Содержание
Устройство автомобиля для начинающих и «Чайников»
В конструкции двигателя внутреннего сгорания (неважно бензинового или дизельного) обязательно предусмотрено устройство, регулирующее движение газов (топливо-воздушная смесь, отработавшие газы) – газораспределительный механизм (ГРМ). Ремень ГРМ – приводная основа такого механизма и без правильной работы ремня невозможна работа двигателя в целом.
Читать дальше >>
Разница в диапазонах угловых скоростей двигателя и колёс автомобиля во все времена была и остаётся предметом исследований и инженерных решений для устройств, имя которым – трансмиссия. Развитие удобных в управлении автоматических бесступенчатых трансмиссий автомобиля и привело в последние годы к практическому использованию вариатора.
Читать дальше >>
Посещение автосервиса иногда связано у далёких от техники автовладельцев с проведением операций, название и суть которых остаётся им непонятна. Замена сайлентблоков – одна из таких операций, причем убедиться в её необходимости в условиях сервисной станции часто не составляет труда, а своевременность замены – важный фактор нормальной работы ходовой системы автомобиля.
Читать дальше >>
Первый в мире автомобиль с бензиновым мотором был запатентован еще в далеком 1885 году гениальным немецким инженером Карлом Бенцом. Поразительно, но и в наши дни машина состоит из тех же основных частей, что и сто лет назад – это кузов, шасси и двигатель. Давайте подробнее рассмотрим из чего состоит автомобиль и его основные части.
Читать дальше >>
Двигатель внутреннего сгорания (ДВС) – это самый распространенный тип двигателя из всех, которые устанавливаются в настоящее время на автомобили. Несмотря на то, что современный двигатель внутреннего сгорания состоит из тысячи частей, принцип его работы весьма прост. В рамках данной статьи мы рассмотрим устройство и принцип работы ДВС.
Читать дальше >>
Инжектор – это самый популярный электронно-механический узел в автомобилестроении. Устройство и принцип работы инжектора одновременно просты и сложны. Конечно, рядовому автовладельцу необязательно вникать в детали конструкции инжекторных систем и их программного обеспечения, но основные моменты знать не помешает.
Читать дальше >>
Двигатель GDI с непосредственным впрыском топлива по конструкции системы питания напоминает топливную аппаратуру современных дизелей: есть и насос высокого давления, и ввернутые в головку двигателя электромагнитные форсунки. Многие автопроизводители в последние годы стали серийно выпускать двигатели GDI.
Читать дальше >>
Датчик положения дроссельной заслонки (ДПДЗ) является одной из современных разработок, направленных на экономию топлива в автомобилях с электронным управлением впрыском воздушно-топливной смеси. Такой датчик устанавливается не только в иномарках, но и в отечественных машинах, начиная с 2000г выпуска. И все же, ДПДЗ – что это такое?
Читать дальше >>
Коробка переключения передач (КПП) – это механизм, который преобразует крутящий момент, передающийся ведущим колесам от коленчатого вала двигателя, по величине и направлению. Именно с помощью коробки передач автомобиль способен двигаться вперед и назад, а его двигатель – отключаться от ведущих колес.
Читать дальше >>
Сцепление – это механизм, предназначенный для передачи крутящего момента двигателя к коробке передач, а также плавного соединения и разъединения двигателя с механизмами трансмиссии. С его помощью можно начинать движение на автомобиле, переключать передачи, останавливаться с работающим двигателем, маневрировать при резком изменении скорости.
Читать дальше >>
ᐉ Устройство автомобиля.
Всё об автомобиле
Видео: Общее устройство легкового автомобиля в 3D. Как работает автомобиль? Устройство двигателя автомобиля. Двигатель внутреннего сгорания (ДВС) в 3D. Общее устройство грузового автомобиля. Электрооборудование автомобиля: устройство и основные неисправности
В наше время автомобиль уже не является роскошью. Практически каждый человек может позволить себе приобрести его. Но зачастую очень мало людей знакомы с устройством автомобиля, хотя каждому водителю очень важно знать о том из каких основных частей, узлов и агрегатов состоит транспортное средство. В первую очередь это необходимо когда происходит какая-то поломка автомобиля, благодаря тому что владелец хотя бы в общих чертах знаком с конструкцией машины, он может определить где же именно случилась неисправность. Существует огромное количество самых различных марок и моделей машин, но в своём большинстве все легковые автомобили имеют одинаковую конструкцию. Разберём устройство легкового автомобиля.
Легковой автомобиль состоит из 5 основных частей:
- кузов (несущая конструкция)
- ходовая часть
- трансмиссия
- двигатель внутреннего сгорания (бензиновый или дизельный)
- система управления двигателем и электрооборудование
Кузов
Кузов — та часть автомобиля на которую крепятся все остальные составляющие. Стоит отметить, что когда только появились автомобили, они не имели кузова. Все узлы крепились к раме, из-за чего автомобиль становился достаточно тяжёлым. Чтобы снизить вес производители отказались от рамы, и заменили её кузовом.
Кузов состоит из четырёх основных частей:
- передний лонжерон
- задний лонжерон
- моторный отсек
- крыша автомобиля
- навесные составляющие
Надо заметить, что такое разделение деталей достаточно условно, потому что все детали взаимосвязаны друг с другом и образуют одну конструкцию. Опорой для подвески являются лонжероны, которые привариваются к днищу. Двери, крышка багажника, капот и крылья относятся больше к навесным составляющим. Также надо отметить и задние крылья, которые присваиваются непосредственно к кузову, а вот передние бывают съёмными (всё зависит от производителя).
Ходовая часть
Ходовая часть состоит из огромного количества самых разнообразных узлов и агрегатов, благодаря которым автомобиль и имеет возможность передвигаться. Основными составляющими ходовой части являются:
- передняя подвеска
- задняя подвеска
- колёса
- ведущие мосты
Чаще всего на современные автомобили производители устанавливают переднюю независимую подвеску, т.к. она обеспечивает наилучшее управление, а также что не мало важно — комфорт. В независимой подвеске все колёса крепятся к кузову с помощью собственной крепёжной системы, за счёт чего обеспечивается прекрасное управление автомобилем.
Нельзя забывать и про уже устаревшую, но всё равно присутствующую во многих автомобилях зависимую подвеску. Задняя зависимая подвеска в основном представляет собой жёсткую балку или ведущий мост, если конечно рассматривать автомобиль с задним приводом.
Трансмиссия
Трансмиссия автомобиля — это совокупность механизмов и агрегатов для передачи крутящего момента от двигателя к ведущим колесам. Из составляющих трансмиссии можно выделить три основных узла:
- коробка переключения передач или просто КПП (механические, роботизированные, автоматические или вариаторные)
- ведущий мост или мосты (в зависимости от производителя)
- шарнир равных угловых скоростей или, если выразится проще, карданная передача
Для того чтобы обеспечить плавную передачу крутящего момента на автомобиле установлено сцепление, благодаря которому происходит соединение вала двигателя с валом коробки передач. Сама коробка переключения передача нужна для того чтобы изменять передаточное число, а также уменьшать нагрузку на сам двигатель. Карданная передача необходима чтобы соединять коробку переключения передач непосредственно с колёсами или с ведущим мостом. А сам ведущий мост монтируется в корпусе коробки передач, если у машины передний привод. Если у автомобиля задний привод то ведущий мост служит задней балкой.
Двигатель
Двигатель — это сердце машины, которое состоит из большого количества различных частей.
Основное назначение двигателя – это преобразование тепловой энергии сгорающего топлива в механическую энергию, которая с помощью трансмиссии передаётся на колёса.
Система управления двигателем и электрооборудование
К основным элементам электрооборудования автомобиля относятся:
- аккумуляторная батарея (или просто АКБ)
- система управление двигателем
- электропроводка
- генератор переменного тока
- потребители самой электроэнергии
Аккумуляторная батарея (АКБ) предназначена главным образом для запуска самого двигателя автомобиля. АКБ является постоянным возобновляемым источником энергии. Если двигатель не запущен, то именно благодаря АКБ осуществляется работа всех устройств, работающих за счёт электроэнергии.
Генератор нужен для того чтобы происходила постоянная подзарядка АКБ, а также для поддержания постоянного напряжения в борт–сети.
Система управления двигателем состоит из всевозможных датчиков и электронного блока управления, который сокращённо называется ЭБУ.
Потребителями электроэнергии о которых говорилось чуть выше являются:
- система зажигания
- система пуска двигателя
- задние фонари
- фары
- электроподъёмники стекол
- стеклоочистители
- а также другие электронные устройства
Нельзя забыть и о электропроводке, которая состоит из большого количества проводов. Эти провода и составляют бортовую сеть всего автомобиля, которая соединяет воедино все источники, а также потребители электроэнергии.
Видео: Общее устройство автомобиля
Ответы на вопросы
Что такое двигатель внутреннего сгорания?
Двигатель внутреннего сгорания — это двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя. ДВС преобразует тепловую энергию от сгорания топлива в механическую работу.
Что такое коробка передач?
Коробка передач — это механизм для изменения крутящего момента, передаваемого от коленчатого вала двигателя к ведущим колесам, для движения автомобиля задним ходом и длительного разобщения двигателя от трансмиссии во время стоянки автомобиля и при движении его по инерции (накатом).
Что такое подвеска автомобиля?
Подвеска — это совокупность деталей, узлов и механизмов, играющих роль соединительного звена между кузовом автомобиля и дорогой.
Что такое кузов?
Кузов – элемент несущей части, обеспечивающий размещение пассажиров и грузов, и очень часто выступающий в качестве остова для закрепления основных агрегатов и узлов автомобиля.
Другие материалы по теме Устройство Автомобиля в сети
- amastercar.ru: https://amastercar.ru/articles/auto_repair_device.shtml
- Инжиниринговый центр SENSYS: https://pro-sensys.
com/info/articles/obzornye-stati/ustroystvo-konstruktsiya-avtomobilya/
- autoezda.com: https://www.autoezda.com
- zsd-kabinet.ru: https://zsd-kabinet.ru/uchebnik-po-ustrojstvu-avtomobilya-ustrojstvo-avtomobilya
- Википедия: https://ru.wikipedia.org/wiki/Конструкция_автомобиля
Токарная обработка, фрезерование и сверление – Trimantec
Опубликовано Группа технических коммуникаций ·
Что такое обработка?
В предыдущем блоге мы сосредоточились на будущем 3D-печати, также известной как аддитивное производство. Аддитивное производство требует наложения слоев материала друг на друга для формирования трехмерного объекта. Механическая обработка — это еще один метод производства того же объекта. Вместо добавления материала удаление материала позволяет достичь желаемой формы. Можно сказать, что 3D-печать подобна кладке кирпичей, а механическая обработка — лепке.
При механической обработке несколько операций выполняются в запланированной последовательности для достижения наилучших результатов. Мы рассмотрим три наиболее распространенных операции, включая токарную обработку, сверление и фрезерование. Механическая обработка является очень распространенным и универсальным производственным процессом. Таким образом, с помощью этих трех методов можно обрабатывать различные типы материалов. Металлы, пластмассы, композиты и дерево — все это возможные материалы для изготовления деталей.
Содержание:
Станкостроение
Типы станков
Одноточечные инструменты —
- Процесс токарной обработки: этот тип инструмента вращает заготовку, в то время как режущий инструмент движется линейно. Этот процесс может быть выполнен вручную или автоматически
Многолезвийные инструменты —
- Процесс сверления: Инструмент создает или уточняет круглые отверстия в заготовке.
Обычно это делается с помощью вращающегося инструмента с двумя или четырьмя спиральными режущими кромками
- Процесс фрезерования: этот тип инструмента создает рисунки путем удаления материала с заготовки путем вращения режущего инструмента
.
Инструменты с одной и несколькими точками
Желаемая форма материала будет определять, какой тип инструментов вам понадобится для работы. Двумя основными типами режущих инструментов являются одноточечные и многоточечные инструменты. Используйте одноточечные инструменты для точения, растачивания и строгания. Используйте многоточечные инструменты для фрезерования и сверления. Крайне важно правильно использовать и обслуживать режущие инструменты в целях обеспечения качества. К сожалению, надлежащее содержание машин и инструментов может обойтись дорого.
Инструмент доступен из различных материалов. Наиболее распространены карбид и быстрорежущая сталь. Вы можете использовать быстрорежущую сталь (HSS) для фрезерования общего назначения. Но выберите карбид для обработки более прочных и твердых инструментальных сталей.
Скорость резания, скорость подачи, глубина
Скорость резания, скорость подачи и глубина резания — все это параметры, которые следует учитывать при обработке. Материал заготовки, инструментальный материал и размеры будут влиять на эти параметры. Скорость резания показывает, насколько быстро режущий инструмент врезается в материал заготовки. Измеряется в поверхностных футах в минуту. Подача при резке показывает, насколько быстро заготовка перемещается поперек своей оси по направлению к режущему инструменту. Измеряется в дюймах в минуту.
Калькулятор скорости и подачи
Калькулятор скорости вращения и подачи
Калькулятор скорости сверления и подачи
Калькулятор скорости фрезерования и подачи
Как и при художественной лепке, заготовка сначала подвергается одному или нескольким черновым проходам. Их цель – максимально приблизиться к готовой форме и размерам. После этапа черновой обработки применяется чистовая обработка для получения окончательных размеров, допусков и чистоты поверхности. Чистовые пропилы обычно выполняются с малыми подачами и глубиной. Применение смазочно-охлаждающей жидкости во время обеих фаз резания охлаждает и смазывает режущий инструмент.
Токарная обработка на станке
Токарная обработка включает вращение заготовки, в то время как режущий инструмент движется линейно. В результате получается цилиндрическая форма. Токарный станок – лучший выбор для всех токарных операций.
Как и большинство операций механической обработки, токарная обработка выполняется вручную или автоматически. Недостатком ручной токарной обработки является необходимость постоянного наблюдения. Автоматического поворота нет. С числовым программным управлением или ЧПУ вы программируете все движения, скорости и изменения инструментов в компьютере. Затем эти инструкции отправляются на токарный станок для завершения. ЧПУ обеспечивает согласованность и эффективность больших производственных циклов.
Одноточечные режущие инструменты, используемые при токарной обработке, бывают различных форм. Они расположены под разными углами для различных результатов.
Калькулятор скорости токарной обработки и подачи
Сверление на станке
Сверление создает круглое отверстие в заготовке. Сверлильный станок или резьбонарезной станок предназначен для сверления, но этот процесс можно выполнить и с помощью фрезерного станка. Стружка – это частицы отходов металла, образующиеся при механической обработке заготовки. Форма сверла способствует отходу стружки от заготовки, предотвращая попадание мусора на заготовку.
Размещение сверла перпендикулярно заготовке уменьшает смещение или занос. Для еще большей точности перед сверлением часто добавляют операцию центровки. Некоторые операции бурения требуют углового сверления. Угловое сверление требует специальной оснастки. Другие варианты включают: вращение головки на ручном станке или использование нескольких осей на станке с ЧПУ.
Способы предотвращения смещения включают:
- Литье/формование/ковка знака
- Центровка
- Точечное/центровое сверление
- Точечная облицовка
Как и при токарных операциях, для конкретных операций сверления существуют разные сверла. Ниже приведены несколько специальных сверл, а также их конкретное использование.
- Центровочные сверла – короткие сверла, используемые для создания неглубоких или направляющих отверстий. При использовании более длинного сверла для таких неглубоких отверстий оно может иметь тенденцию к дрейфу.
- Peck Drilling – частое отведение сверла помогает удалять стружку с заготовки и предотвращает снос.
- Винтовые станки – эти сверла короткие и могут создавать прямые и точные отверстия без необходимости предварительной разметки.
- Патронные развертки – используются для увеличения ранее просверленных отверстий до очень точных диаметров.
Калькулятор скорости сверления и подачи
Процесс фрезерования
Операции фрезерования включают использование многолезвийных фрез для удаления материала с заготовки.
Существует два основных типа фрезерных работ: торцевое фрезерование и периферийное фрезерование. При торцовом фрезеровании плоские поверхности врезаются в заготовку и плоскодонные полости. Подача может быть как горизонтальной, так и вертикальной. Периферийное фрезерование нарезает глубокие пазы, резьбу и зубья шестерен.
Заготовку можно подавать в режущий инструмент одним из двух способов. При обычном фрезеровании заготовка подается против вращения фрезы. Это рекомендуемый метод для ручных фрезерных станков. Попутное фрезерование, с другой стороны, подает заготовку в том же направлении, что и вращение фрезы. Это предпочтительный метод фрезерования с ЧПУ.
Фрезерование лучше всего применять как вторичный процесс к уже обработанной заготовке. Он помогает определить особенности и служит «финишным слоем». Используйте фрезерование в качестве вторичного процесса для добавления таких элементов, как отверстия, пазы, карманы и контуры.
Калькулятор скорости и подачи при фрезеровании
Инновации в обработке
Многое нужно для обработки идеально гладкой, точной и функциональной заготовки. Это требует большого внимания к деталям и опыта. Токарная обработка, сверление и фрезерование — это лишь некоторые из наиболее распространенных процессов механической обработки. Они существуют уже много-много лет. К счастью, с развитием ЧПУ механическая обработка значительно улучшилась. В то время как традиционная обработка по-прежнему используется в производстве, обработка с ЧПУ занимает лидирующие позиции. Это помогает облегчить большие производственные циклы с последовательностью и эффективностью. Если вы хотите быть в курсе последних инноваций и новостей, American Machinist — отличный ресурс.
Имея более чем 20-летний опыт работы в качестве поставщика производственных решений, мы уверены в своей способности разработать индивидуальное решение, соответствующее вашим потребностям. Остались вопросы? Свяжитесь с нами и отправьте нам сообщение или запрос предложения.
Различные виды операций механической обработки и процесс обработки
Во время изготовления детали необходимы различные операции и процессы обработки для удаления лишнего материала. Эти операции обычно механические и включают в себя режущие инструменты, абразивные круги, диски и т. д. Операции механической обработки могут выполняться на заготовках, таких как прутки и листы, или они могут выполняться на деталях, изготовленных с помощью предыдущих методов производства, таких как литье или сварка. С недавним развитием аддитивного производства механическая обработка в последнее время была обозначена как «вычитающий» процесс, описывающий удаление материала для изготовления готовой детали.
Различные виды обработки
Двумя основными процессами механической обработки являются токарная и фрезерная обработка, описанные ниже. Другие процессы иногда согласуются с этими процессами или выполняются на отдельном оборудовании. Например, сверло может быть установлено на токарном станке, используемом для токарной обработки, или закреплено в сверлильном станке. Когда-то можно было провести различие между точением, когда вращается деталь, и фрезерованием, когда вращается инструмент. Это несколько размылось с появлением обрабатывающих и токарных центров, которые способны выполнять все операции отдельных станков на одном станке.
Токарная обработка
Токарная обработка – это процесс механической обработки, выполняемый на токарном станке; токарный станок вращает заготовку, когда режущие инструменты перемещаются по ней. Режущие инструменты работают по двум осям движения, создавая разрезы с точной глубиной и шириной. Токарные станки доступны в двух разных типах: традиционном, ручном, и автоматизированном, с числовым программным управлением (ЧПУ).
Токарная обработка может выполняться как с внешней, так и с внутренней стороны материала. Когда он выполняется внутри, он известен как «расточка» — этот метод (который может быть либо горизонтальным, либо вертикальным в зависимости от ориентации шпинделя) чаще всего применяется для создания трубчатых компонентов. Другая часть процесса токарной обработки называется торцевание» и происходит, когда режущий инструмент перемещается по торцу заготовки — обычно это выполняется на первом и последнем этапах процесса токарной обработки. Торцовку можно наносить только в том случае, если на токарном станке установлены поперечные салазки. Он используется для создания базы на поверхности отливки или заготовки, которая перпендикулярна оси вращения.
Токарные станки обычно идентифицируются как один из трех различных подтипов: токарные станки с револьверной головкой, токарные станки с двигателями и токарные станки специального назначения. Токарные станки с двигателями — наиболее распространенный тип, используемый обычными машинистами или любителями. Револьверные токарные станки и токарные станки специального назначения чаще используются для приложений, требующих многократного изготовления деталей. Револьверный токарный станок оснащен держателем инструмента, который позволяет станку выполнять ряд операций резания последовательно без вмешательства оператора. К токарным станкам специального назначения относятся, например, дисковые и барабанные токарные станки, которые в автомобильной мастерской используют для обработки поверхностей компонентов тормозной системы.
Токарно-фрезерные центры с ЧПУ
сочетают в себе переднюю и заднюю бабки традиционных токарных станков с дополнительными осями шпинделя, что обеспечивает эффективную обработку деталей с осевой симметрией (например, крыльчатки насоса) в сочетании со способностью фрезы выполнять сложные функции. Сложные кривые могут быть созданы путем вращения заготовки по дуге, когда фреза движется по отдельной траектории, процесс, известный как 5-осевая обработка.
Сверление/Растачивание/Развёртывание
Сверление создает цилиндрические отверстия в твердых материалах с помощью сверл — это один из наиболее важных процессов механической обработки, поскольку создаваемые отверстия часто предназначены для облегчения сборки. Часто используется сверлильный станок, но биты также можно вставлять в токарные станки. В большинстве производственных операций сверление является предварительным этапом изготовления готовых отверстий, которые впоследствии нарезаются, расширяются, растачиваются и т. д. для создания резьбовых отверстий или приведения размеров отверстий в допустимые допуски. Сверла обычно вырезают отверстия большего размера, чем их номинальный размер, и отверстия, которые не обязательно являются прямыми или круглыми из-за гибкости сверла и его тенденции идти по пути наименьшего сопротивления. По этой причине размер сверления обычно занижается, а за ним следует другая операция механической обработки, которая доводит отверстие до его окончательного размера.
Используемые буровые долота имеют два спиральных канала, которые проходят вверх по стержню долота. Известный как «канавка», он уносит стружку или стружку из отверстия по мере того, как сверло продвигается в материал. Для каждого типа материала есть рекомендуемая скорость сверления и подача.
Хотя сверление и растачивание часто путают, расточка используется для уточнения размеров и точности просверленного отверстия. Сверлильные станки бывают нескольких вариаций в зависимости от размера работы. Вертикально-расточной станок используется для обработки очень больших и тяжелых отливок, когда работа вращается, а расточная оправка удерживается неподвижно. Горизонтально-расточные станки и координатно-расточные станки удерживают заготовку в неподвижном состоянии и вращают режущий инструмент. Растачивание также производится на токарном станке или в обрабатывающем центре. Расточная фреза обычно использует одну точку для обработки стороны отверстия, что позволяет инструменту действовать более жестко, чем сверло. Отверстия в отливках обычно заканчиваются растачиванием.
Машинные и ручные развертки также используются для чистовой обработки отверстий, часто с лучшей шероховатостью поверхности, чем можно достичь только растачиванием. Доступны стандартные развертки с шагом 1/64 дюйма. Развертки имеют прямые или спиральные канавки и вырезы по периферии, удаляя только 0,004–0,008 дюйма отверстия. Развёртывание производится на тех же станках, что и расточка, а иногда и на сверлильном станке.
Фрезерование
Фрезерование использует вращающиеся фрезы для удаления материала, в отличие от токарных операций, при которых инструмент не вращается. Традиционные фрезерные станки имеют подвижные столы, на которых устанавливаются заготовки. На этих станках режущие инструменты стационарны, а стол перемещает материал так, чтобы можно было выполнить нужные разрезы. Другие типы фрезерных станков имеют как стол, так и режущие инструменты в качестве подвижных орудий.
Двумя основными операциями фрезерования являются плоское фрезерование и торцевое фрезерование. Фрезерование слябов использует периферийные кромки фрезы для выполнения плоских разрезов по поверхности заготовки. Шпоночные канавки в валах можно вырезать с помощью аналогичной фрезы, но уже, чем у обычной фрезы для плит. Торцевые фрезы вместо этого используют конец фрезы. Имеются специальные фрезы для различных задач, например, фрезы со сферическим концом, которые можно использовать для фрезерования карманов с криволинейной стенкой.
Некоторые из операций, которые может выполнять фрезерный станок, включают строгание, резку, фальцовку, фрезерование, штамповку и т. д., что делает фрезерный станок одним из наиболее гибких элементов оборудования в механическом цехе.
Существует четыре типа фрезерных станков — ручные фрезерные станки, простые фрезерные станки, универсальные фрезерные станки и универсальные фрезерные станки — и они имеют либо горизонтальные фрезы, либо фрезы, установленные на вертикальной оси. Как и ожидалось, универсальный фрезерный станок позволяет устанавливать как вертикальные, так и горизонтальные режущие инструменты, что делает его одним из самых сложных и гибких доступных фрезерных станков.
Как и токарные центры, фрезерные станки, способные производить серию операций на детали без вмешательства оператора, являются обычным явлением и часто называются просто вертикальными или горизонтальными обрабатывающими центрами. Они неизменно основаны на ЧПУ.
Шлифование
Шлифование используется для удаления небольшого количества материала как с плоских поверхностей, так и с цилиндрических поверхностей. Плоские шлифовальные машины совершают возвратно-поступательную работу на столе, подавая его на шлифовальный круг. Глубина, на которую режется круг, обычно составляет от 0,00025 до 0,001 дюйма. Цилиндрические шлифовальные станки устанавливают заготовку по центрам и вращают ее, одновременно прикладывая к ней периферию вращающегося абразивного круга. Бесцентровое шлифование используется для производства небольших деталей в больших объемах, где шлифованная поверхность не имеет отношения к какой-либо другой поверхности, кроме как в целом. Грунтовые поверхности 200-500 мин. Среднеквадратичные значения обычно считаются приемлемыми для многих применений и являются отправной точкой для дальнейших операций чистовой обработки, включая притирку, хонингование и суперфинишную обработку. Шлифование двойным диском — это еще один метод, который позволяет проходить детали один или несколько раз между двумя шлифовальными кругами, вращающимися в противоположных направлениях.
Строгание
Строгание используется для обработки в основном больших плоских поверхностей, особенно таких, которые будут обработаны циклевкой, например направляющие станков. Мелкие детали, собранные вместе в приспособление, также экономично строгаются.
Пиление
Распиловка металлов обычно выполняется с помощью отрезных станков и делается для создания более коротких отрезков из прутков, экструдированных профилей и т. д. Распространены вертикальные и горизонтальные ленточные пилы, в которых используются непрерывные петли зубчатых лент для долбления материала. Скорость ленты варьируется в зависимости от материала: для некоторых жаропрочных сплавов требуется медленная скорость 30 футов в минуту, в то время как для более мягких материалов, таких как алюминий, требуется резка со скоростью 1000 футов в минуту или более. Другие отрезные машины включают механические ножовочные пилы, абразивные дисковые пилы и циркулярные пилы.
Протяжка
Протяжка используется для изготовления квадратных отверстий, шпоночных пазов, шлицевых отверстий и т. д. Протяжка состоит из множества зубьев, расположенных последовательно почти как напильник, но каждый последующий зуб немного больше предыдущего. Протянув или протолкнув через подготовленное отверстие лидера (или за поверхность), протяжка делает серию все более глубоких надрезов. Толчковая протяжка часто выполняется с помощью станков с вертикальным прессом. Протяжное протягивание часто выполняется с помощью вертикальных или горизонтальных станков, которые во многих случаях приводятся в действие гидравлическим приводом. Скорость резки варьируется от 5 футов в минуту для высокопрочных металлов до 50 футов в минуту для более мягких металлов.
ЕСМ/ЭДМ
Это немеханические формы удаления материала, в которых используются эрозионные искры или химические вещества. Электроэрозионная обработка использует искру, передаваемую через диэлектрическую жидкость от электрода к поверхности проводящей заготовки. Этим методом можно обрабатывать очень мелкие детали, включая отверстия малого диаметра, полости матрицы и т. д. Скорость разряда обычно зависит не от твердости, а от тепловых свойств и проводимости металла.
Электрохимическая обработка представляет собой нечто вроде обратного процесса гальванического покрытия и позволяет получать отверстия без заусенцев с высоким качеством поверхности.