Мокрые тормоза принцип работы


Схема тормозной системы. Виды и принцип работы тормозной системы :: SYL.ru

В данной статье будет рассмотрена схема тормозной системы легкового автомобиля. Также вы узнаете о том, как произвести прокачку системы правильно. Будут рассмотрены конструкции с антиблокировочной системой. На данный момент без них не обходится ни один качественный автомобиль. Речь, конечно, о машинах средней ценовой категории и выше. Бюджетные автомобили могут комплектоваться данной конструкцией, но она идет как дополнительная опция. В целом же тормозные системы всех машин одинаковы, они состоят из идентичных элементов.

Немного теории о тормозной системе

Как вы понимаете, она необходима для того, чтобы изменить скорость машины. Сигналом к этому может служить либо действие водителя, либо электронная система управления. Также оно необходимо, чтобы удерживать машину неподвижно во время стоянки.

Выделяют три типа тормозных систем. Первая - это, конечно же, рабочая. Она необходима для нормальной эксплуатации машины. С ее помощью осуществляется торможение с больших или малых скоростей. О том, какие особенности имеет тормозная система "Нива-2121", схема которой является классической, будет рассмотрено ниже.

Второй тип - это стояночная. Она больше известна как ручной тормоз, если нужно машину поставить на длительный срок. В частности, если имеется уклон дорожной поверхности, эта система просто необходима. Ручником можно пользоваться во время экстренной остановки. А есть еще системы запасного типа. Они сравнительно недавно начали использоваться на автомобилях. Чаще всего их можно встретить на тех машинах, на которых имеется электрический ручной тормоз. Главное ее назначение - дать возможность водителю остановить автомобиль, если откажет рабочая система. Монтируется она на машины с электрическим ручным тормозом по одной причине: стояночный тормоз не может быть выжат, если скорость автомобиля больше нуля.

Принцип функционирования

Мы привыкли, что при нажатии на педаль тормоза автомобиль начинает замедляться. Но не все вдаются в подробности того, какие процессы при этом протекают. Не каждый знает, как работает тормозная система ВАЗ-2109, схема которой приведена в данной статье. Если проще сказать, то остановка автомобиля происходит только за счет сжатия жидкости в трубках и шлангах. Давление создается с помощью главного тормозного цилиндра, он является основным узлом системы.

К тормозной жидкости предъявляются определенные требования. Она не должна терять свои свойства при сжатии и нагреве, испытывает колоссальные перегрузки во время торможения, равно как и остальные элементы. О том, какие требования предъявляются к жидкости, будет рассказано немного ниже. Давление в трубках приводит в движение суппорты, которые, в свою очередь, перемещают колодки. Последние трутся о поверхность барабана или диска, замедляя движение колеса вокруг своей оси. Тем самым автомобиль постепенно останавливается.

Главный тормозной цилиндр

Необходимо рассказать немного о конструкции главного тормозного цилиндра. Это основной элемент системы, причем не имеет значения, есть ли ABS либо нет. Он необходим для одной цели - преобразовать усилие, которое прилагается к педали, в давление жидкости. Также с его помощью происходит распределение последней к суппортам.

Например, тормозная система ВАЗ-2109, схема которой представлена в статье, оснащена главным цилиндром, устанавливаемым в подкапотном пространстве (он крепится двумя шпильками к вакуумному усилителю). Сверху на него фиксируется расширительный бачок. В последний выбрасываются излишки жидкости, когда педаль полностью отпущена. Из него забирается жидкость во время выжимания педали. Главный тормозной цилиндр внутри полый. В нём перемещаются поршни, которые и создают давление в системе. Время от времени необходимо проводить ремонт. В его процессе полностью заменяются все резиновые элементы.

Регулятор давления

Он крепится на задней части автомобиля, так как имеет специфическое назначение. А стоит отметить, что примерно 75 процентов торможения происходит передними колесами. Остальные 25 процентов - задними. При этом нужно учитывать, что нельзя допускать блокировки задних колес, так как возникает сила, которая стремится опрокинуть автомобиль. Следовательно, тормозная система ВАЗ-2110, схема которой рассмотрена в статье, содержит регулятор давления.

Он способен уменьшить давление, поступающее к приводам механизмов задних колес. Причём изменение данного показателя зависит от того, насколько загружена задняя ось. Дело в том, что при остановке без регулятора передняя часть машины начинает проседать, а задняя же - приподниматься. В результате происходит блокировка задних колес и неуправляемый занос. Регулятор позволяет избежать блокировки полностью либо сделать так, чтобы она наступала позже.

Рабочие контуры

Итак, теперь о том, что представляет собой тормозная система ВАЗ-2110, схема которой есть в статье. Имеется рабочий тормозной контур, который, в свою очередь, состоит из вспомогательного и основного. В том случае, если нет неисправностей, вспомогательный с основным работают совместно. Но вот если происходит разгерметизация какого-нибудь контура, второй продолжит свою работу в качестве аварийного. Имеется несколько схем разделения контуров: тормозные механизмы, включенные параллельно, - передний плюс задний. Могут механизмы подключаться по диагонали, например, правый задний и левый передний находятся в одном контуре. Может встречаться схема, в которой один из контуров содержит все механизмы привода. А второй - только контур, к которому подключены механизмы лишь передних колес. Говорить о преимуществах или недостатках этих схем сложно, так как аварийная ситуация может случиться по различным причинам. И повредиться могут все контуры, а не один.

Антиблокировочная система

Конечно, тормозная система ВАЗ-2106, схема которой является классической, как и сам автомобиль, не содержит ABS. Но поговорить о такой системе все равно необходимо, так как за этими конструкциями - будущее. В ней имеется несколько датчиков, центральный блок управления, модуляторы. Когда происходит остановка автомобиля, включается в работу блок управления. Его микропроцессор начинает следить за показаниями всех датчиков. Он анализирует сигналы датчика скорости автомобиля. Также происходит слежение за угловой скоростью каждого колеса. Ничто не уходит от внимания микроконтроллерной системы управления тормозными механизмами.

Конечно, не имеет таких устройств тормозная система 2110, схема ее намного проще. Специальные модуляторы являются исполнительными устройствами. С их помощью происходит регулировка давления тормозной жидкости во всех контурах. Другими словами, каждое колесо тормозит по-своему. Многое зависит от качества дорожного покрытия, от скорости машины. Но в любом случае система ABS не даст ни одному колесу полностью заблокироваться, если вы совершаете экстренное торможение. А именно блокировка опасна при мокром покрытии асфальта либо же при гололёде. Это позволит обезопасить вас, так как вероятность уйти в занос крайне мала.

Дисковые тормоза

Это один из видов приводов тормозов, который является наиболее распространенным. Например, схема тормозной системы 2106 включает в себя два дисковых тормоза на передней оси. Задние колеса останавливаются при помощи барабанных, о них будет рассказано немного ниже. Не стоит думать, что дисковые механизмы все одинаковые. У них суппорт может быть как неподвижным, так и подвижным. Но последние встречаются в автомобилях намного чаще. Для водителя главное - это надежность. А подвижный суппорт имеет такую конструкцию, которая полностью исключает неравномерное стирание тормозных колодок. Но имеется еще одна особенность механизмов, в которых суппорт подвижен.

Расстояние от тормозного диска до внешнего края суппорта постоянно меняется, зависит оно от того, насколько изношены колодки. Кроме того, можно сказать про главное достоинство дисковых тормозов. Они являются более эффективными, нежели барабанные, и способны работать при высоких температурах. Также используются зачастую диски с вентиляцией. Увеличение толщины дает возможность установить несколько ребер жесткости. Они могут обеспечить приток воздуха к металлу. Причем во время вращения колеса центробежная сила всасывает воздух и распределяет его равномерно от центра к краям. Именно за счет этого происходит охлаждение металла.

Барабанные тормоза

На большинстве бюджетных автомобилей они установлены на задней оси. Но если взять, например, 21-ю «Волгу», то у нее все четыре колеса имеют барабанные тормозные механизмы.

Встречаются схемы, которые полностью состоят из дисковых механизмов. Такие конструкции все чаще используют при тюнинге отечественных автомобилей, так как при увеличении мощности и крутящего момента двигателя необходимо проводить полную модернизацию всех остальных систем. И в первую очередь, конечно же, тормозной. А вот схема тормозной системы ВАЗ-2121 такая же, как и у "десяток", и у "девяток", и у остальных моделей этого производителя. Различаются только качество и надежность. "Нива" - это внедорожник, а поэтому он подвергается куда большим нагрузкам, нежели обычная легковушка.

Барабанные механизмы имеют меньшую эффективность, но все равно способны выполнить основное свое предназначение - остановить автомобиль. Правда, со временем колодки изнашиваются, увеличивается зазор между барабаном и рабочей поверхностью ее. В таком случае используют специальные регуляторы механического типа. С их помощью осуществляется подводка колодок. Происходит это во время резкого выжимания педали тормоза. Обратите внимание, какова тормозная система ВАЗ-2114, схема ее приведена в статье. На задней оси колодки можно разжать и ручником. В конструкциях с дисковыми механизмами сзади в контур включается дополнительный цилиндр, шток которого приводится в движение ручником стояночного тормоза.

Исполнительные механизмы тормозов

Если посмотреть на то, какая схема тормозной системы УАЗ, можно увидеть, что в ней имеется несколько типов исполнительных механизмов. Речь идет, конечно же, о приводах колодок. Системы могут содержать дисковые механизмы и барабанные. В них имеются существенные отличия. Например, дисковые тормоза работают при помощи суппортов специальной конструкции. А вот барабанные механизмы оснащены цилиндрами. Подача жидкости происходит в середину этого цилиндра. С обоих краев расположены поршни, которые приводят в движение колодки, разжимая их.

Суппорты передних колес отечественных автомобилей ВАЗ расположены по двум сторонам диска. Одна половина суппорта является рабочей, в ней находится тормозная жидкость под давлением. Также в нейимеется стальной поршень, который под действием давления выдавливается из корпуса и толкает колодку в сторону диска. Одновременно с этим с обратной стороны диска прижимается вторая колодка. Следовательно, диск оказывается с обеих сторон зажат. А колодки изнашиваются максимально равномерно. Стоит также отметить, что схема тормозной системы "Нива" содержит пусть те же элементы, что и «шестерка», но они прочнее и долговечнее.

Как прокачивать тормоза

Стоит упомянуть немного о такой процедуре, как прокачка тормозных механизмов. Без этого вы не сможете нормально ездить на машине, так как в системе будет очень много воздушных пробок. Из-за этого эффективность торможения становится намного ниже.

Чтобы избавиться от воздушных пробок, вам необходимо все трубки и суппорты наполнить жидкостью. Все работы лучше всего проводить вдвоем. Один человек должен нажимать педаль. Второй своевременно открывает и закрывает штуцеры для прокачки. А находятся они на всех суппортах. Правда, потребуется постоянно поднимать все стороны автомобиля, снимать поочередно колеса. Намного проще эту процедуру выполнять на смотровой яме. Прокачку необходимо проводить по определенной схеме. И ее обязательно нужно придерживаться, иначе воздух останется и никакой эффективности от тормозов не добиться.

Вот как прокачивается тормозная система ВАЗ, схема довольно проста. Начинать необходимо с того механизма, который расположен на максимальном удалении от ГТЦ. Это правое заднее колесо. После него только можно заняться левым задним, затем идет правое переднее. И самым последним у вас окажется то колесо, которое находится возле водительской двери. Можно даже всю процедуру произвести самостоятельно. Но для этого вам потребуется изготовить из автомобильной камеры своеобразный ресивер для хранения воздуха. Необходимо обеспечить систему тормозов давлением. Поэтому камеру нужно соединить при помощи штуцера с расширительным бачком. По вышеизложенной схеме избавляетесь от воздушных пробок во всех контурах. При этом не забывайте следить за тем, чтобы в расширительном бачке был необходимый уровень жидкости.

Заключение

В этой статье вы узнали о том, из чего состоит тормозная система современного автомобиля. Также было немного рассказано про современные средства обеспечения безопасности. В частности, это система ABS. Она используется как дополнительная опция, но все чаще ее можно увидеть даже на бюджетных автомобилях стандартной комплектации. Кроме того, к тормозной системе можно отнести круиз-контроль, различные усилители для экстренного торможения, механизмы курсовой устойчивости, антипробуксовочную конструкцию, блокировку дифференциала.

Все привыкли видеть гидравлические тормоза, но имеются конструкции, в которых используется не давление жидкости, а сжатый воздух. Они идентичны с гидравлическими, только надежность у них оказывается намного выше. Элементы, используемые в пневматических тормозах, должны выдерживать очень большое давление. Правда, оно сопоставимо с тем, которое находится в гидравлическом приводе. Необходимо только внедрять ресивер для хранения сжатого воздуха. Существуют также электромеханические тормоза. Они приводятся в движение электродвигателями и специальными тросами.

www.syl.ru

Тормозная система автомобиля

    

Тормозная система автомобиля.

Cегодня безопасность автомобиля немыслима без эффективного тормозного управления, которое в соответствии с требованиями стран - членов ЕЭС должно состоять из следующих тормозных систем (ТС): - основная (рабочая), которая обеспечивает замедление легкового автомобиля не менее 5,8 м/с2;, движущегося со - скоростью не более 80 км/ч при усилии на педаль менее 50 кг ; - вспомогательная (аварийная), обеспечивающая замедление не менее 2,75 м/с2;

- стояночная, которая может быть совмещена с аварийной.

ОСНОВНАЯ СИСТЕМА

На современных легковых автомобилях устанавливают основные ТС, состоящие из тормозного гидропривода и тормозных механизмов. Когда Вы нажимаете ногой на педаль тормоза, та сила, с которой Вы давите на педаль, передается на устройство, которое называется главный тормозной цилиндр. Главный тормозной цилиндр имеет поршень, который, двигаясь, увеличивает давление в системе гидравлических тормозных трубок, ведущих к каждому колесу автомобиля. На каждом колесе тормозная жидкость под давлением оказывает воздействие на поршень колесного тормозного механизма, который выдвигает тормозные колодки, а те, в свою очередь, прижимаются к тормозному барабану или тормозному диску. Трение замедляет вращение колес, и движение автомобиля.

Рис. 1 Схема гидропривода тормозов

1 - тормозные цилиндры передних колес; 2 - трубопровод передних тормозов; 3 - трубопровод задних тормозов; 4 - тормозные цилиндры задних колес; 5 - бачок главного тормозного цилиндра; 6 - главный тормозной цилиндр; 7 - поршень главного тормозного цилиндра; 8 - шток; 9 - педаль тормоза

Тормозной приводВ гидропривод основной ТС входят:

- главный тормозной цилиндр с вакуумным усилителем или без него;- регулятор давления в задних тормозных механизмах;- рабочий контур (трубопровод диаметром 4-8 мм).Рабочий контур соединяет между собой устройства гидропривода и тормозные механизмы. Главный тормозной цилиндр (ГТЦ) предназначен для преобразования усилия, прилагаемого к педали тормоза, в избыточное давление тормозной жидкости и  распределения его по рабочим контурам. Бачок с запасом тормозной жидкости может крепиться на ГТЦ или вне его. Вместе с ГТЦ на большинстве автомобилей устанавливают вакуумные усилители, которые увеличивают силу, создающую давление в тормозной системе. Вакуумный усилитель (рис. 2) конструктивно связан с главным тормозным цилиндром. Основным элементом усилителя является камера, разделенная резиновой перегородкой (диафрагмой) на два объема. Один объем связан с впускным трубопроводом двигателя, где создается разряжение, а другой с атмосферой. Из-за перепада давлений, благодаря большой площади диафрагмы, «помогающее» усилие при работе с педалью тормоза может достигать 30 - 40 кг и больше. Это значительно облегчает работу водителя при торможениях и позволяет сохранить его работоспособность длительное время.

Рис. 2 Схема вакуумного усилителя 1 - главный тормозной цилиндр; 2 - корпус вакуумного усилителя; 3 - диафрагма; 4 - пружина; 5 - педаль тормоза

Регулятор уменьшает давление в приводе тормозных механизмов задних колес. При торможении сила инерции движущегося автомобиля и противодействующая ей сила трения (точка приложения которой ниже центра тяжести автомобиля) создают продольный опрокидывающий момент. Мягкая передняя подвеска, реагируя на него, "проседает", а задние колеса "разгружаются". Поэтому даже при неэкстренном интенсивном торможении задние колеса могут блокироваться, что часто приводит к заносу автомобиля. В зависимости от изменения расстояния между элементами задней подвески и кузовом автомобиля (его продольного наклона) давление в приводе задних тормозов (по сравнению с передними) ограничивается. В результате чего блокировки задних колес  не происходит или (в зависимости от замедления и загруженности автомобиля) она возникает значительно позже.

ВСПОМОГАТЕЛЬНАЯ СИСТЕМАРабочий контур, согласно требованиям ЕЭС, должен делиться на основной и вспомогательный. Если вся система исправна, то работают оба, но при разгерметизации одного - другой продолжает работать, становясь вспомогательным (аварийным). Наиболее распространены три компоновки разделения рабочих контуров (рис.1):

- 2 + 2 тормозных механизма, подключенных параллельно (передние + задние);- 2 + 2 тормозных механизма, подключенных диагонально (правый передний + левый задний и т. д.); - 4 + 2 тормозных механизма (в один контур подключены тормозные механизмы всех колес, а в другой только два передних).

Рис. 1. Схема компоновки гидропривода:1 - главный тормозной цилиндр с вакуумным усилителем; 2 - регулятор давления жидкости в задних тормозных механизмах; 3-4 - рабочие контуры.

СТОЯНОЧНАЯ СИСТЕМА

Стояночная тормозная система имеет механический привод, как правило, на задние колеса. Рычаг стояночного тормоза соединяется тонким тросом с задними тормозными механизмами, в которых находится устройство, приводящее в действие штатные или дополнительные (стояночные) колодки. Регулировка стояночного тормоза обычно производится эксцентриком на тормозном механизме, регулировочной гайкой на штоке приспособления, соединяющего рычаг и приводной трос, или путем изменения местоположения рычага в салоне автомобиля.

БАРАБАНЫ И ДИСКИ

Рис. 3 Схема работы барабанного тормозного механизма 1 - тормозной барабан; 2 - тормозной щит; 3 - рабочий тормозной цилиндр; 4 - поршни рабочего тормозного цилиндра; 5 - стяжная пружина; 6 - фрикционные накладки; 7 - тормозные колодки

Барабанный тормозной механизм (рис. 3) состоит из:

тормозного щита , тормозного цилиндра , двух тормозных колодок , стяжных пружин , тормозного барабана . Тормозной щит жестко крепится на балке заднего моста автомобиля, а на щите, в свою очередь, закреплен рабочий тормозной цилиндр. При нажатии на педаль тормоза поршни в цилиндре расходятся и начинают давить на верхние концы тормозных колодок. Колодки в форме полуколец прижимаются своими накладками к внутренней поверхности круглого тормозного барабана, который при движении автомобиля вращается вместе с закрепленным на нем колесом. Торможение колеса происходит за счет сил трения, возникающих между накладками колодок и барабаном. Когда же воздействие на педаль тормоза прекращается, стяжные пружины оттягивают колодки на исходные позиции.

Преимущества барабанных тормозов :-низкая стоимость, простота производства ;

-обладают эффектом механического самоусиления. Благодаря тому, что нижние части колодок связаны друг с другом, трение о барабан передней колодки усиливает прижатие к нему задней колодки. Этот эффект способствует многократному увеличению тормозного усилия, передаваемого водителем, и быстро повышает тормозящее действие при усилении давления на педаль.

Рис. 4 Схема работы дискового тормозного механизма 1 - наружный рабочий цилиндр (левого) тормоза; 2 - поршень; 3 - соединительная трубка; 4 - тормозной диск переднего (левого) колеса; 5 - тормозные колодки с фрикционными накладками; 6 - поршень; 7 - внутренний рабочий цилиндр переднего (левого) тормоза

Дисковый тормозной механизм (рис.4) состоит из :

суппорта, одного или двух тормозных цилиндров , двух тормозных колодок , тормозного диска . Суппорт закреплен на поворотном кулаке переднего колеса автомобиля.  В нем находятся два тормозных цилиндра и две тормозные колодки. Колодки с обеих сторон «обнимают» тормозной диск, который вращается вместе с закрепленным на нем колесом. При нажатии на педаль тормоза поршни начинают выходить из цилиндров и прижимают тормозные колодки к диску. После того, как водитель отпустит педаль, колодки и поршни возвращаются в исходное положение за счет легкого «биения» диска. Дисковые тормоза очень эффективны и просты в обслуживании. Даже новичку замена тормозных колодок в этих механизмах доставляет мало хлопот.

Преимущества дисковых тормозов : - при повышении температуры характеристики дисковых тормозов довольно стабильны, тогда как у барабанных снижается    эффективность

 - температурная стойкость дисков выше, в частности, из-за того, что они лучше охлаждаются, - более высокая эффективность торможения позволяет уменьшить тормозной путь  - меньшие вес и размеры ,  - повышается чувствительность тормозов ,  - время срабатывания уменьшается , - изношенные колодки просто заменить, на барабанных приходится предпринимать усилия на подгонку колодок чтобы одеть барабаны, - около 70% кинетической энергии автомобиля гасится передними тормозами, задние дисковые тормоза позволяют снизить нагрузку на передние диски.
 
Антиблокировочная Тормозная Система (ABS) Антиблокировочные системы получили широкое распространение в течение последних лет. Сначала на дорогих и спортивных машинах, затем на более дешевых, они стали частью тормозной системы. Их относительно невысокая стоимость существенно перекрывается преимуществами, которые получает водитель. Попробуем разобраться в этом.

Почему "антиблокировочная"?

Плавно нажимая на педаль тормоза, мы замедляем движение автомобиля до полной его остановки. Однако, бывает, что нужно остановиться мгновенно, мы резко жмем на педаль, вот тогда и возникает опасность "юза", т.е. скольжения заблокированных колес по скользкой дороге, при котором автомобиль не слушается поворота руля. В автошколах инструктор по вождению учит: на мокром асфальте эффективней гасить скорость "толчками", быстро нажимая и отпуская педаль тормоза, ощущая при этом границу скольжения и стараясь не перейти ее. Скажите, кто в минуту опасности вспомнит подобные наставления? Статистика неумолима - 10% аварий происходит из-за того, что заблокированные передние колеса на льду, снегу и мокром асфальте не могут изменить направления движения автомобиля. Что делать? Люди придумали антиблокировочную систему (ABS), т.е. ряд устройств, которые при торможении автомобиля, вне зависимости от действий водителя, предотвращают блокировку колес. Таким образом, автомобиль с ABS на скользкой поверхности дороги при необходимости в экстренной остановке не только не "проскочит" с невращающимися колесами вперед, не только не потеряет управление (иногда от этого зависит жизнь пешеходов), но и, возможно, не вылетит с проезжей части со всеми вытекающими из этого последствиями.

Как работает ABS?

Замечено, что максимальное сцепление колеса с поверхностью дороги (будь это сухой или мокрый асфальт, мокрая брусчатка или укатанный снег) достигается при некотором, а точнее 15-30 процентном относительном его проскальзывании. Именно это проскальзывание и является тем единственно допустимым и желательным, которое обеспечивается настройкой элементов системы. Что же это за элементы? Во-первых, заметим, что ABS работает, создавая импульсы давления тормозной жидкости, которые передаются колесам. Т.е. наставления инструктора выполняет за человека электроника и исполнительные механизмы, делая это самым оптимальным образом. Все существующие на автомобилях ABS включают в себя три главных составляющих: датчики, установленные на колесах и регистрирующие скорость их вращения, электронный блок обработки данных и модулятор или даже блок модуляторов, который и меняет циклически давление в тормозной магистрали.

Датчики

Представьте себе, что на ступице колеса закреплен зубчатый венец. Датчик неподвижно крепится над торцом венца. Он состоит из магнитного сердечника, расположенного внутри катушки. При вращении зубчатого венца в катушке индуцируется электрический ток, частота которого прямо пропорциональна угловой скорости вращения колеса. Полученная таким образом от датчика информация передается по проводу электронному блоку управления.

Электронный блок управления :

Получая информацию, что называется "с колес", блок управления отслеживает моменты их блокировки. А так как блокировка происходит от переизбытка давления тормозной жидкости в магистрали, подводящей ее к колесу, "мозг" вырабатывает команду: "снизить давление!"

Модуляторы

Выполняют эту команду модуляторы, содержащие, как правило, два электромагнитных клапана. Первый перекрывает доступ жидкости в магистраль, идущую от главного цилиндра к колесу, второй - при избыточном давлении открывает путь тормозной жидкости в резервуар гидроаккумулятора.

ABS бывают разные

В самых дорогих, а значит, и самых эффективных системах каждое колесо имеет индивидуальное регулирование давления тормозной жидкости. Естественно, что количество датчиков угловой скорости, модуляторов давления и каналов управления в этом случае равно числу колес. Дешевые обходятся ABS с двумя датчиками на задних колесах, одним общим модулятором и одним каналом управления. Наибольшее применение получила система с четырьмя датчиками, но с двумя модуляторами (по одному на ось) и двумя каналами управления. Наконец, выпускают трехканальную систему, с четырьмя датчиками угловой скорости. Три модулятора этой системы обслуживают три канала, производя индивидуальное регулирование давления тормозной жидкости в магистралях передних колес по отдельности и обеих задних колес. Вы думаете, что давление тормозной жидкости в тормозной магистрали создается только главным тормозным цилиндром? Отнюдь нет. Часто ему помогает специальный, встроенный в систему гидронасос. В новейших ABS с помощью компьютера оценивается динамика движения автомобиля, угол наклона дорожного полотна, сцепление с поверхностью дороги, влияние включенного круиз-контроля при замедлении автомобиля и другие факторы и, на основании этой информации определяет какое нужно давление в тормозной магистрали. Определив необходимую величину давления, ее обеспечивают подачей или стравливанием тормозной жидкости в гидроаккумулятор.

ABS - друг водителя

Перейдем теперь от теории к практике. Почему все-таки нужно стремиться приобрести автомобиль с ABS? В экстренной ситуации, когда инстинктивно вы с силой жмете на педаль тормоза, при любых, даже самых неблагоприятных дорожных условиях, автомобиль не развернет, не уведет с заданного курса. Напротив, управляемость машины сохранится, это значит, что вы сможете объехать препятствие, а при торможении на скользком повороте избежать заноса. Работа ABS сопровождается импульсными толчками на педали тормоза (их сила зависит от конкретной марки автомобиля) и звуком "трещетки", который исходит из блока модуляторов. Об исправности системы сигнализирует световой индикатор (с надписью "ABS") на приборном щитке. Индикатор загорается при включенном зажигании и гаснет через 2-3 секунды после пуска двигателя. Если сигнал подается при работающем двигателе - есть повод для беспокойства, нужно ехать на СТО диагностировать и, возможно, ремонтировать систему. Следует помнить о том, что торможение автомобиля с ABS не должно быть многократным и прерывистым. Тормозную педаль необходимо удерживать нажатой со значительным усилием во время процесса торможения - система сама обеспечит наименьший тормозной путь. Чтобы сделать такой простой вывод в США, например, потребовалось провести изучение причин достаточно большого количества автомобильных аварий в 1986-95 годах, в период массового внедрения ABS на американских автомобилях. Специалисты Страхового Института Безопасности Движения на Автострадах (Insurance Institute for Highway Safety) сначала не верили полученной статистике: вероятность гибели пассажиров при столкновении двух автомобилей, двигавшихся по сухому асфальту, оснащенных ABS была на 42% выше, чем при авариях машин без ABS. Оказалось, что во всех случаях водители, пересевшие с автомобилей, оснащенных обычными тормозными системами на модели с ABS допускали ошибку: они по привычке импульсивно нажимали на педаль при торможении и этим дезинформировали электронный блок управления, что и приводило к снижению эффективности торможения в ряде случаев до опасной черты. На сухой дороге ABS может уменьшить тормозной путь автомобиля примерно на 20% по сравнению с тормозным путем машин с заблокированными колесами. На снегу, льду, мокром асфальте разница, естественно, будет намного больше. Замечено: применение ABS способствует увеличению срока службы шин. Установка ABS ненамного повышает стоимость автомобиля, не усложняет его техническое обслуживание и не требует от водителя каких-то особых навыков управления. Постоянное совершенствование конструкции систем вместе со снижением их стоимости вскоре приведет к тому, что они станут неотъемлемой, стандартной частью легковых автомобилей всех классов.

Схема ABS  

1- датчик угловой скорости; 2 - вращающийся элемент с прорезями и выступами; 3 - электронный блок управления; 4 - модулятор; монтажный разъем; 6 - предохранители; 7 - диагностический разъем; 8 - переключатель; 9 - блок предохранителей; 10 - аккумулятор; 11 - панель приборов; 12 - выключатель ABS; 13 - индикатор ABS

A - элементы системы на передних колесах; B - элементы системы на задних колесах; C - интегрированный блок управления

                                                                                              

И всё же ABS не панацея

Специалисты считают, что наличие в автомобиле ABS создает у водителя иллюзию безопасности, в результате чего он не учитывает, что ABS не создает сцепления с дорогой - это прерогатива протектора и размеров пятна контакта покрышек колес. Да, ABS предотвратит блокировку тормозов и позволит сохранить контроль над курсовой устойчивостью и поворачиваемостью, но она не гарантирует уменьшения тормозного пути. Когда речь идет о сухих и нескользких дорогах, бывает как раз наоборот - тормозной путь оказывается больше, чем у обычного автомобиля, но понимание этого приходит, к сожалению, слишком поздно. Другой вопрос - могут ли ABS всегда достоверно распознавать ситуацию? Помнится, журналисты World Off Road во время испытаний внедорожников моделировали неудачный въезд на холм: потеря сцепления на полпути вверх, сильное нажатие на педаль тормоза, чтобы удержать машину на склоне, включение задней передачи - и мягкий спуск с горы, используя торможение двигателем. Все шло нормально, пока не пришел черед Ford Explorer, а затем и Mitsubishi Pajero, оснащенных ABS. Джипы упрямо скатывались с холма, несмотря на то, что испытатели выжимали педаль тормоза до упора: система воспринимала небольшое скольжение вниз на сыпучем склоне и резкое нажатие на тормоз в этот момент как команду разблокировать колеса. В результате и Ford, и Mitsubishi не могли удержаться на склоне без применения "ручника". Нетрудно представить, чем чревата подобная ситуация в реальной жизни, если склон достаточно длинный, коллизия приключилась ближе к вершине, водитель растерялся (или не действует стояночный тормоз), а сзади уже пристроилась какая-нибудь машина. Словом, как бы ни была хороша ABS в плане улучшения активной безопасности автомобиля, главным по-прежнему остается водитель, который обязан критически осмысливать дорожную ситуацию и реальные возможности своего "железного друга".

Проблемы эксплуатации ABS

Заметим, что современные ABS обладают достаточно высокой надежностью и могут длительное время работать не выходя из строя. Электронные блоки ABS отказывают крайне редко, поскольку защищены специальными реле и предохранителями, и если такая неисправность все-таки случилась, то ее причина нередко бывает связана с нарушениями правил и рекомендаций, о которых упомянем чуть ниже. Самыми же уязвимыми в схеме ABS являются колесные датчики, располагаемые вблизи вращающихся деталей ступицы или полуосей. Место расположения этих датчиков благополучным никак не назовешь: различные загрязнения или даже слишком большой люфт в подшипниках ступицы способны вызывать сбои в работе датчиков, которые и становятся чаще всего виновниками неполадок в работе ABS. Кроме того, на работоспособность ABS влияет величина напряжения между клеммами аккумулятора. При уменьшении напряжения до 10,5 В и ниже ABS вообще может самостоятельно выключиться через предохранительный электронный блок. Предохранительное реле может также сработать при недопустимых колебаниях и всплесках напряжения в сети автомобиля. Чтобы этого не случилось, вот рекомендации: нельзя разъединять электрические разъемы при включенном зажигании и работающем двигателе, не желательно заводить двигатель методом "прикуривания" от постороннего аккумулятора либо предоставлять для этой цели в качестве "донора" собственный автомобиль и, кроме того, необходимо строго следить за состоянием контактных соединений на генераторе. Что еще? Если автомобилю потребовался ремонт с применением сварки, то перед началом работ следует отсоединить проводку от электронного блока управления ABS. Кроме того, этот блок не рекомендуется подвергать нагреву свыше 85 градусов по Цельсию более двух часов. Это к тому, если автомобиль предполагается красить, а затем сушить горячим методом в специальной камере. О том, что ABS неисправна, свидетельствует загорание контрольной лампы на панели приборов. Слишком нервно реагировать на это не следует, без тормозов автомобиль не останется, но при торможении будет вести себя как машина, в которой ABS отсутствует. Если контрольная лампочка ABS загорелась во время движения, необходимо остановить автомобиль, заглушить двигатель и проверить напряжение между клеммами аккумулятора. Если оно окажется ниже 10,5 В, то можно продолжать движение, а при первой возможности зарядить аккумулятор. Если лампочка ABS периодически загорается и гаснет, то, скорее всего, барахлит какой-нибудь контакт в электрической цепи ABS. Автомобиль следует загнать на смотровую канаву, проверить все провода и зачистить электрические контакты. Если причина мигания лампы ABS не будет обнаружена, то дальнейшие поиски неисправности следует продолжить в специализированном автосервисе. Существует ряд особенностей, связанных с обслуживанием или ремонтом тормозной системы с ABS. Например, перед заменой тормозной жидкости следует разрядить аккумулятор давления в гидроблоке ABS. Для этого при выключенном зажигании необходимо раз двадцать нажать на педаль тормоза. Следует помнить, что, включая зажигание, вы одновременно подключаете электронасос в гидроблоке ABS. Если система разгерметизирована, то жидкость из нее просто выгонит. Но этот же прием можно использовать при прокачке системы - зажигание включают ровно настолько, сколько из прозрачного шланга, надетого на штуцер для прокачки, будут выходить пузырьки воздуха.

ТОРМОЗНЫЕ ДИСКИ

Конструкция дисков.      Самые распространенные на сегодняшний день автомобильные тормозные системы – дисковые тормоза. Из этого следует, что главным элементом тормоза такого типа является тормозной диск, к которому прикладывается усилие исполнительного механизма. Поскольку существующие автомобильные тормоза используют трение в качестве основного принципа действия, между диском и тормозным механизмом находится колодка, покрытая слоем фрикционного материала.      Как известно, росту эффективности любых тормозов препятствует температура в паре трения. Чем интенсивнее автомобиль тормозит, тем больше выделяется тепла и тем больше нагреваются детали тормозного механизма. Для обычной тормозной колодки это приводит к потере фрикционных свойств за счет снижения коэффициента трения. Можно пойти дальше и обнаружить, что тепло от колодки передается не только воздуху, но и собственно исполнительному тормозному механизму – скобе (суппорту), нагретые поршни которой бывают способны довести тормозную жидкость до кипения. Это может привести к образованию пузырьков воздуха в жидкости и, как следствие, потере ею упругих свойств и «провалу» тормозной педали. Естественно, ни о какой эффективности не может быть и речи, остановиться бы, перевести дух и подумать, что можно сделать. Самым логичным будет повысить температуру кипения тормозной жидкости и сделать колодки, способные не снижать коэффициент трения с ростом температуры. Именно так и поступили конструкторы тормозных систем, и сейчас есть колодки, работающие в диапазоне от 200 градусов и выше. Однако тема колодок и жидкостей еще дождется своего часа, а что же происходит с дисками?      Диск также нагревается, что приводит к нарушению формы его рабочей поверхности, ее короблению, следствием чего становится осевое биение диска, передаваемое на руль и тормозную педаль.  Для начала рассмотрим причину деформации диска под действием температуры. Как правило, обычный тормозной диск представляет собой обод, выполненный в одно целое со ступицей П-образного сечения. При нагреве диск, напоминающий в разрезе шляпу, условно стремится вывернуться «наизнанку» за счет разницы длин наружного и внутреннего контуров. У внутреннего она больше, следовательно, и линейное тепловое расширение также больше. Это приводит к тому, что у «шляпы» приподнимаются поля. Именно череда таких подъемов и опусканий при остывании и приводит к деформации диска. Чтобы уменьшить такой эффект, у дисков в местах соединений обода со ступицей с наружной стороны делаются галтели или проводятся другие мероприятия, увеличивающие длину наружного контура. А что, если сделать диск более массивным, тогда он уж точно не покоробится. Хорошая идея, только вообразите, какая будет неподрессоренная масса у такого автомобиля, а наличие дополнительного маховика на каждом колесе сделает торможение проблематичным, добавив еще необходимость «гасить» их инерцию. К тому же проблема рассеивания тепла осталась. Так на сцену вышел диск с внутренней вентиляцией или просто вентилируемый. Он сразу позволил повысить эффективность торможения за счет более благоприятных температурных режимов паре трения. У вентилируемого диска существенно увеличена поверхность, с которой он отдает тепло окружающей среде. А если подвести дополнительный охлаждающий воздух к тормозному диску, то о перегреве тормозов можно даже забыть. Вентилируемый тормозной диск также уменьшает температурную нагрузку на ступичный подшипник.

 

     Увеличению поверхности рассеивания тепла способствует и перфорация дисков, при которой обод насчитывает не один десяток сквозных отверстий с зенковкой. Проделанные по всей рабочей плоскости диска сквозные отверстия снижают вес диска, способствуют более эффективному снижению его температуры при работе (что снижает риск коробления), удаляют газы, образующиеся при трении колодок о диск. Также перфорация не допускает «всплытия» тормозной колодки при попадании воды на рабочую поверхность диска в дождь или при проезде через лужи. Оказавшаяся на пути колодки вода выдавливается внутрь диска, откуда она выбрасывается наружу под действием центробежной силы. Вот здесь и кроется опасность для перфорированных дисков. Попавшая вода на раскаленный иногда тормозной диск может вызвать катастрофические последствия для его целостности, он может потрескаться и даже лопнуть. Отверстия станут дополнительными концентраторами напряжений и начальными точками этих самых трещин. Поэтому заявления о повышенной эффективности перфорированных дисков часто следует рассматривать как рекламный ход. Однако встречаются серийные автомобили, у которых такие диски стоят и хорошо себя чувствуют за все время эксплуатации, подвергаясь замене только по причине износа. Такую картину можно наблюдать, в частности, на автомобилях Ferrari и Porsche. Все дело в том, что диаметр отверстий не велик, их расположение сочетается с конфигурацией внутренних лопаток диска, а сам диск, как правило толстостенный и большого диаметра. Это снижает риск образования трещин, однако более правильным решением являются канавки на рабочей поверхности диска. Кроме воды, канавки отводят газообразные продукты “жизнедеятельности” колодки и продукты износа. Канавки бывают направленными в зависимости от вращения диска или симметричными, что позволяет ставить диск на левую и правую стороны автомобиля. Это относится и к лопаткам внутри диска. Обычный вентилируемый диск имеет радиально расположенные лопатки, что делает левый и правый тормозные диски одинаковыми, но существуют диски с наклоненными лопатками для лучшего удаления разогретого воздуха. При этом левый диск является зеркальной копией правого и наоборот. Указав все эти достоинства канавок, нельзя не сказать и о том, зачем они изначально были разработаны. Опять же, автоспорт с его повышенными нагрузками на тормоза потребовал эффективной очистки тормозных колодок. Дело в том, что при работе на больших нагрузках тормозные колодки очень быстро покрываются тонким слоем нагара – выгоревшего и отработанного фрикционного материала. Если его не снять принудительно, колодка превращается в скользкую лыжу. Канавки, шлицы практически срезают этот отработанный слой, обновляя колодку. Это позволяет поддерживать работоспособность колодок на протяжении всей гонки. Учитывая все вышесказанное, можно считать, что для обычных городских автомобилей тормозные диски со шлицами, конечно, являются предметом гордости владельца, но одновременно причиной более частой смены тормозных колодок.

                          

     Теперь мы добрались до высшей лиги тормозных дисков - вентилируемых сборных. Конечно, бывают и цельные диски с направленными лопатками, но их не так много. Это объясняется необходимостью иметь сложные оснастки для левого и правого диска, на что не каждый производитель может пойти. В результате диск с одной стороны выбрасывает воздух наружу, а с другой – захватывает его и пытается выдавить из центра внутрь колесной арки. Разборные диски изначально делятся на левые и правые и имеют крепежный фланец для ступицы, которая делается, как правило, из высококачественного авиационного алюминия. Такая конструкция позволяет еще больше рассеивать тепла, что благоприятно сказывается на эффективности тормозов и теплонагруженности подшипников ступицы. Понятно, что такой диск более легкий, чем его цельный аналог. Здесь тоже присутствуют подводные камни. Самый опасный – разница коэффициентов термической деформации материалов диска и ступицы. Для решения этой проблемы делают прорези на ступице, но самым эффективным способом борьбы с этим явлением можно назвать так называемые плавающие диски. Их суть – отсутствие жесткой связи между диском и ступицей, при этом диск может двигаться относительно ступицы обычно в осевом направлении в пределах нескольких десятых долей миллиметра. Плавающие диски обладают существенным недостатком – они боятся грязи, которая может лишить их подвижности, поэтому они главным образом применяются в кольцевом автоспорте.

Материал дисков.

    Чаще всего тормозные диски изготовляют из чугуна. Популярность этого материала объясняется хорошими фрикционными свойствами и невысокой стоимостью производства. Наряду с этими преимуществами, чугун имеет ряд существенных недостатков, которые ограничивают его использование в некоторых типах транспортных средств – спортивных машинах и мотоциклах. При регулярных интенсивных торможениях, вызывающих значительное повышение температуры (400 С и выше), возможно коробление диска, а если на его перегретую в таких режимах поверхность попадает вода, например, из лужи, чугунный диск покрывается сетью трещин и иногда даже рассыпается. Кроме того, такие диски очень тяжелые, и после длительных стоянок их рабочая поверхность покрывается коркой ржавчины. Чтобы избежать этих недостатков, диски, в большей степени мотоциклетные и значительно реже автомобильные, начали делать из «нержавейки». Более слабые фрикционные свойства этого материала компенсировали увеличением диаметра дисков и их рабочей поверхности. Для изготовления этой ответственной детали тормозной системы используют и обычную сталь, которая, как и «нержавейка», не столь чувствительна к перепадам температур и обладает несколько худшими фрикционными свойствами, чем чугун.       В 70-е годы на спортивные машины начали устанавливать тормозные диски из углепластика – карбоновые. Преодолев период роста, карбоновые тормоза оставили своих металлических коллег далеко позади. Посудите сами: вес тормозного диска из карбона на порядок меньше металлического, коэффициент трения на порядок выше, а рабочий диапазон, ограничивающийся на обычных тормозах 500-600 С, здесь простирается далеко за отметку в 1000 С. Карбоновые диски не коробятся, а снижение неподрессоренных и вращающихся масс положительно сказывается на ходовых качествах автомобиля. Тем не менее путь к обычным дорожным автомобилям таким тормозам пока заказан. Стоимость комплекта карбоновых тормозов может достигать стоимости нового автомобиля малого класса, а нормально работать они начинают только после хорошего прогрева: до этого коэффициент трения тормозов даже ниже обычных! Нельзя забывать и об удобстве управления замедлением: если с традиционными тормозами все просто и понятно, то здесь контролировать замедление сверхсложно. Фактически в обычных условиях карбоновые тормоза будут аналогом переключателя «ехать/стоять».

Более радужные перспективы в автомобилестроении имеют керамические тормоза. Они не имеют такого ошеломляющего коэффициента трения, как карбоновые, но обладают целым рядом преимуществ. У керамики гораздо больше возможностей, чем у металла или различных композитов. Этот материал отличается отличной устойчивостью к высоким температурам, высокой стойкостью к коррозии и износу, небольшой удельной массой и высокой прочностью. Но это еще не все. Керамические тормозные диски, в сравнению аналогичным деталями из серого чугуна легче на 50%. Вес, например, керамического тормозного диска PORSCHE 911 в два раза легче обычного, значит, меньше и неподрессоренные массы, а следовательно, и нагрузка на подвеску. Уменьшается и так называемый гироскопический эффект, когда вращающееся с большой скоростью тело сопротивляется смене направления вращения. Кроме того, применение керамики позволяет увеличить на 25% коэффициент трения, а заодно резко повысить эффективность торможения в горячем состоянии. Еще одно преимущество – невероятная долговечность. Керамические диски обычно не требуют замены на протяжении 300 000 км. К сожалению, есть и недостатки. Во-первых, холодные керамические диски хуже останавливают машину, чем холодные тормозные диски из металла. Во-вторых, керамика плохо работает при очень низких температурах. В третьих, такие диски при работе неприятно скрипят. И, наконец, в четвертых, цена у них ну просто непомерная.  

Если Вы- владелец подобного автомобиля, карбон и керамика- для Вас

Тормозные колодки

Тормозные колодки – наиболее важный элемент тормозной системы. Именно от них зависит эффективность работы тормозов. Хорошие, правильные колодки будут не только долго и надежно выполнять свои функции, но и сохранят тормозной диск или барабан целым и невредимым долгое время. Наоборот, плохие, некачественные колодки могут испортить тормозной диск, проделав в нем глубокие канавы, и т. д. Тормозные колодки бывают разными. Причем речь идет не о конструкции и дизайне, а в первую очередь о материале фрикционных накладок, которые собственно и осуществляют торможение. Фрикционных смесей на сегодня существует превеликое множество. У каждой фирмы своя рецептура и свои ингредиенты. В состав смеси могут входить от 10 до 50 различных компонентов. Их пропорции четко выдержаны. Любое изменение доли того или иного компонента может существенно изменить свойства будущих тормозных накладок, вплоть до их полной неработоспособности. Основа фрикционной смеси – армирующий компонент. Именно от него зависит прочность, термостойкость и стабильность тормозных свойств изделия. В последние годы сложились устойчивые виды фрикционных изделий, получивших свое название, именно основываясь на их армирующем компоненте. Выделяются асбестовые, безасбестовые и органические (на основе органических волокон) компоненты. Первые, как видно из названия, в качестве армирующего элемента используют асбест. Вредность этого материала для человека уже стала притчей во языцех. Во многих руководствах по ремонту и обслуживанию автомобилей говорится, что менять асбестосодержащие тормозные колодки и даже снимать колеса (если у вас такие тормоза) необходимо предельно осторожно, заблаговременно позаботившись о защите органов дыхания и зрения. Безасбестовые представляют собой фрикционный материал, в котором роль армирующего компонента выполняют иные составляющие. Это может быть стальная вата, медная, латунная стружка, различные полимерные композиции и т. д. В бюджетных колодках производители используют смесь органических и неорганических волокон, балансируя между коэффициентом трения, изностойкостью и конечной ценой колодки. Если речь идет о дорогих колодках, хотя и предназначенных для дорожных автомобилей, то производители могут включать гранулы мягких металлов и искусственного графита, кевларовых и карбоновых волокон, таким образом увеличивая термостабильность фрикционного материала. Самые современные на данный момент фрикционные материалы выполняют на основе органических волокон. У таких колодок наилучшие тормозные свойства. Недаром именно они устанавливаются на современные болиды Формула-1, где нагрузки на тормоза (по меркам городских автомобилей) просто запредельные. Ведь им приходится за считанные секунды или даже доли секунды снижать скорость машины с 300 до 60 км/ч. К сожалению, как и любых высокотехнологичных и наукоемких изделий, стоимость таких колодок доступна лишь таким «денежным» видам автоспорта. И еще раз вспомним о тепле. Колодки также должны охлаждаться, но, в отличие от дисков, они как раз должны не пропускать тепло через себя. Нагреваясь, сами, они обязательно начнут греть рабочие тормозные цилиндры, а они, в свою очередь, тормозную жидкость, и если она закипит, тормоза перестанут работать, со всеми вытекающими последствиями. Вот почему столь важно обеспечить тепловой барьер между фрикционными накладками и металлической основой тормозной колодки.

Нагрузки на передние и задние тормозные колодки При торможении передние тормозные колодки испытывают основную нагрузку, поэтому они изнашиваются быстрее задних тормозных колодок. Часто приходится слышать, что пока поменяешь задние тормозные колодки, износишь три раза передние тормозные колодки. В принципе, соотношение 1:3 верное.

Многие производители ставят на передние и задние тормозные колодки специальные устройства, предупреждающие об износе этого компонента. Они бывают механические и электронные. В первом случае изношенная задняя или передняя тормозная колодка начинает неприятно скрипеть. Во втором – в случае износа передней или задней тормозной колодки на панели приборов зажигается специальный индикатор. При замене тормозных колодок лучше поменять все колодки. Например, если вы меняете задние тормозные колодки, то поменяйте колодки сразу на обоих задних колесах. В случае передних тормозных колодок поступайте аналогично. Это позволит избежать ситуации, когда новые и уже износившиеся колодки будут по-разному тормозить колеса, отчего автомобиль будет терять в управляемости.

Физика безопасностиФрикционная накладка- важнейшая деталь тормозной колодки. Основные ее задачи- получение необходимых сил трения в процессе торможения и обеспечение стабильности коэффициента трения при изменении скорости вращения тормозного диска и давления в системе. Естественное желание изготовителей автомобилей (как, впрочем, и разработчиков и производителей тормозных накладок)- получение коэффициента трения, близкого к константе при любых условиях эксплуатации. Выполнить это требование нелегко, о чем свидетельствует весь мировой опыт. Можно говорить лишь о поиске оптимального сочетания свойств накладки. Большинство современных тормозных накладок имеет коэффициент трения 0,35-0,45. Почему так? Чем плохи значения 0,28 или, положим, 0,55? С первой цифрой все понятно: заниженные фрикционные свойства приводят к увеличению времени торможения и тормозного пути, что отрицательно сказывается на безопасности. А хороши ли высокие фрикционные свойства? На первый взгляд — да. Но только на первый. На деле же увеличение коэффициента трения сужает диапазон воздействий на педаль от начала торможения до блокировки колес. И начинаются неприятности. Судите сами: блокировка приводит к скольжению или юзу. Это недопустимо, как минимум, по двум причинам. Во-первых, ухудшаются устойчивость и управляемость автомобиля. Ведь сцепление колес с дорогой становится одинаковым во всех направлениях — что в курсовом, что в боковом. Во-вторых, увеличивается тормозной путь, поскольку сцепление с дорогой при скольжении колес значительно меньше, чем при качении. Поэтому при высоком коэффициенте трения накладок требуется осторожность в «топтании педали», определенные навыки вождения и быстрая реакция. Особо опасны дороги, где чередуются участки с хорошим и плохим сцеплением колеса. Например, асфальт, гололед, асфальт, снег, снова гололед и это тянется на много километров. Или так: слева асфальт, а справа, ближе к обочине, жидкая грязь. В подобных ситуациях на машинах без ABS торможение может привести к потере управляемости и непредсказуемым последствиям. Такие случаи особенно опасны в условиях интенсивного движения с высокой скоростью.

О конструкции: взаимодействие осейВ подавляющем большинстве случаев на передней и задней осях автомобиля устанавливаются разные тормозные механизмы. Секрет прост: осям требуется неодинаковая эффективность торможения. Сегодня на многих легковых автомобилях и легких грузовиках наиболее распространена система Д-Б — то есть с дисковыми механизмами на передней оси и барабанными — на задней. Тормозные накладки в этих схемах различны — и по технологии изготовления и по набору компонентов фрикционной композиции. Однако они должны правильно взаимодействовать, то есть иметь согласованные фрикционные характеристики.

Напомним, что опережающая блокировка колес передней оси нарушает управляемость автомобиля, а опережающая блокировка колес задней оси приводит к потере устойчивости, провоцируя занос и опрокидывание. Поэтому эффективность торможения каждой из осей должна находиться строго в своих рамках — это и есть основа безопасности. Коэффициент трения зависит от давления между накладкой и контртелом (диском или барабаном), от скорости и, конечно, от температуры. Более стабильными являются дисковые тормозные механизмы. Они в меньшей степени теряют эффективность с ростом указанных факторов. Кроме того, им не так страшно попадание воды, масла и грязи на поверхности трения. А вот накладки барабанных тормозов более капризны. Многие знакомы с ситуацией, когда после форсирования большой лужи барабанные тормозные механизмы просто-напросто перестают работать. При интенсивном пользовании тормозами эффективность торможения каждой из осей автомобиля изменяется — причем (внимание!) не пропорционально друг другу. Отсюда видно, сколь легко может быть нарушено правильное взаимодействие передних и задних механизмов в процессе торможения.

ТОРМОЗНЫЕ ЖИДКОСТИ

Назначение тормозных жидкостей - передавать усилие от главного тормозного цилиндра к колесным. Задача хоть и узкая, но чрезвычайно ответственная; у тормозной системы нет права на отказ ни при каких обстоятельствах. Когда в гидравлическом приводе тормозов жидкость не подтекает, внимания на нее, казалось бы, обращать не нужно. Однако от ее состояния зависит эффективность торможения и стабильность работы системы. Если, например, плохой антифриз или моторное масло лишь сокращают срок службы двигателя, то низкое качество тормозной жидкости может привести к аварии.

Общие сведенияТормозная жидкость (ТЖ) состоит из основы (ее доля 93-98%) и различных присадок (остальные 7-2%). Устаревшие жидкости, например “БСК”, изготовлены на смеси касторового масла и бутилового спирта в пропорции 1:1. Основа современных, наиболее распространенных, в том числе (“Нева”, “Томь” и РосДОТ, она же “Роса”), - полигликоли и их эфиры. Гораздо реже применяют силиконы. В комплексе присадок одни из них препятствуют окислению ТЖ кислородом воздуха и при сильном нагреве, а другие - защищают металлические детали гидросистем от коррозии. Основные свойства любой тормозной жидкости зависят от сочетания ее компонентов.

Основные свойства тормозных жидкостей.Температура кипения. Чем она выше, тем меньше вероятность образования паровой пробки в системе. При торможении автомобиля рабочие цилиндры и жидкость в них нагреваются. Если температура превысит допустимую, ТЖ закипит, и образуются пузырьки пара. Несжимаемая жидкость станет “мягкой”, педаль “провалится”, а машина не остановится вовремя. Чем быстрее ехал автомобиль, тем больше тепла выделится при торможении. А чем интенсивнее замедление, тем меньше времени останется на охлаждение колесных цилиндров и подводящих трубок. Это характерно для частых длительных торможений, например в горной местности и даже на равнинном шоссе, загруженном транспортом, при резком “спортивном” стиле управления автомобилем. Внезапное закипание ТЖ коварно тем, что водитель не может предугадать этот момент.

Вязкость характеризует способность жидкости прокачиваться по системе. Температура окружающей среды и самой ТЖ может быть от минус 40°С зимой в неотапливаемом гараже (или на улице) до 100°С летом в моторном отсеке (в главном цилиндре и его бачке), и даже до 200°С при интенсивном замедлении машины (в рабочих цилиндрах). В этих условиях изменение вязкости жидкости должно соответствовать проходным сечениям и зазорам в деталях и узлах гидросистемы, заданным разработчиками автомобиля. Замерзшая (вся или местами) ТЖ может блокировать работу системы, густая - будет с трудом прокачиваться по ней, увеличивая время срабатывания тормозов. А слишком жидкая - повышает вероятность течей.Воздействие на резиновые детали. Уплотнения не должны разбухать в ТЖ, уменьшать свои размеры (давать усадку), терять эластичность и прочность больше, чем это допустимо. Распухшие манжеты затрудняют обратное перемещение поршней в цилиндрах, поэтому не исключено подтормаживание автомобиля. С усевшими уплотнениями система будет негерметичной из-за утечек, а замедление - неэффективным (при нажатии педали жидкость перетекает внутри главного цилиндра, не передавая усилие тормозным колодкам).Воздействие на металлы. Детали из стали, чугуна и алюминия не должны корродировать в ТЖ. Иначе поршни “закиснут” или манжеты, работающие по поврежденной поверхности, быстро износятся, а жидкость вытечет из цилиндров либо будет перекачиваться внутри них. В любом случае гидропривод перестает работать.Смазывающие свойства. Чтобы цилиндры, поршни и манжеты системы меньше изнашивались, тормозная жидкость должна смазывать их рабочие поверхности. Царапины на зеркале цилиндров провоцируют течи ТЖ.Стабильность - устойчивость к воздействию высоких температур и окислению кислородом воздуха, которое в нагретой жидкости происходит быстрее. Продукты окисления ТЖ разъедают металлы.Гигроскопичность - склонность тормозных жидкостей на полигликолевой основе поглощать воду из атмосферы. В эксплуатации - в основном через компенсационное отверстие в крышке бачка. Тормозная жидкость имеет одно неприятное свойство: она впитывает влагу. Из-за постоянных перепадов температуры в ней образуется и накапливается конденсат. Чем больше воды растворено в ТЖ, тем раньше она закипает, сильнее густеет при низких температурах, хуже смазывает детали, а металлы в ней корродируют быстрее. Наличие в тормозной жидкости всего 2–3 процентов воды снижает температуру ее кипения примерно на 70 градусов. На практике это означает, что при торможении DOT-4, например, закипит, не разогревшись и до 160 градусов, в то время как в «сухом» (то есть без влаги) состоянии это произойдет при 230 градусах. Последствия будут такие же, как если бы в тормозную систему попал воздух: педаль становится колом, тормозное усилие резко ослабевает.

Классы тормозных жидкостейПри разработке жидкостей, как правило, ориентируются на требования американской системы безопасности автомобилей FMVSS № 116 (DOT).  Жидкости классифицируют по температуре кипения и вязкости (см. таблицу), остальные их свойства близки.

 

Наименование показателя DОТ 3 DОТ 4 DОТ 5 БСК Нева А Нева Б Томь
Температура кипения,°C, не ниже 230 240 260 115 200 195 220
Температура кипения увлажненной жидкости,°C, не ниже 140 155 180 - 140 137 160
Вязкость кинематическая при -40°C,мм/сек., не более 1500 1800 900 - 1500 1500 1500

Какую ТЖ нужно применять в автомобиле, решает его изготовитель. Тормозная система автомобиля (в том числе резинотехнические и конструкционные материалы) разрабатывается под определенный тип тормозных жидкостей, поэтому не следует применять отечественные жидкости на иномарках - и не потому, что наши хуже, а импортные лучше. Просто каждая машина сделана из своих материалов, и разные ТЖ могут на них по-разному воздействовать. Главное правило применения тормозной жидкости - это следовать рекомендациям прилагаемой к автомобилю инструкции. Жидкости типа DОТ 3 предназначены для гидропривода тормозов барабанного типа, а также для дисковых тормозов при обычных условиях эксплуатации. Жидкости типа DОТ 4 используются на автомобилях с дисковыми тормозами, эксплуатирующихся в городских условиях ( на режимах "разгон-торможение"). Спирто-касторовая жидкость "БСК" не может рассматриваться как ТЖ для современных автомобилей. Она была разработана для старых автомобилей времен ГАЗ-21 и застывает уже при температуре - 20° С. Жидкость "Нева" марки "А" незначительно уступает требованиям DОТ 3, а марка "Б" - не соответствует им по температуре кипения как сухой, так и увлажненной жидкости. ТЖ "Нева" была разработана для применения в тормозных системах первых моделей "Жигулей". Тормозные жидкости DОТ 3, "Томь" и DОТ 4 могут применяться практически на всех отечественных автомобилях. Тормозная жидкость DOT5 также известна, как "силиконовая" тормозная жидкость ("silicone"). Ее преимущества: не разъедает краску; не поглощает воду и может быть полезна там, где абсорбция является проблемой; является совместимой с любыми резиновыми частями. Недостатки: DOT5 нельзя смешивать с DOT3 или DOT4. Большинство проблем с DOT5 возникает, вероятно, по причине смешивания с некоторым количеством других видов тормозной жидкости. Наилучшим способом перейти на DOT5 является полная переборка гидравлической системы. Жалобы на то, что DOT5 приводит к выходу из строя резиновых частей тормозов, были присущи, как правило, ранним формулам (композициям) DOT5. Считалось, что причиной этого было несоответствующее использование различных добавок. В последних формулах эта проблема была устранена. Так как DOT5 не поглощает воду, любая влага, находящаяся в гидравлической системе, будет скапливаться в одном месте. Это может вызвать локальную коррозию в гидравлике. Необходима тщательная прокачка для удаления всего воздуха, находящегося в системе. В жидкости могут сформироваться небольшие пузырьки, размер которых со временем увеличивается. Может потребоваться несколько прокачек. DOT5 является несколько компрессионной (что дает едва заметное ощущение "мягкой педали"). Точка кипения DOT5 ниже, чем у DOT4. Тормозная жидкость DOT5.1 является относительно новой, поэтому она постоянно вводит автолюбителей в заблуждение. Этого заблуждения можно было бы избежать, если бы эту тормозную жидкость назвали бы по-другому. Обозначение "5.1" может навести на мысль, что это модификация тормозной жидкости DOT 5 на силиконовой основе. Более естественно было бы назвать ее 4.1. или 6, так как DOT5.1 имеет гликолевую основу, так же как DOT3 и DOT4, а не силиконовую, как DOT5. Что касается принципиального характера тормозной жидкости 5.1, его можно определить, как "высокотехнологичная" тормозная жидкость DOT4, нежели чем традиционная DOT5. Ее преимущества: DOT5.1 обеспечивает превосходную работу, по сравнению с другими тормозными жидкостями, которые рассматриваются в данной статье. У нее более высокая точка кипения, по сравнению с DOT3 или 4, как начальная, так и конечная. Фактически, конечная точка кипения (около 275 градусов С) почти такая же, как у гоночных тормозных жидкостей (около 300 градусов С), а начальная точка кипения тормозной жидкости 5.1 (примерно 175-200 градусов С) естественно значительно выше, чем у гоночных тормозных жидкостей (около 145 градусов). Считается, что DOT5.1 является совместимой с любыми резиновыми компонентами. Недостатки: DOT5.1  - не силиконовые тормозные жидкости, следовательно, они поглощают воду. DOT5.1, как DOT3 и DOT4, разъедает краску. Жидкости класса DОТ 5.1, не содержащие силикона, иногда обозначают, как DОТ 5.1 NSBBF, а силиконовые ДОТ 5- ДОТ 5 SBBF. Аббревиатура NSBBF означает “non silicon based brake fluids” (“тормозная жидкость, не основанная на силиконе”), а SBBF - “silicon based brake fluids” (“тормозная жидкость, основанная на силиконе”).

Особенности эксплуатации тормозных жидкостейПоглощение воды из атмосферы свойственно ТЖ на полигликолевой основе. При этом температура их кипения снижается. FM VSS нормирует ее для “сухих”, еще не набравших влагу, и увлажненных, содержащих 3,5% воды, жидкостей - т.е. ограничивает только предельные значения. Интенсивность процесса поглощения не регламентирована. ТЖ может насыщаться влагой сначала активно, а потом - медленнее. Или наоборот. Но даже если значения температуры кипения у “сухих” жидкостей разных классов сделать близкими, например к DОТ 5, при их увлажнении этот параметр вернется на уровень, свойственный каждому классу. ТЖ нужно периодически заменять, не дожидаясь когда ее состояние приблизится к опасному пределу. Срок службы жидкости назначает автозавод, проверив ее характеристики применительно к особенностям гидросистем своих машин.

Проверка состояния жидкости. Объективно определить основные параметры ТЖ можно только в лаборатории. В эксплуатации - лишь косвенно и не все. Самостоятельно жидкость проверяют визуально - по внешнему виду. Она должна быть прозрачной, однородной, без осадка. Кроме того, в автосервисах (преимущественно крупных, хорошо оснащенных, обслуживающих иномарки) специальными индикаторами оценивают ее температуру кипения. Поскольку жидкость в системе не циркулирует, в бачке (место проверки) и в колесных цилиндрах ее свойства могут быть разными. В бачке она контактирует с атмосферой, набирая влагу, а в тормозных механизмах - нет. Зато там жидкость часто и сильно нагревается, и ее стабильность ухудшается. Однако даже такими ориентировочными проверками пренебрегать не стоит, иных оперативных способов контроля нет.Совместимость. ТЖ с разными основами несовместимы друг с другом, они расслаиваются, иногда появляется осадок. Параметры этой смеси будут ниже, чем у любой из исходных жидкостей, причем влияние ее на резиновые детали непредсказуемо. Основу ТЖ изготовитель, как правило, указывает на упаковке. Российские РосДОТ, “Неву”, “Томь”, равно как и иные отечественные и импортные полигликолевые жидкости DОТ 3, DОТ 4 и DОТ 5.1, можно смешивать в любых пропорциях. ТЖ класса ДОТ 5 основаны на силиконе и несовместимы с другими. Поэтому стандарт FM VSS 116 требует окрашивать “силиконовые” жидкости в темно-красный цвет. Остальные современные ТЖ, как правило, желтые (оттенки от светло-желтого до светло-коричневого). Для дополнительной проверки можно смешать жидкости в пропорции 1:1 в стеклянной емкости. Если смесь прозрачна и осадка нет, ТЖ совместимы. Следует помнить, что смешивать жидкости разных классов и производителей не рекомендуется, так как возможно изменение их свойств. Запрещено смешивать гликолевые жидкости с касторовыми.Замена. Добавление свежей жидкости при прокачке системы после ремонта не восстанавливает свойства ТЖ, поскольку почти половина ее практически не меняется. Поэтому в сроки, установленные автозаводом, жидкость в гидросистеме нужно заменять полностью.

НЕИСПРАВНОСТИ ТОРМОЗНОЙ СИСТЕМЫ

Признаки неисправности Причина неисправности Способ устранения неисправности
Педаль тормоза проваливается и пружинит Воздух в тормозной системе Удалить воздух из тормозной системы автомобиля
В расширительном бачке мало тормозной жидкости Долить тормозную жидкость в расширительный бачок. Удалить воздух из тормозной системы
Образование пузырьков пара. Проявляется при большой нагрузке на тормоза Заменить тормозную жидкость. Удалить воздух из тормозной системы автомобиля.
Повышенный свободный ход педали тормоза Частичный или полный износ тормозных колодок, тяжелый ход установочного механизма Обеспечить легкость хода установочного механизма или заменить тормозные колодки автомобиля
Повреждение манжеты в главном тормозном или в одном из колесных цилиндров Заменить поврежденные детали
Отказ одного тормозного контура Проверить утечки тормозной жидкости в тормозных контурах
Повышенные люфты подшипников колес Заменить подшипники колес
Боковое биение или выход из допуска по толщине тормозного диска Проверить биение и толщину. Диск проточить или заменить
Тормозной суппорт не параллелен тормозному диску Проверить поверхности тормозного суппорта
Попадание воздуха в тормозную систему Удалить воздух из тормозной системы
Несоответствующие тормозные колодки Заменить тормозные колодки на рекомендованные заводом-изготовителем
Негерметична тормозная система Проверить герметичность тормозной системы
Не функционирует устройство установки тормозных колодок (для барабанных тормозов) Обеспечить легкость хода установочного механизма
Снижение эффекта торможения, жесткая педаль тормоза Утечки в трубопроводе Подтянуть крепления или заменить трубки
Повреждение манжет в колесных или в главном тормозном цилиндрах Заменить манжеты, внутренние детали главного тормозного цилиндра или сам цилиндр.
При торможении автомобиль уводит в одну сторону Неправильное давление в шинах Проверить давление в шинах и откорректировать
Односторонний износ шин Заменить изношенные шины
Замаслены накладки тормозных колодок Заменить накладки тормозных колодок
Различный материал накладок тормозных колодок на одной оси Заменить тормозные колодки. Установить  тормозные колодки, пригодные для данной модели автомобиля
Повреждение поверхностей накладок тормозных колодок Заменить накладки
Загрязнение шахт тормозных суппортов Очистить посадочные и направляющие шахты колодок в тормозном суппорте
Коррозия цилиндра суппорта Заменить суппорт
Неравномерный износ тормозных колодок Заменить тормозные колодки (на обоих колесах)
Загрязнение или повреждение направляющих пальцев суппортов Заменить направляющие пальцы
Нарушена геометрия заднего моста Произвести обмер ходовой части
Дефект амортизаторов Проверить и, если требуется, заменить амортизаторы
Колодки суппорта изношены или затвердели Заменить тормозные колодки суппорта
Приржавели поршни в колесных тормозных цилиндрах (для барабанных тормозов) Заменить колесные тормозные цилиндры
Разогрев тормозов в движении Засорено компенсационное отверстие в главном тормозном цилиндре Очистить цилиндр, заменить внутренние детали
Мал зазор между тягой и поршнем главного тормозного цилиндра Проверить зазор
Засорено дроссельное отверстие в специальном клапане избыточного давления в главном тормозном цилиндре Очистить цилиндр, заменить внутренние детали. Заменить тормозную жидкость.
Разбухание резиновых деталей из-за использования тормозной жидкости не рекомендованного сорта Отремонтировать или заменить главный тормозной цилиндр. Заменить тормозную жидкость.
Сломана распорная пружина Заменить распорную пружину
Ослабли возвратные пружины тормозных колодок (для барабанных тормозов) Заменить возвратные пружины
Не отпущен рычаг ручного тормоза Отрегулировать ручной тормоз или заменить трос ручного тормоза
Подтормаживание колес Засорено компенсационное отверстие в главном тормозном цилиндре Очистить цилиндр, заменить внутренние детали
Мал зазор между тягой и поршнем главного тормозного цилиндра Проверить зазор
Стук тормозов Несоответствующие тормозные колодки Заменить тормозные колодки на рекомендованные заводом-изготовителем
Частичная коррозия тормозных дисков Тщательно отшлифовать тормозные диски
Боковое биение тормозных дисков Проточить или заменить тормозные диски
Овальность тормозного барабана Расточить или заменить тормозной барабан
Накладки тормозных колодок не отделяются от тормозного диска, колесо тяжело проворачивается рукой Коррозия цилиндра тормозного суппорта Отремонтировать или заменить тормозной суппорт
Неравномерный износ тормозных колодок Несоответствующие тормозные колодки Заменить тормозные колодки на рекомендованные заводом-изготовителем
Загрязнение тормозного суппорта Очистить шахты тормозного суппорта
Тяжелый ход поршней Проверить установку поршней
Негерметична  тормозная система Проверить тормозную систему
Повреждение пыльников Заменить пыльники
Разбухание резинового кольца поршня Отремонтировать суппорт или колесный цилиндр
Клинообразный износ тормозных колодок Тормозной диск не параллелен тормозному суппорту Проверить плоскости установки тормозного суппорта
Коррозия в тормозном суппорте Очистить тормозной суппорт
Неправильная работа поршня Проверить установку поршней
Скрип тормозов Зачастую зависит от климатических воздействий (влажность) Ничего не делать, если скрип появляется после долгой стоянки автомобиля в условиях повышенной влажности, а затем пропадает после первых торможений
Несоответствующие тормозные колодки Заменить тормозные колодки. Установить  тормозные колодки, рекомендованные для данной модели автомобиля
Тормозной диск не параллелен тормозному суппорту Проверить плоскости установки тормозного суппорта
Загрязнение тормозного суппорта Очистить шахты тормозного суппорта
Ослабление распорных пружин Заменить распорные пружины
Велик люфт колесных подшипников Заменить колесные подшипники
Коррозия края тормозного диска Обработать или заменить тормозные диски
Отделение накладки тормозной колодки Заменить тормозные колодки
Овальность тормозного барабана (для барабанных тормозов) Расточить или заменить тормозной барабан
Загрязнение тормозного барабана Очистить и проверить тормозной барабан
Снижение эффекта торможения несмотря на высокое усилие на педаль Замаслены накладки тормозных колодок Заменить накладки
Несоответствующие тормозные колодки Заменить тормозные колодки на рекомендованные заводом-изготовителем
Дефект усилителя тормозов Проверить усилитель
Износ накладок тормозных колодок Заменить тормозные колодки
Отказ одного из тормозных контуров Проверить герметичность тормозной системы
Пульсация тормозов Функционирование АБС Нормально, ничего не предпринимать
Повышенное биение или отклонение от нормальной толщины тормозного диска Проверить биение и толщину. Диск обточить или заменить.
Тормозной диск не параллелен тормозному суппорту Проверить плоскость установки тормозного суппорта
Велик люфт колесных подшипников Заменить колесные подшипники
Недостаточная эффективность стояночного тормоза Увеличен свободный ход тормозных колодок или тросов Отрегулировать стояночный тормоз автомобиля
Замаслены тормозные колодки Заменить тормозные колодки
Коррозия распорного замка или тросов Установить новые детали
Нарушение регулировки тросов стояночного тормоза Отрегулировать тросы стояночного тормоза автомобиля

СПАСИБО ЗА ВНИМАНИЕ.

auto-dnevnik.com

Как работает тормозная система автомобиля

В современных автомобилях тормоза с гидроприводом устанавливаются на всех четырех колесах. Тормоза бывают дисковыми и барабанными.

Передние тормоза играют большую роль с остановке автомобиля, чем задние, т.к. при торможении вес переносится на передние колеса.

Во многих автомобилях передние колеса оснащены дисковыми тормозами, которые считаются более эффективными, а задние - барабанными.

Тормозные системы, которые состоят только из дисков, устанавливаются на самых дорогих и высокопроизводительных автомобилях, а тормозные системы, которые состоят только из барабанов, характерны для старых автомобилей небольшого размера.

Двухконтурная тормозная система

В типичной двухконтурной тормозной системе каждая цепь работает для обоих передних колес и одного из задних колес. При нажатии на педаль тормоза жидкость из главного тормозного цилиндра проходит по тормозным трубкам во вспомогательные цилиндры, расположенные рядом с колесами. При этом главный тормозной цилиндр пополняется из специального резервуара.

Гидравлическая тормозная система

Гидравлическая тормозная цепь включает в себя главный тормозной цилиндр, заполненный жидкостью, и несколько вспомогательных цилиндров, соединенных между собой трубками.

Главный и вспомогательные цилиндры

При нажатии педали тормоза главный тормозной цилиндр выдавливает жидкость во вспомогательные цилиндры.

Педаль приводит в движение поршень в главном тормозном цилиндре, и жидкость перемещается по трубке.

Попав во вспомогательные цилиндры, расположенные рядом с колесами, жидкость приводит в движение цилиндры и провоцирует срабатывание тормозов.

Давление жидкости равномерно распределяется по системе.

Тем не менее, суммарная площадь давления поршней во вспомогательных цилиндрах больше, чем площадь давления поршня в главном тормозном цилиндре.

Таким образом, поршню в главном цилиндре необходимо пройти путь в несколько десятков сантиметров, чтобы сдвинуть поршни во вспомогательных цилиндрах на пару сантиметров, которые необходимы для срабатывания тормозов.

Такая конструкция позволяет прикладывать к тормозам огромную силу, подобно той, что возникает в рычаге с длинным плечом даже при небольшом нажатии.

В современных автомобилях используются гидравлические цепи с двумя цилиндрами, один из которых является запасным.

В некоторых случаях одна цепь работает для передних колес, а вторая - для задних. Иногда одна цепь объединяет колеса попарно (переднее и заднее). В отдельных системах одна цепь обеспечивает работу тормозов на всех колесах.

Зачастую сильное торможение переносит вес автомобиля на передние колеса. При этом задние колеса блокируются, что приводит к заносу.

Для решения этой проблемы задние тормоза намеренно делают более слабыми, чем передние.

В некоторых автомобилях также присутствует ограничители давления, чувствительные к нагрузке. Когда давление в тормозной системе поднимается до уровня, при котором блокируются задние колеса, ограничительный клапан закрывается, и жидкость больше не поступает в задние тормоза.

В более продвинутых моделях используется сложная система антиблокировки, которые учитывают резкие изменения в скорости.

Такие системы быстро включают и выключают тормоза, чтобы предотвратить блокировку.

Тормоза с усилителем

Во многих автомобилях предусмотрено усиление тормозной системы, благодаря которому водителю не требуется прикладывать много усилий, чтобы затормозить.

Как правило, источником усиления является перепад давления от частичного вакуума во впускном коллекторе и потока воздуха за пределами корпуса.

Исполнительный механизм, который отвечает за усиление, связан с впускным коллектором трубами.

Исполнительный механизм прямого действия находится между педалью тормоза и главным тормозным цилиндром. Педаль может воздействовать на цилиндр напрямую, если механизм отказал или двигатель отключен.

Исполнительный механизм прямого действия находится между педалью тормоза и главным тормозным цилиндром. Педаль тормоза воздействует на рычаг, который, в свою очередь, запускает поршень главного тормозного цилиндра.

Помимо этого, педаль также воздействует на несколько воздушных клапанов, а поршень главного тормозного цилиндра оснащен большой резиновой диафрагмой.

Когда тормоза отключены, диафрагма обеими сторонами примыкает к вакууму во впускном коллекторе.

При нажатии на педаль клапан, соединяющий заднюю сторону диафрагмы с коллектором, закрывается, открывая клапан, впускающий воздух извне.

Под давлением воздуха диафрагма перемещает поршень главного тормозного цилиндра, усиливая работу тормозов.

При удерживании педали воздушный клапан больше не пропускает воздух, и давление в тормозах остается постоянным.

Если педаль была отпущена, пространство за диафрагмой открывается, давление снова падает, и диафрагма возвращается в первоначальное положение.

Когда двигатель останавливается, вакуум исчезает, но тормоза продолжают работать, т.к. педаль соединена с главным тормозным цилиндром механически.  Тем не менее, для торможения в описанной ситуации потребуется гораздо больше усилий со стороны водителя.

Как работает усилитель тормоза

Тормоза не работают, обе стороны диафрагмы соприкасаются с вакуумом.

При нажатии на педаль на заднюю сторону диафрагмы воздействует воздух, и она двигается к цилиндру.

Некоторые автомобили снабжены механизмами непрямого действия, встроенными в линию гидравлической передачи между тормозами и главным тормозным цилиндром. Такой механизм не привязан к педали и может присутствовать в любом отделе моторного отсека.

Тем не менее, он тоже работает под действием вакуума из коллектора. При нажатии на педаль тормоза главный тормозной цилиндр обеспечивает гидравлическое давление на клапан, который запускает механизм.

Дисковые тормоза

Базовый тип дисковых тормозов с одной парой поршней. Для воздействия на колодки может использоваться один или несколько поршней. Суппорты могут быть качающимися или раздвижными.

Дисковый тормоз оборудован диском, который вращается вместе с колесом. Диск подпирается суппортом, в котором есть небольшие гидравлические поршни, работающие под управлением главного тормозного цилиндра.

Поршни давят на фрикционные накладки, которые прижимаются к диску, чтобы замедлить или остановить его. Эти накладки имеют изогнутую форму и покрывают большую часть диска.

В двухконтурных тормозных системах поршней может быть несколько.

Для торможения поршням необязательно проходить длинный путь, поэтому при отключении тормозов они не соприкасаются с диском и не имеют возвратных пружин.

При нажатии на педаль тормоза накладки прижимаются к диску под давлением жидкости.

Резиновые уплотнительные кольца, окружающие поршни, позволяют им постепенно продвигаться вперед по мере износа накладок, чтобы расстояние между диском и поршнем оставалось постоянным, и тормозная система не нуждалась в настройке.

В некоторых современных моделях накладки снабжены датчиками. При износе накладки контакты датчика обнажаются и замыкаются, зажигая аварийный сигнал на приборной панели.

Барабанные тормоза

Барабанный тормоз с первичной и вторичной колодками оснащен одним гидравлическим цилиндром. Тормоза с двумя первичными колодками имеют два цилиндра, которые устанавливаются на передних колесах.

Барабанный тормоз оборудован полым барабаном, который вращается вместе с колесом. Верх барабана покрыт неподвижной опорной плитой, на которой располагаются две изогнутые колодки с фрикционной обшивкой.

Под давлением жидкости поршни в цилиндрах раздвигаются, и обшивка колодок прижимается к барабану, замедляя или останавливая его.

При нажатии на педаль колодки прижимаются к барабану под действием поршней.

Каждая тормозная колодка соприкасается с рычагом и поршнем. Первичная колодка соприкасается с поршнем рабочей стороной, определяя направление вращения барабана.

При вращении барабан тянет колодку в противоположную сторону, обеспечивая эффект торможения.

В некоторых барабанах используются сдвоенные колодки, каждая из которых оснащена гидравлическим цилиндром. В других используется пара колодок (первичная и вторичная) с рычагами спереди.

Такая конструкция позволяет разводить колодки при наличии одного цилиндра с двумя поршнями.

Система с первичной и вторичной колодками является упрощенной и менее мощной, чем система с двумя ведущими колодками, поэтому она обычно устанавливается на задние колеса.

В любом случае, после отключения тормозов колодки принимают первоначальное положение благодаря пружинам возврата.

Перемещение колодок ограничивается регулятором. В старых системах используются механические регуляторы, которые требуют настройки по мере износа фрикционной обшивки. В современных системах регуляторы работают автоматически за счет храповых механизмов.

Барабанные тормоза могут отказывать при частом использовании, т.к. они перегреваются и не могут эффективно функционировать, пока не остынут. Диски обладают более открытой конструкцией и считаются более надежными.

Ручной тормоз

Механизм ручного тормоза

Ручной тормоз воздействует на колодки посредством механической системы, которая не задействует гидравлические цилиндры. Эта система состоит из рычагов, которые находятся в тормозном барабане и запускаются из салона вручную.

Помимо гидравлической тормозной системы все автомобили снабжены ручным тормозом, который действует на два колеса (как правило, задних).

Ручной тормоз дает возможность снизить скорость при отказе гидравлической системы, однако в основном используется на стоянках.

Рычаг ручного тормоза тянет трос или пару тросов, соединенных с тормозами совокупностью более мелких рычагов, шкивов и направляющих. Конкретные составляющие этой системы зависят от модели автомобиля.

Рычаги ручного тормоза удерживаются в нужном положении посредством храпового механизма. Механизм выключается по кнопку, освобождая рычаги.

В барабанных тормозах ручной тормоз воздействует на тормозную ленту, которая прижимается к барабанам.

В дисковых тормозах используется та же механика, однако суппорты обладают небольшими размерами, и на них сложно установить проводку, поэтому для каждого колеса предусматривается отдельный рычаг.

17koles.ru

Антиблокировочная тормозная система

Экстренное торможение – вид торможения, применяемый водителями транспортных средств все чаще и чаще, поскольку это диктуется постоянным усложнением современной дорожной обстановки. Однако эффективность такого торможения может быть сведена практически к нулю в случае блокировки колеса (колес) транспортного средства. Оно прекращает восприятие боковых сил, воздействие которых призвано удержать автомобиль на определенной, заданной водителем траектории. Транспортное средство не только теряет управляемость, но и устойчивость, что в 90% случаев приводит к его срыву в неуправляемый «занос».

АБС тормоза, названная по первым буквам технологии «Antilock Brake System»,  функционально предназначена для сохранения управляемости транспортного средства в процессе торможения посредством предотвращения блокировки колес. Результатом использования данной системы является рост эффективности торможения, уменьшение величины тормозного пути автомобиля, как на сухом, так и на влажном дорожном покрытии, улучшение маневренности и т.д. Несомненным достоинством системы «ABS» можно считать уменьшение износа резины, а также обеспечение его (износа) равномерности.

К основным недостаткам антиблокировочной системы относят увеличение тормозного пути автомобиля на покрытиях имеющих рыхлую структуру: гравий, песок, снег и т.п.Итак, резюмируем сказанное. Функциональные возможности системы, предотвращающей блокировку колеса (колес) в процессе экстренного торможения обеспечивают:

Конструкция тормозной системы «ABS» 

Современная система предотвращение блокировки колес состоит из трех основных групп элементов:

Как нетрудно понять, управление исполнительными устройствами, или модуляторами, осуществляется посредством регулировки давления в тормозных контурах колес. При этом большое внимание уделяется скорости передачи информации от датчиков, расположенных, как правило, на колесной оси, блоку управления.Гидравлический распределитель представляет собой ряд электромагнитных клапанов, контролирующих величину давления в системе и заключенных в прочный корпус.

Центральный блок электронного управления, или «ECU», - два взаимодействующих между собой микроконтроллера, контролирующие работу друг друга. Рабочая программа блока управления включает несколько алгоритмов работы, главным из которых, является состояние тормозной системы в зависимости от информации о параметрах вращения коле

Принцип работы антиблокировочной системы

Антиблокировочная тормозная система автомобиля функционирует следующим образом. В момент торможения тормозная жидкость поступает к впускным каналам гидравлического распределителя. Электромагнитные клапаны открыты, и рабочая жидкость свободно подается к колесам автомобиля. При поступлении информации с датчика о критическом изменении частоты вращения и положения колеса, блок управления закрывает электромагнитные клапаны, прекращая или ограничивая поступление тормозной жидкости к тормозному механизму колеса. После прекращения блокировки колеса (на основании информации колесных датчиков) блок электронного управления «ECU» возвращает электромагнитные клапаны в первоначальное  положение, тем самым возобновляя подачу тормозной жидкости к тормозным механизмам колеса.

Водитель транспортного средства, кроме транспаранта на панели управления, сигнализирующего о включении системы «ABS», ощущает толчки тормозной педали, вызванные быстрыми открытием и закрытием электромагнитных клапанов модулятора.

Особенности эксплуатации автомобиля, оснащенного системой предотвращения блокировки колес

Эксплуатация транспортного средства, имеющего систему «ABS», имеет определенные особенности и требования, соблюдение которых обеспечит продолжительность и стабильность  ее (системы) функционирования:

Автолюбители-новички нередко впадают в панику при загорании транспаранта, сигнализирующего о выходе из строя антиблокировочной системы транспортного средства. В этом случае необходимо помнить следующее:

a)    Работоспособность тормозной системы автомобиля не зависит от работоспособности АБС.b)    Промигивание транспаранта – симптом, сигнализирующий о сбоях в работе системы АБС, вызванных неисправностью проводки.c)    Включение транспаранта может быть вызвано низким напряжением (менее 10,5 В) в автомобильной сети.

d)    Вышедшую из строя систему АБС тормоза, меняют на СТО, работники которого имеют соответствующую квалификацию, оборудование и навыки. 

VipWash.ru

Тормозная система, её устройство и неисправности.

Устройство тормозов.

Для эффективного замедления и остановки любого транспортного средства, необходима специальная внешняя сила, препятствующая вращению колёс, и которая называется тормозной. Направление действия тормозной силы, всегда противоположно направлению движения транспортного средства, а максимальное действие тормозной силы, зависит от сцепления покрышки колеса с дорогой. Проще говоря, для замедления и остановки служит тормозная система, которая должна быть всегда в исправном состоянии, а для этого нужно знать её устройство, вовремя устранять неисправности и своевременно проводить обслуживание тормозной системы. Об этом мы и поговорим в этой статье.

Тормозная система любого автомобиля, служит не только для его замедления в движении и полной остановки, но ещё и для удержания его на месте во время стоянки. Все автомобили оборудуются на заводе рабочей (основной), запасной и стояночной тормозными системами.

Рабочая тормозная система обеспечивает замедление (снижение скорости) автомобиля и его полную остановку, и приводится в действие усилием от ноги водителя, давящей на тормозную педаль. Эффективность рабочей тормозной системы оценивается по длине тормозного пути или по скорости замедления.

Запасная тормозная система обеспечивает замедление и остановку машины, в том случае, если не сработает рабочая система тормозов. Запасная тормозная система менее эффективно замедляет и останавливает машину, чем рабочая система, но всё же позволяет избежать неприятностей, при отказе рабочей системы. На большинстве автомобилей (и на всех отечественных) отсутствует полностью автономная запасная система тормозов и её функции выполняет исправная часть от рабочей тормозной системы, а также стояночная система тормозов.

Стояночная тормозная система обеспечивает удержание остановленной машины на месте стоянки и она должна надёжно зафиксировать машину на уклоне до 25%.

Вся тормозная система состоит из механизмов, которые осуществляют торможение (замедление) вращающихся колёс машины и их привода и все тормозные механизмы мы подробно рассмотрим в этой статье. Различают два вида тормозов: менее эффективные и постепенно вымирающие барабанные тормоза, и более эффективные дисковые тормоза. В барабанных тормозах, сила трения создаётся на внутренней поверхности чугунного барабана (или алюминиевого барабана с чугунной вставкой), а в дисковых тормозах, сила трения создаётся на боковых поверхностях вращающегося чугунного или керамического диска.

Колёсный барабанный тормозной механизм.Рис. 1. 1 — колёсный тормозной цилиндр; 2 — тормозная колодка; 3 — неподвижный тормозной диск; 4 — тормозной барабан; 5 — опорные пальцы; 6 — стяжная пружина.

Барабанные тормоза. На большинстве автомобилей и некоторых мотоциклов, задние колёса до сих пор оснащены барабанными тормозами, поэтому рассмотрим их устройство. Колёсный тормозной механизм барабанных тормозов, состоит из двух тормозных колодок 2 (см. рисунок 1), которые установлены внутри тормозного барабана 4, который закреплён на ступице колеса и вращается вместе с ней.

Сами колодки крепятся на неподвижном диске 3, а низ колодок упирается на пальцы 5, а верх колодок стянут пружиной 6. К наружной поверхности колодок приклёпаны или приклеены специальным клеем фрикционные накладки, которые в момент торможения трутся по внутренней поверхности барабана и этим останавливают колесо.

Между верхними концами колодок установлен гидравлический цилиндр 1, поршни которого при нажатии водителем на педаль и поступлении тормозной жидкости в гидроцилиндр, с обеих сторон расходятся и давят на концы колодок (разводят их), прижимая их в момент торможения к поверхности барабана. И соответственно трение колодок о внутреннюю поверхность барабана и вызывает замедление (торможение) колеса машины или мотоцикла.

После прекращения давления на педаль и уменьшения давления тормозной жидкости на поршни гидроцилиндра, пружина 6 возвращает тормозные колодки в начальное положение, и соответственно торможение колеса прекращается. И между колодкой и внутренней поверхностью барабана появляется определённый зазор (чтобы колесо свободно вращалось).

Привод тормозов и его устройство.

Привод тормозов — это устройство для передачи усилия от ноги водителя к тормозным исполнительным механизмам и возможность управлять ими во время торможения. Бывают механический и гидравлический привод. Механический привод используется на автомобилях для стояночной системы тормозов и состоит из тяг, тросов и рычагов, соединяющих рукоять ручника с тормозным механизмом задних колёс. Так же механический привод до сих пор используется как рабочий в барабанных тормозах некоторых мотоциклов прошлых лет выпуска, и на большинстве наших отечественных мотоциклов.

Схема действия тормозной системы с гидроприводом.Рис. 2. а — положение при нажатой тормозной педали; 6 — положение при отпущенной педали; 1 — толкатель; 2 — поршень; 3 — главный тормозной цилиндр; 4 — манжета поршня; 5 — выпускной клапан; 6 — колёсный тормозной цилиндр; 7 — поршень колёсного цилиндра; 8 — тормозная колодка; 9 — тормозной барабан колеса; 10 — стяжная пружина колодок; 11 — обратный клапан; 12 — возвратная пружина; 13 — резервуар.

Гидравлический привод более эффективен, так как усилие от тормозной педали передаётся с помощью тормозной жидкости, способной развить огромное давление. Гидравлический привод тормозов состоит из таких деталей: педаль с осью и толкателем 1 (см. рисунок 2), главный тормозной цилиндр 3 который создаёт давление жидкости в системе привода тормозов и он имеет резервуар (бачок) 13, в котором хранится тормозная жидкость (подробнее о главном тормозном цилиндре, его неисправностях и ремонте я написал вот тут).

Так же привод состоит из колёсных тормозных цилиндров 6, которые передают давление тормозной жидкости на тормозные колодки 8, и всё это соединено с помощью трубопроводов и шлангов, рассчитанных на высокое давление. В системе так же имеется вакуумный усилитель тормозов, который мы рассмотрим подробно чуть ниже. Так же на многих автомобилях имеется регулятор давления в приводе задних колёс.

Принцип работы тормозной системы.

Когда водитель нажимает на тормозную педаль (см. рисунок 2,а), то толкатель 1 давит и двигает поршень 2 главного тормозного цилиндра, и от этого повышается давление в цилиндре, и открывается выпускной клапан 5, и тормозная жидкость поступает к рабочим колесным тормозным цилиндрам 6. В колёсном тормозном цилиндре 6 тоже повышается давление жидкости  и от этого поршни 7 начинают расходиться и давить на тормозные колодки 8, прижимая их к внутренней поверхности тормозного барабана 9, и от этого трения колодок о барабан, он останавливается и соответственно останавливается колесо машины.

Когда водитель прекращает давить на тормозную педаль, она под действием специальной пружины отходит назад в исходное положение вместе с толкателем 1 (см. рисунок 2,б) и возвратная пружина 12 возвращает поршень влево, давление в цилиндрах и шлангах падает, и пружины 10 давят с помощью колодок 8 на поршни 7 колёсных цилиндров, и этим вызывают движение тормозной жидкости в обратном направлении.

Выпускной клапан 5 закрывается, и открывается обратный клапан 11, и тормозная жидкость возвращается в главный цилиндр. Но следует учесть, что обратный клапан закрывается только тогда, когда в системе остаётся избыточное давление, и это обеспечивает готовность тормозной системы к следующему торможению, и к тому же препятствует попаданию в систему воздуха.

На большинстве машин, гидравлический привод рабочей системы тормозов раздельный, то есть он действует от педали водителя раздельно на тормозные механизмы задних и передних колёс, или действует отдельно на заднее правое и переднее левое колесо и отдельно на заднее левое и переднее правое колесо машины. Это осуществляется применением главного тормозного цилиндра с двумя поршнями и применением двойного резервуара для тормозной жидкости. И в случае отказа одной из ветвей гидравлического привода, тормозная система всё же обеспечит торможение и остановку машины второй отдельной ветвью, хотя торможение в таком случае будет не таким эффективным, но всё равно позволит избежать неприятности столкновения.

Рабочая тормозная система.

Рис. 3. Тормозной механизм переднего колеса отечественной машины.А — положение уплотнительного кольца при торможении; Б — положение уплотнительного кольца при растормаживании; 1 — тормозной диск; 2 — тормозная колодка; 3 — фрикционная накладка; 4 — тормозные цилиндры; 5 — колпачок клапана; 6 — штуцер подвода тормозной жидкости; 7 — уплотнительное кольцо поршня; 8 — пыльник ( грязезащитный чехол ); 9 — поршень; 10 — палец; 11 — шплинт; 12 — плоская пружина; 13 — суппорт; 14 — защитный кожух; 15 — ступица колеса; 16 — кронштейн суппорта; 17 — клапан выпуска воздуха.

На большинстве автомобилей рабочая тормозная система передних колёс имеет дисковый тормозной механизм. Он состоит из тормозного диска 1(см. рисунок 3), который крепится к ступице 15 колеса и суппорта 13. Внутри суппорта установлены два противоположно стоящих цилиндра 4, которые фиксируются в суппорте с помощью специальных фиксаторов. В каждом из цилиндров помещается поршень 9, который уплотнён резиновой манжетой 7, вставленной в кольцевую проточку цилиндра. А для защиты от пыли и грязи, цилиндр закрыт с наружи пыльником 8.

Сами поршни упираются (давят) на тормозные колодки 2, на которые наклеены фрикционные накладки 3. На внешней стороне корпуса цилиндра (внешнего цилиндра) вкручен конусный клапан 17, который служит для удаления воздуха из системы (при прокачке). В овальные отверстия ушек тормозных колодок вставляются пальцы 10, и каждый из пальцев установлен так же в отверстия приливов внешнего и внутреннего тормозных цилиндров. Эти пальцы ограничивают перемещение колодок в радиальном направлении.

А для устранения вибрации при движении машины, под головки пальцев установлены распорные пружины, и к тому же на тормозные колодки установлены фигурные пружины 12, которые прижимают колодки к пальцам. Эти же пружины 12 держат колодки в определённом положении, чтобы устранить их ненужное трение о тормозной диск, когда колесо свободно вращается. А чтобы пальцы 10 не смещались в сторону внутреннего цилиндра, они фиксируются шплинтом 11.

В момент торможения, от давления тормозной жидкости, создаваемого в главном тормозном цилиндре, поршни 9, преодолевая упругость уплотнительных колец 7 ( состояние А на рисунке) выхотдят из цилиндров и давят сбольшой силой на тормозные колодки 2, прижимая их к тормозному диску 1.

При отпускании тормозной педали, когда давление в системе падает, поршни 9 возвращаются в исходное положение (состояние Б на рисунке) за счёт упругой деформации резиновых колец 7 (обычно 0,1 мм). И таким образом, по мере износа фрикционных накладок, необходимый зазор между фрикционной накладкой и поверхностью тормозного диска, всегда поддерживается автоматически.

Многопоршневые суппорты.

Многопоршневой тормозной механизм, состоящий из двух половинок.Рис. 4. 1 — тормозной диск; 2, 5 — шланги; 3 — поворотный рычаг; 4 — замковая пластина; 6 — стойка передней подвески; 7- грязезащитный щит; 8 — клапаны выпуска воздуха из цилиндров малого диаметра; 9 — шпилька-шплинт; 10 — тормозная колодка; 11, 12 — половины суппорта; 13 — манжета поршня; 14 — резиновые уплотнительные кольца; 15 — малый поршень; 16 — большой поршень; 17 — уплотнительные кольца канала; 18 — фрикционные накладки; 19 — каналы, сообщающие цилиндры между собой; 20 — клапан выпуска воздуха из цилиндров большого диаметра.

На некоторых автомобилях и более современных мотоциклах, в отличие от вышеописанного тормозного механизма, в суппорте может быть два и более поршней и такой суппорт состоит из двух половин 11 и 12 (см. рисунок 4). В цилиндрах такого суппорта может быть по два больших 16 и два малых 15 поршня (может быть и более четырёх поршней и они могут быть одинакового диаметра), которые уплотняются эластичными резиновыми манжетами 14. В суппорте просверлены каналы 19, которые сообщают между собой каждую пару цилиндров.

Когда водитель нажимает на педаль тормоза, то по шлангам 5 и 2 (может быть и только один шланг) давление тормозной жидкости передаётся на поршни 16 и 15. А когда педаль тормоза отпускает воитель, то давление жидкости уменьшается и поршни под действием силы упругости манжет 14, возвращаются в исходное положение (отходят от тормозных колодок на 0,1 — 0,15 мм, и это значение зависит от упругости резины манжет).

На суппорте показанном на рисунке 4, для удаления воздуха из системы, предусмотрены три клапана — два из них (8) предназначены для выпуска воздуха из малых цилиндров, и один (20) предназначен для удаления воздуха, при прокачке, из цилиндров большего диаметра.

Плавающий суппорт.

Тормозной механизм отечественных переднеприводных машин и большинства иномарок.Рис. 5. 1 — суппорт; 2 — клапан выпуска воздуха; 3 — защитный колпачок; 4 — гибкий шланг; 5 — тормозной цилиндр; 6 — болт; 7 — стопорная шайба; 8 — тормозной диск; 9 — тормозные колодки с накладками; 10 — направляющая колодка; 11 — кожух тормозного диска; 12 — защитный чехол направляющего пальца; 13 — направляющий палец; А — смотровое отверстие; Б — паз для тормозных колодок.

На большинстве иномарок и на наших переднеприводных ВАЗах (2108-09) механизм передних тормозов имеет «плавающий» (подвижный) суппорт 1 (см.рисунок 5), и это эффективно позволяет сжимать тормозные колодки 9 с помощью всего одного поршня, в цилиндре 5. А тормозные колодки устанавливаются в направляющей 10, которая закреплена на поворотном колёсном кулаке. Сам суппорт крепится (на оси — пальце) к фланцу колёсного цилиндра 5 и он имеет паз Б для сжатия колодок и смотровое квадратное отверстие А , с помощью которого визуально определяют износ накладок тормозных колодок.

Для обеспечения нормального «плавания» суппорта, и колёсного цилиндра,относительно направляющей 10, суппорт и цилиндр соединены с направляющей не жёстко, а с помощью направляющих пальцев 13. Сами пальцы крепятся болтами 6 к фланцу колёсного цилиндра. На пальцах 13 и направляющей 10 имеются кольцевые проточки, на которых фиксируется резиновый пыльник 12, защищающий гладкую поверхность пальцев от грязи и влаги.

Тормозной диск закрывается с внутренней стороны защитным кожухом 11. У большинства машин нормалная толщина диска 12 мм, а предельно допустимая 10,8 (это для отечественных переднеприводных вазов, а для иномарок это значение может немного отличаться). В цилиндре 5 установлен полый поршень, так же уплотняющийся резиновой манжетой, и возврат поршня в исходное состояние аналогичен вышеописанным суппортам. И в этом цилиндре естественно тоже имеется клапан выпуска возуха 2 и резьбовое отверстие для вкручивания тормозного шланга 4.

Вакуумный усилитель тормозов.

Вакуумный усилитель автомобиля.Рис.6. а — торможение; 6 — на педаль не нажато; в — нажатие на педаль приостановлено; г — растормаживание; 1 — главный тормозной цилиндр; 2 — шток; 3 — вакуумный клапан; 4 — возвратная пружина; 5 — корпус клапана; 6 — диафрагма; 7 — корпус усилителя; 8 — крышка; 9 — буфер штока; 10 — упорная пластина поршня; 11 — поршень; 12 — клапан усилителя; 13 — пружина клапана; 14 — возвратная пружина клапана; 15 — воздушный фильтр; 16 — толкатель; 17 — оттяжная пружина; 18 — наконечник выключателя сигнала торможения; 19 — вилка толкателя; 20 — педаль; 21 — колпак; 22 — манжета; 23 — уплотнитель; 24 — регулировочный болт.

Об вакуумном усилителе тормозов я написал отдельную статью вот здесь, но и в этой статье будет сказано не мало.

Вакуумный усилитель служит для уменьшения усилия на педаль тормоза, облегчая чувствительность педали. Он установлен на перегородке, разделяющей моторный отсек и салон машины и крепится задним фланцем к педальному кронштейну. Вакуумный усилитель состоит из корпуса 7 (см. рисунок 6) корпуса 5 клапана с диафрагмой 6 и крышки 8. При помощи диафрагмы, корпус усилителя делится на две полости: атмосферную Д и вакуумную А.

Корпус клапана 5 выполняет функцию поршня, который передвигается в корпусе 7. Он отлит из пластмассы и в нём имеется сквозное отверстие, из которого выходят каналы С и В. Канал С соединяет центральное отверстие с атмосферной полостью, а канал В соединяет центральное отверстие с вакуумной полостью. В корпус клапана 5 входит толкатель 16, который вторым концом соединён с педалью тормоза 20.

Передний конец толкателя крепится к поршню 11, а продольное перемещение поршня относительно корпуса клапана, ограничивается упорной пластиной 10. Пластина крепится в корпусе клапана неподвижно и заходит в кольцевую проточку поршня, ширина которой шире толщины пластины.

Между горловиной крышки 8 и корпусом клапана 5 имеется зазор, который уплотнён резиновой манжетой 22. А поверхность корпуса клапана должна быть смазана пластичной смазкой (например Литолом). Эта поверхность должна быть чистой и от пыли она защищена резиновым гофрированным пыльником 21. На толкателе вакуумного усилителя установлены пористый воздушный фильтр 15, служащий для отчистки поступающего в усилитель воздуха, и установлены опорные чашечки пружин, а так же пружины 14 и 13 и резиновый клапан 12.

В передней части вакуумного усилителя, в месте входа штока 2, установлена уплотнительная втулка 23. А на переднем торце штока вкручен регулировочный винт 24, который упирается в момент торможения в гнездо поршня главного тормозного цилиндра 1. А задним торцом шток 2 опирается в резиновый буфер 9, установленный между поршнем 11  и штоком 2.

Возвратная пружина 4 передвигает корпус клапана 5 в правое крайнее положение, когда отсутствует вакуум или механическое давление. С помощью резинового шланга вакуумная полость А соединяется с внутренней полостью впускного патрубка двигателя через штуцер, в котором имеется обратный клапан 3, который открывается при перепаде давления между полостью А и впускным коллектором (или патрубком) двигателя.

Вакуумный усилитель работает только при заведённом двигателе, когда во впускном коллекторе создаётся разряжение, передающееся в полость А и это заключается в следующем: при свободной (не нажатой) тормозной педали (см.рисунок 6,б) вакуумная А полость С и В сообщена с атмосферой полостью Д, с помощью кольцевой щели между передним торцом клапана 12 и расположенным перед ним круглым выступом корпуса клапана 5.

Атмосферная полость Д в этот момент (при отжатой педали) отделена от атмосферы торцом резинового клапана 12, который прижат к заднему торцу поршня 11 с помощью усилия пружины 13. А так как при этом с двух сторон диафрагмы имеется вакуум, то диафрагма и корпус клапана с помощью пружины 4 прижаты к крышке 8 корпуса.

В момент торможения, толкатель 16 совместно с поршнем 11 и прижатой к нему подвижной частью резинового клапана 12 передвигается вперёд до того момента, пока не исчезнет кольцевая щель и торец клапана 12 не углубится в кольцевой выступ корпуса клапана 5. В этот момент вакуумная полость А отделится от атмосферной полости Д. При дальнейшем перемещении педали 20 и соответственно толкателя 16 сдвинет поршень 11 от клапана 12 (см. рисунок 6,а) и это приведёт к образованию щели между ними, и из полости Е через фильтр 15 поступит воздух в атмосферную полость Д. Создастся разность давлений и от этого корпус клапана и диафрагма начнут двигаться вперёд и головка регулировочного винта 24 на торце штока, упрётся в поршень главного тормозного цилиндра и создаст избыточное давление в гидросистеме привода тормозов.

Когда перемещение педали тормоза прекращается (см. рисунок 6, в) от действия разряжения в полости А корпус клапана 5 и прижатый к нему торец резинового клапана 12 будут передвигаться вперёд, пока клапан 12 не упрётся в задний торец поршня 11. От этого сообщения полостей Д и Е уже не будет и передвижение корпуса клапана 5 остановится. И установится равновесие, при котором тормозная жидкость в системе будет находиться под определённым постоянным давлением.

При резком экстренном торможении, поршень 11 упрётся через буфер 9 в шток 2, и начнёт механическое воздействие на поршень главного тормозного цилиндра, и кроме этого поршень 11, отодвигаясь от клапана 12, обеспечит его упор в кольцевой выступ корпуса 5. Это приведёт к разобщению полостей Д и А, и сообщению полости Д с атмосферой, и это увеличивает давление, которое создаётся в гидравлическом приводе тормозов.

При полном отпускании водителем тормозной педали, подвижные детали привода тормозов возвращаются назад в исходное положение (см. рисунок 6,г) от действия обратной пружины 17 педали, и от действия возвратной пружины 4 вакуумного усилителя и действия возвратных пружин главного тормозного цилиндра. При полном отпускании педали поршень 11 отжимает клапан 12 от кольцевого выступа корпуса клапана 5 и через образовавшуюся щель, воздух по каналам В и С начинает переходить из полости Д в полость А и тут же отсасываться с помощью разрежения во впускном коллекторе двигателя. А сообщение полости Е с полостью Д прекращается, так как торец клапана 12 с помощью пружины 13 прижимается к поршню 11.

Когда двигатель машины не работает, или когда вакуумный усилитель неисправен, торможение машины возможно, но при этом ход тормозной педали увеличивается и эффективность тормозов снижается. В таком случае привод поршней главного цилиндра происходит только механически от толкателя 16 тормозной педали через поршень 11, буфер 9 и шток 2.

Регулятор давления.

Регулятор давления тормозной жидкости служит для того, чтобы в момент полного торможения машины, при максимальном подъёме задней части кузова, не происходило проскальзывания задних колёс машины, относительно поверхности дороги (для исключения заноса машины). Как это происходит мы рассмотрим чуть ниже.

Действие регулятора давления происходит от воздействия рычага, который крепится к кузову машины. А длинное плечо рычага привода регулятора соединено шарнирно через специальную тягу с балкой заднего моста, а короткое плечо рычага заходит в проточку нижней части поршня регулятора. И это плечо рычага передаёт на поршень регулятора все колебательные движения заднего моста.

Регулятор давления.Рис. 7. а — поршень занимает среднее положение; б — поршень в крайнем нижнем положении; в — поршень в крайнем верхнем положении; 1 — трубопровод от главного тормозного цилиндра; 2 — корпус; 3 — пробка 4 — поршень; 5 — втулка; 6 — резиновый уплотнитель; 7 — плавающая тарелка; 8 — пружина; 9 — резиновое кольцо; 10 — короткое плечо рычага привода регулятора; 11 — трубопровод к тройнику привода задних тормозов.

Регулятор давления состоит из корпуса 2 (см рисунок 7) с двумя резьбовыми отверстиями для трубопроводов и подвода по ним тормозной жидкости. Снизу корпуса отверстие соединено трубопроводом 1 с главным тормозным цилиндром, а в верхнее отверстие вкручен трубопровод 11, который подводит тормозную жидкость к суппортам задних колёс. Поршень 4 делит внутреннюю часть корпуса регулятора на две полости: нижнюю и верхнюю. А выход штока поршня из нижней полости уплотнён резиновой манжетой 9.

Пружина 8 упирается в плавающую тарелку 7, и через неё в выступы на поршне и постоянно стремиться отжать поршень до упора его в пробку 3. Эластичный уплотнитель 6 плавающего типа, но перемещение его вверх ограничивается втулкой 5. При нерабочем верхнем положении поршня (см. рисунок 7,в), поршень отжат пружиной 8 до упора в пробку 3. При этом тормозная жидкость из одной полости регулятора в другую просачивается через зазоры между стержнем поршня 4 , уплотнителем 6, тарелкой 7, втулкой 5 и головкой поршня.

Когда начинается торможение машины, то нагрузка на подвеску передка машины увеличивается, а на заднюю подвеску нагрузка уменьшается (кузов клюёт носом). И задняя часть кузова машины начинает подниматься вверх. В этот момент короткое плечо 10 рычага (см. рисунок 7,а) привода регулятора начинает опускаться вниз. От этого, а также от давления тормозной жидкости, поршень 4 начинает отпускаться вниз, преодолевая сопротивление пружины 8. От этого проходное сечение для тормозной жидкости уменьшается, и уменьшается давление в тормозном приводе задних колёс.

А в момент полного торможения движущейся машины, задняя часть кузова максимально поднимается и от этого снижается сцепление задних колёс с поверхностью дороги, и это может привести к заносу автомобиля. Чтобы избежать этого, поршень 4 регулятора опускается ещё ниже вслед за опускающимся рычагом 10 (чем выше задок кузова, тем ниже поршень регулятора) и опускается так же под действием давления жидкости на верх поршня, и он соприкасается с уплотнителем 6 и перекрывает проход жидкости к колёсным цилиндрам задних колёс. Этим и предотвращается блокировка задних колёс и занос автомобиля.

Такой же эффект происходит при разном положении кузова относительно балки заднего моста (в зависимости от веса груза в машине). И при приближении кузова к заднему мосту, торсион закручивается и сильно давит на поршень, который уже будет закрываться при более высоком давлении тормозной жидкости в приводе задних тормозов, и от этого интенсивность торможения повышается (чем сильнее загружена машина и кузов ближе к балке заднего моста, тем эффективнее задние тормоза).

При изъятии груза из машины и разгрузке заднего моста, торсион раскрутится и поршень уже будет закрываться при более низком давлении тормозной жидкости, и от этого эффективность торможения задних колёс несколько уменьшится, чтобы исключить их блокировку.

Неисправности тормозной системы.

Признаками неисправности тормозной системы являются: слабое действие тормозов, увеличенный свободный ход педали, увеличенный полный ход тормозной педали, неравное действие колёсных механизмов одной оси, заклинивание колёс при торможении, или неполное их растормаживание, сильный нагрев тормозных барабанов или дисков, при отпущенной педали подтормаживание одного из колёс, увеличение усилия к тормозной педали, увод или занос машины при торможении, скрип или вибрация тормозов, самостоятельное торможение при работающем моторе, утечка тормозной жидкости.

Слабое действие тормозов.

Оно обнаруживается по увеличению тормозного пути, который не соответствует правилам дорожного движения. Причинами ослабления тормозов могут быть утечка тормозной жидкости, которая сопровождается попаданием воздуха в систему. Эффективность торможения может снизится из-за попадания на диск, барабан или колодки смазочных материалов, через неплотности изношенных сальников ступиц колёс и их полуосей. Также может ослабить действие тормозов попадание тормозной жидкости на накладки и диски.

Ослабление тормозов может произойти и от увеличившегося зазора между тормозной накладкой и диском или барабаном (из-за их сильного износа), а так же из-за заклинивания поршней в колёсных цилиндрах, или из-за перегрева тормозных механизмов. Чтобы устранить вышеперечисленные неисправности, естественно нужно заменить изношенные детали, удалить смазку промыв и обезжирив накладки и диски (барабаны), устранить утечку жидкости подтягиванием соединений и заменой уплотнительных деталей (манжет), довести до нормы уровень тормозной жидкости в бачке (в системе) и в конце ремонта прокачать тормозную систему, удалив из неё воздух.

Если эффективность торможения восстанавливается только после двух или трёхкратного нажатия на тормозную педаль, то это значит, что в систему попал воздух и его нужно удалить, с помощью прокачки. Как это сделать я уже писал, и желающие могут почитать подробно об этом здесь. Там же вы найдёте и как заменить тормозную жидкость свежей.

Увеличенный рабочий ход тормозной педали.

Увеличенный свободный ход может быть из-за: пониженного уровня тормозной жидкости в бачке, из-за потери герметичности тормозной системы, попадания воздуха в систему, увеличения зазора между фрикционными накладками и поверхностью диска или барабана, от большого износа этих накладок, от недопустимого износа самого диска или барабана, от повреждения или износа резиновых уплотнителей в главном и рабочих тормозных цилиндрах.

Чтобы устранить эту неисправность, проверяют и доливают до уровня тормозную жидкость (к отметке МАКС). Следует учесть, что постепенное снижение уровня жидкости в бачке (если точно отсутствует её утечка) свидетельствует об постепенном износе фрикционных накладок. И когда жидкость постепенно понизится до отметки МИН, то в большинстве случаев это свидетельствует о критическом износе накладок. На многих современных иномарках, это выявляется с помощью специального датчика и загорания лампы критического износа накладок на панели приборов.

Если обнаружится утечка (нарушение герметичности системы), то естественно нужно сразу устранить её. Ну а если тормозная жидкость заметно убывает из бачка, а мест утечки при тщательном осмотре всей системы вы не обнаружили, то в большинстве случаев утечка происходит в камере вакуумного усилителя (из-за нарушения уплотнения главного тормозного цилиндра, со стороны усилителя) и тормозная жидкость всасывается в двигатель через впускной коллектор.

Чтобы определить это, нужно отсоединить от коллектора вакуумный шланг, приходящий к усилителю (с усилителя тоже снять шланг) и  вынуть из крышки усилителя вакуумный клапан и осмотреть его и внутренность шланга. При наличии тормозной жидкости в шланге и на клапане, указанный выше дефект подтверждается. И для его устранения, придётся разбирать главный тормозной цилиндр и заменять изношенные манжеты (уплотнения).

При увеличении зазора между фрикционными накладками и поверхностью диска или барабана, нарушено автоматическое восстановление зазора (как я описывал выше в статье). Это бывает из-за заедания поршней в колёсных цилиндрах. Можно попробовать восстановить их нормальную работу, если на сухом асфальте при скорости 30 — 50 км в час, резко нажать на педаль тормоза 4 — 6 раз, а затем повторить тоже самое, двигаясь задним ходом. Если это не поможет восстановит подвижность поршней в колёсных цилиндрах, то их следует их снять, разобрать, промыть и заменить изношенные детали.

На большинстве легковых автомобилей, при исправных механизмах задних колёс с барабанными тормозами, между барабаном и фрикционной накладкой должен быть зазор 0,10 — 0,15 мм, и на некоторых автомобилях, имеющих смотровое окно с наружной стороны ступицы тормозного барабана, зазор можно проверить с помощью щупа. А минимальная толщина изношенных накладок должна быть не менее 2 мм (точное значение можно найти в мануале именно своего автомобиля). Если толщина накладок меньше, то они требуют замены. А чтобы снять прикипевший от коррозии тормозной барабан, можно воспользоваться съёмником, описанным вот в этой статье.

Нормальный свободный ход.

У тормозной педали должен быть свободный ход и при исправной тормозной системе и заглушенном двигателе у большинства автомобилей он должен составлять 3 — 5 мм. Свободный ход регулируется перемещением наконечника 18 (см рисунок 7) включателя стопсигнала (при открученной контргайке). Если наконечник будет сильно близко к тормозной педали, то она не будет до конца возвращаться в исходное положение и между штоком 2 и поршнем главного тормозного цилиндра 1 не будет зазора, и это будет причиной не полного растормаживания колёс машины.

Если нет возможности восстановления свободного хода педали с помощью вкручивания наконечника 18, то можно будет немного вкрутить регулировочный болт 24 штока 2 вакуумного усилителя.

Полный ход тормозной педали получается из свободного хода педали и её рабочего хода. Свободный ход педали должен быть лёгким, а в начале рабочего хода, когда начинаются растягиваться пружины и начинается подача тормозной жидкости в колёсные цилиндры, усилие на педаль должно резко возрастать.

Неравномерное действие тормозных механизмов одной оси.

От неравномерного действия тормозов может произойти занос машины при резком торможении. Это бывает когда замасливаются фрикционные накладки колёс одной стороны машины, утечки жидкости или заедания поршня в одном из колёсных цилиндров, или из-за неисправности регулятора давления гидропривода задних колёс. Чтобы выявить неисправность, нужно внимательно осмотреть все магистрали, промыть и обезжирить замасленные детали, или заменить детали колёсных цилиндров, если они заклинены, или заедают в цилиндре, а так же устранить утечки жидкости если они есть. Если причина в гидроприводе, то заменить его (или изношенные детали в нём).

Неполное растормаживание колёс.

Оно может быть из-за отсутствия свободного хода тормозной педали, засорения нагнетательных отверстий в главном тормозном цилиндре, или из-за заедания поршней в главном или колёсном цилиндре, из-за обрыва или ослабления пружин, стягивающих колодки, из-за отклеивания фрикционной накладки (редко, но бывает), а так же из-за ослабления крепления суппорта или неправильной регулировки ручника (стояночного тормоза). Так же эта неисправность может быть из-за заедания корпуса клапана в вакуумном усилителе, или из-за защемления уплотнительной прокладки крышки усилителя или защитного чехла, или из-за нарушения нормальной длины выступания регулировочного болта, относительно плоскости главного тормозного цилиндра.

Нагревание тормозного барабана.

При этой неисправности нужно снять тормозной барабан и проверить целостность стяжных пружин колодок, а так же проверить, не заклинены ли поршни в колёсных цилиндрах. Негодные детали заменить новыми. Нагреваться барабаны задних колёс могут при неправильной регулировке ручника (перетяжке тросов). Нагреваться тормозные диски передних колёс могут из-за ослабления крепления суппортов или заклинивания поршней в колёсных цилиндрах.

Увеличение усилия на тормозную педаль.

Чтобы эффективно затормозить, нужно приложить большое усилие к тормозной педали. Это может быть из-за засорения воздушного фильтра вакуумного усилителя, или из-за заедания корпуса клапана из-за разбухания диафрагмы, повреждения или соскакивания вакуумного шланга с коллектора или с усилителя, разбухания манжет цилиндров (от старости или не качественной тормозной жидкости или попадания в неё бензина или масла).

Устранить эти неисправности можно если промыть фильтр, закрепить вакуумный шланг, и если это не поможет, следует разобрать усилитель и заменить разбухшие детали. После этого нужно промыть всю тормозную систему изопропиловым спиртом или нормальной тормозной жидкостью, заполнить ей систему и прокачать тормоза.

Занос машины в сторону.

Эта неисправность может быть из-за заклинивания поршня одного из колёсных цилиндров, смятия одного из трубопроводов или его закупорка грязью, от замасливания тормозного диска или фрикционной накладки одного из колёс оси, а так же из-за неисправности регулятора давления или его неправильной регулировки, из-за нарушения углов установки передних колёс, ну или из-за разности давления воздуха в шинах передних колёс или задних. Чтобы устранить неисправность, естественно нужно заменить повреждённые детали, или отмыть и обезжирить замасленные детали и устранить утечки, от которых детали замаслились, и довести давление в шинах до нормы и одинакового значения, в обоих колёсах одной оси.

Скрип или вибрация тормозов.

Эти неисправности возможны из-за ослабления стяжной пружины колодок, из-за овальности тормозных барабанов или кривизны поведённого тормозного диска, или из-за неравномерного его износа, замасливания фрикционных накладок, критического износа фрикционных накладок. Неисправность устраняется элементарно — заменой изношенных или кривых деталей. Кривизну диска или барабана легко проверить с помощью индикаторной стойки и индикатора часового типа, и об этой проверке я уже не раз писал.

Самопроизвольное подтормаживание при работающем двигателе.

Эта интересная неисправность может быть из-за подсоса воздуха в вакуумном усилителе (между корпусом клапана и защитным колпаком, от его разрушения. А так же может быть из-за перекоса или ненадёжной фиксации уплотнителя крышки усилителя, или из-за его недостаточной смазки. Устраняется неисправность разборкой усилителя, и смазкой Литолом работающие поверхности уплотнителя,  или заменой порванного колпака.

Техническое обслуживание тормозной системы.

Перед выездом желательно всегда проверять отсутствие течей тормозной жидкости и её уровень в бачке, ведь малейшее нарушение герметичности может привести к серьёзным неприятностям. А в начале поездки всегда проверять действие тормозной педали и её нормальный свободный и рабочий ход. Полное эффективное торможение должно происходить при однократном нажиме на педаль и примерно при половине её хода. В конце хода педали, водитель должен ощутить значительное её сопротивление. Если полное торможение наступает только в конце хода педали, значит это говорит о больших зазорах в механизмах тормозов. Ну а если сопротивление педали слабое и увеличивается после двух — трёх нажатий, значит в систему попал воздух.

Растормаживание колёс должно быть быстрым и полным, и это проверяется свободным накатом автомобиля, после прекращения действия на педаль. Это можно проверить и на месте с помощью помощника, покатывая машину вперёд-назад и периодически нажимая на тормозную педаль.

При промывке деталей тормозных механизмов нельзя пользоваться бензином или растворителем, а только изопропиловым спиртом или чистой тормозной жидкостью. При замене манжет и уплотнителей не применять острых инструментов, а пользоваться деревянным или пластиковым стеком ( применяется для резки пластилина).

Через 10 — 15 тысяч км проверять состояние и толщину фрикционных накладок (менее 2 мм заменять новыми). В этот же период желательно проверить штангелем толщину тормозных дисков.  Проверить состояние тормозных шлангов и при появлении малейших трещин заменить их новыми.

Через 25 — 30 тысяч км проверить состояние регулятора давления жидкости в гидравлическом приводе. Для проверки машину загоняют на эстакаду или поднимают подъёмником и сняв чехол регулятора и удалив грязь и смазку резко нажимают на тормозную педаль. При нормальной работе исправного регулятора, выступающая часть поршня выдвинется из корпуса и закрутит торсионный рычаг. Далее закладывают свежую смазку ДТ-1 и надевают защитный чехол. Ну а если перемещения поршня регулятора не будет, то регулятор ремонтируют или заменяют новым.

Чтобы проверить вакуумный усилитель, нужно раз пять нажать на тормозную педаль и остановить её нажатие на половине её хода и запустить двигатель машины. Если вакуумный усилитель исправен, то педаль тормоза переместится вперёд сама собой (без нажатия). Если этого не случится, то нужно тщательно проверить герметичность тормозной системы вашей машины; удачи всем на дорогах !

suvorov-castom.ru


Смотрите также