механизмом* образована донорно-акцепторным механизмом

Обменный механизм - в образовании связи участвуют одноэлектронные атомные орбитали, т.е. Каждый из атомов предоставляет в общее пользование по одному электрону:

Донорно-акцепторный механизм (координационная связь) — химическая связь между двумя атомами или группой атомов, осуществляемая за счет неподеленной пары электронов одного атома (донора) и свободной орбитали другого атома (акцептора) .

3) Металлическая (между атомами металлов, между ионами металлов и общими свободными электронами)

4) Водородная (между водородом одной молекулы и другим более электроотрицательным элементом (O, S, N, F) и с другой молекулой)

Потенциал ионизации атома - минимальная разность потенциалов U, которую должен пройти электрон в ускоряющем электрическом поле, чтобы приобрести кинетическую энергию, достаточную для ионизации атома.

Электроотрицательность (ЭО)– относительная способность атомов притягивать электроны при связывании с другими атомами. Электроотрицательность характеризует способность атома к поляризации химических связей.

Вопрос 4.



infopedia.su

Нужна помощь! Пожалуйста объясните, что такое металлические и неметаллические свойства.

Закономерности, связанные с металлическими и неметаллическими свойствами элементов.

1. При перемещении СПРАВА НАЛЕВО вдоль ПЕРИОДА МЕТАЛЛИЧЕСКИЕ свойства р-элементов УСИЛИВАЮТСЯ. В обратном направлении - возрастают неметаллические.

Это объясняется тем, что правее находятся элементы, электронные оболочки которых ближе к октету. Элементы в правой части периода менее склонны отдавать свои электроны для образования металлической связи и вообще в химических реакциях.

Например, углерод - более выраженный неметалл, чем его сосед по периоду бор, а азот обладает еще более яркими неметаллическими свойствами, чем углерод.

Слева направо в периоде также увеличивается и заряд ядра. Следовательно, увеличивается притяжение к ядру валентных электронов и затрудняется их отдача.

Наоборот, s-элементы в левой части таблицы имеют мало электронов на внешней оболочке и меньший заряд ядра, что способствует образованию именно металлической связи. За понятным исключением водорода и гелия (их оболочки близки к завершению или завершены!) , все s-элементы являются металлами; p-элементы могут быть как металлами, так и неметаллами, в зависимости от того - в левой или правой части таблицы они находятся.

У d- и f-элементов, как мы знаем, есть "резервные" электроны из "предпоследних" оболочек, которые усложняют простую картину, характерную для s- и p-элементов. В целом d- и f-элементы гораздо охотнее проявляют металлические свойства.

Подавляющее число элементов является металлами и только 22 элемента относят к неметаллам: H, B, C, Si, N, P, As, O, S, Se, Te, а также все галогены и инертные газы.

Некоторые элементы в связи с тем, что они могут проявлять лишь слабые металлические свойства, относят к полуметаллам.

Что такое полуметаллы? Если выбрать из Периодической таблицы p-элементы и записать их в отдельный "блок" (это сделано в “длинной” форме таблицы) , то обнаружится закономерность. Левая нижняя часть блока содержит типичные металлы, правая верхняя - типичные неметаллы. Элементы, занимающие места на границе между металлами и неметаллами, называются полуметаллами.

Полуметаллы имеют ковалентную кристаллическую решетку при наличии металлической проводимости (электропроводности) . Валентных электронов у них либо недостаточно для образования полноценной "октетной" ковалентной связи (как в боре) , либо они не удерживаются достаточно прочно (как в тeллуре или полонии) из-за больших размеров атома. Поэтому связь в ковалентных кристаллах этих элементов имеет частично металлический характер.

Некоторые полуметаллы (кремний, германий) являются полупроводниками. Полупроводниковые свойства этих элементов объясняются многими сложными причинами, но одна из них - существенно меньшая (хотя и не нулевая) электропроводность, объясняемая слабой металлической связью. Роль полупроводников в электронной технике чрезвычайно важна.

2. При перемещении СВЕРХУ ВНИЗ вдоль групп УСИЛИВАЮТСЯ МЕТАЛЛИЧЕСКИЕ свойства элементов. Это связано с тем, что ниже в группах расположены элементы, имеющие уже довольно много заполненных электронных оболочек. Их внешние оболочки находятся дальше от ядра. Они отделены от ядра более толстой "шубой" из нижних электронных оболочек и электроны внешних уровней удерживаются слабее.

Источник: http://www.hemi.nsu.ru/text146.htm

otvet.mail.ru

Усиление металлических свойств в таблице менделеева

Усиление металлических свойств в таблице менделеева наблюдается с право на лево. В противоположном направлении возрастают неметаллические ионы.

Это связано с тем, что справа находятся элементы, электронные оболочки которых ближе к октету. Элементы с правой стороны периода редко выделяют свои электроны для образования металлической связи и, как правило, химических реакций.

Например, углерод является более выраженным неметаллием, чем его сосед в период бора, а азот даже имеет более яркие неметаллические свойства, чем углерод.

Слева направо ядерный заряд также увеличивается за этот период. В результате притяжение к сердечнику валентных электронов возрастает и их отталкивание затруднено.

Напротив, s-элементы в левой части таблицы имеют немного электронов на внешней оболочке и более низкий заряд ядра, что способствует образованию металлической связи. С понятным исключением из водорода и гелия (их оболочки близки к завершению или полны!), Все s-элементы - это металлы; p элементы могут быть либо металлами, либо неметаллами, в зависимости от того, находятся ли они на левой или правой стороне таблицы.

Как известно, элементы d и f имеют «резервные» электроны из «предпоследних» оболочек, что усложняет простой образ, типичный для s и p элементов. В общем случае d- и f-элементы обладают гораздо более вероятными металлическими свойствами.

Подавляющее число элементов - это металлы, и только 22 элемента классифицируются как неметаллы: H, B, C, Si, N, P, As, O, S, Se, Te и все галогены и инертные газы.

Некоторые элементы называются полуметаллами из-за того, что они могут проявлять только слабые металлические свойства.

Что такое полуметаллы? Если вы выбираете p элементов из периодической системы и записываете их в отдельный «блок» (это происходит в «длинной» форме таблицы), регулярность показана на рисунке 4-7. Левая нижняя часть блока содержит типичные металлы, правая верхняя часть содержит типичные неметаллы. Элементы, занимающие места на границе между металлами и неметаллами, иногда называют полуметаллами.

Полуметаллы имеют ковалентную кристаллическую решетку при металлической проводимости (электропроводность). Валентные электроны либо недостаточны для образования полной «октетной» ковалентной связи (как в боре), либо они недостаточно захвачены (как в пластинах или полонии) из-за больших размеров атома. Поэтому связывание в ковалентных кристаллах этих элементов имеет частичный металлический характер.

Некоторые полуметаллы (кремний, германий) являются полупроводниками. Полупроводниковые свойства этих элементов объясняются многими сложными причинами, но одна из них представляет собой гораздо меньшую (хотя и не нулевую) электропроводность, объясненную слабой металлической связью. Роль полупроводников в электронной технике чрезвычайно важна.

Если вы перемещаете вниз вдоль групп, свойства металла элементов улучшаются. Это связано с тем, что в группах ниже групп есть элементы, у которых уже есть много заполненных электронных лотков. Их внешние оболочки удаляются из ядра. Они отделены от ядра более толстой «оболочкой» от нижних электронных оболочек, а электроны внешних плоскостей слабее ослаблены.

xn--d1aca5absbidce4b.xn--p1ai

Металлические и неметаллические свойства простых веществ

У атомов металлов малых периодов (I—III) на внешнем электронном слое находится от 1 до 3 электронов, а у атомов неметаллов — от 4 до 8. Исключение составляют атомы водорода — 1 электрон и бора — 3 электрона.

Зная характер изменения радиусов атомов по группам и периодам, а также их электронную структуру, можно объяснить причину изменения металлических и неметаллических свойств атомов элементов, точнее, их простых веществ.

Проявление металлических свойств определяется, прежде всего, способностью атомов данного элемента отдавать электроны с внешнего электронного слоя. Именно наличием у металлов свободных электронов обусловлена их высокая электропроводность.

И наоборот, способность атомов данного элемента присоединять электроны определяет неметаллические свойства его простого вещества.

Усиление металлических свойств щелочных металлов с возрастанием атомного номера элемента связано прежде всего с увеличением радиусов их атомов, т. е. с ростом числа электронных слоев. Электрон на внешнем электронном слое у этих атомов все слабее связан с ядром, поэтому легче отрывается. Одновременно усиливаются основные свойства оксидов и гидроксидов этих элементов, поскольку они определяются металлическими свойствами.

В противоположность этому неметаллические свойства элементов группы галогенов ослабевают с увеличением зарядов ядер их атомов, так как растет число электронных слоев. Внешний слой находится все дальше от ядра, поэтому электроны, находящиеся на этом слое, слабее связаны с ядром. Кислотные свойства у оксидов и гидроксидов этих элементов также ослабляются.

Таким образом, в главных группах (группах А) периодической системы с ростом зарядов ядер атомов химических элементов усиливаются металлические свойства их простых веществ и, соответственно, ослабевают неметаллические. Это особенно наглядно проявляется в группе IVA. В ней свойства простых веществ химических элементов изменяются от неметаллических (у углерода и кремния) к металлическим (у олова и свинца).

Закономерности изменения различных характеристик химических элементов в малых периодах и главных группах периодической системы на примере IVA-группы показаны в таблице ниже.

Номер периодаСимвол элементаЗаряд ядра атомаЧисло электронных слоевЧисло электронов на внешнем слоеВалентность в высших оксидах
1
2C6+24IV
3Si14+34IV
4Ge32+44IV
5Sn50+54IV
6Pb82+64IV

В малых периодах с ростом зарядов ядер атомов увеличивается и число электронов на внешнем слое. Они сильнее притягиваются к ядру, поэтому атомам все труднее отдавать электроны и легче присоединять их. По этой причине в периоде у атомов химических элементов ослабевают металлические и усиливаются неметаллические свойства. Аналогично в периоде с ростом зарядов ядер атомов свойства оксидов и гидроксидов изменяются от основных к кислотным. Вам необходимо включить JavaScript, чтобы проголосовать

abouthist.net

Металлические и неметаллические свойства: таблица как ориентир

Понятие «металлы» все себе так или иначе представляют. Железо, серебро, золото, медь, свинец. Эти названия постоянно встречаются в новостях, так что мало кто будет задавать вопрос о том, что такое металлы. И все же не мешало бы узнать о том, что такое металлы с позиций химика и физика, если вы хотите иметь в голове системную картину мира. А уж для полноты знаний по этой теме не мешало бы узнать и о других группах – неметаллах и металлоидах. Что такое металлические и неметаллические свойства?

Если память подвела

Неметаллы кажутся более загадочными, особенно для тех, кто плохо помнит школьный курс химии, поэтому сконцентрируемся на неметаллических свойствах, а металлические, соответственно, нужно считать противоположными. В том, что вы не помните, нет ничего позорного, человеческому мозгу трудно удерживать в сознании информацию, которая не нужна каждый день. Итак, перечислим неметаллические свойства и прокомментируем их, чтобы сделать более понятными.

Ни тепла, ни электричества

Неметаллы гораздо хуже металлов проводят электричество, а также теплоту. Поэтому керамическая кружка, во-первых, лучше держит тепло, чем металлическая, а во-вторых, вероятность обжечь руки о такую кружку гораздо меньше, чем о солдатскую железную кружку. И помните, по технике безопасности оттаскивать от источника тока пораженного человека нельзя с помощью металлических предметов. А вот деревом пользоваться можно, углерод в составе дерева – неметалл. Свойство металлов – проводить ток хорошо, неметаллические свойства включают низкую проводимость.

Хрупкость или пластичность

Чистые вещества из неметаллов обычно хрупки или вообще нередко в твердом состоянии существуют в виде порошка. Металлы ковкие, могут принимать под воздействием инструментов и температуры самые необычные застывшие формы (этим качеством пользуются в литейном деле). Неметаллы так не обработаешь. Неметаллы часто, даже если и встречаются в виде кусочков, все равно имеют низкую плотность и нередко на вид пористые.

Таблица как карта местности

Если вы «идете» по таблице Менделеева слева направо, обязательно заметите, что неметаллические свойства усиливаются слева направо. Гелий – самый большой «отличник неметаллов». А вот если спускаться вниз по таблице, то неметаллические свойства угасают. Металлы же становятся все более агрессивными по мере того, как вы спускаетесь вниз по таблице Менделеева. Таким образом, по таблице Менделеева можно примерно предполагать свойства простых веществ, состоящих из атомов конкретных элементов. Вещества «посередине» называются металлоидами и применяются нередко в электротехнике как полупроводники.

Польза неметаллов

Общей сферы применения для всех неметаллов нет. У каждого своя «специализация», ведь неметаллические материалы - разные. Инертные газы используют для наружной рекламы, селен – для тонеров в печатной индустрии, сера идет на спички. Мы постоянно встречаемся в повседневной жизни с материалами, которые состоят из производных неметаллов.

Таким образом, неметаллические свойства, как и металлические, можно предсказать по таблице Менделеева. И эти закономерности очень интересны, ведь таблица хранит еще много неоткрытых тайн, которые позволяют ученым заглянуть далеко в прошлое, а возможно, и в будущее. Особенно интересно будущее металлоидов.

fb.ru