Как определить направление момента силы. Куда направлен момент силы


1.Напишите основное уравнение динамики вращательного движения (2ой закон Ньютона для вращательного движения).

Это выражение носит название основного уравнения динамики вращательного движения и формулируется следующим образом: изменение момента количества движения твердого тела , равно импульсу момента  всех внешних сил, действующих на это тело.

2.Чему равен момент силы? (формула в векторном и скалярном виде, рисунки).

Момент   силы  (синонимы: крутящий момент; вращательный момент; вращающий момент) — физическая величина, характеризующая вращательное действие силы на твёрдое тело.

Момент силы – векторная величина ( М̅)

(векторный вид) М̅= |r̅*F̅|,r– расстояние от оси вращения, до точки приложения силы.

(вроде как скалярный вид) |М|=|F|*d

Вектор момента силы – совпадает с осью О1О2, его направление определяется првилом правого винта.Момент   силы  измеряется в ньютон-метрах. 1 Н•м —  момент   силы , который производит сила 1 Н на рычаг длиной 1 м.

3.Что называется вектором: поворота, угловой скорости, углового ускорения. Куда они направлены, как определить это направление на практике?

Векторы – это псевдовекторы или аксиальные векторы, не имеющие определённую точку приложения: они откладываются на оси вращения из любой её точки.

  1. Угловое перемещение - это псевдовектор, модуль которого равен углу поворота , а направление совпадает с осью, вокруг которой тело поворачивается, и определяется правилом правого винта: вектор направлен в ту сторону, откуда поворот тела виден против хода часовой стрелки(измеряется в радианах)

  2. Угловая скорость - величина, характеризующая быстроту вращения твёрдого тела, равная отношению элементарного угла поворота и прошедшего времени dt, за который прошёл этот поворот.

Вектор угловой скоростинаправлен вдоль оси вращения по правилу правого винта, так же, как и вектор .

  1. Угловое ускорение- величина, характеризующая быстроту перемещения угловой скорости.

Вектор направлен вдоль оси вращения в сторону вектора при ускоренном вращении и противоположно вектору при замедленном вращении.

4.Чем полярный вектор отличается от аксиального?

Полярный вектор обладает полюсом, а аксиальный - нет.

5.Что называется моментом инерции материальной точки, твердого тела?

Момент   инерции  - величина, характеризующая меру  инерции   материальной   точки при её вращательном движении вокруг оси. Численно она равна произведению массы на квадрат радиуса (расстояния до оси вращения). Для  твердого   тела  момент  инерции равен сумме  моментов  инерции  её частей, и поэтому может быть выражена в интегральной форме:

I=∫ r2 dү.

6.От каких параметров зависит момент инерции твердого тела?

  1. От массы тела

  2. От геометрических размеров

  3. От выбора оси вращения

7.Теорема Штейнера (поясняющий рисунок).

Теорема: момент инерции тела относительно произвольной оси равен сумме момента инерции этого телаотносительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела  на квадрат расстояния между осями:

- искомый момент инерции относительно параллельной оси

- известный момент инерции относительно оси, проходящей через центр масс тела

- масса тела

- расстояние между указанными осями

8.Момент инерции шара, цилиндра, стержня, диска.

Моментом инерции м.т. относительно полюса называют скалярную величину, равную  произведению массы этой. точки  на квадрат расстояния  до полюса..

Момент инерции м.т. можно найти по формуле

где m - масса м.т., R - расстояние до полюса 0.

Единицей измерения момента инерции в СИ является килограмм умноженный на метр в квадрате (кг×м2).

1.Прямой тонкий стержень длины lи массыm

1)Ось перпендикулярна к стержню и проходит через его центр масс

2)Ось перпендикулярна к стержню и проходит через его конец

2.Шар радиуса rи массыm

Ось проходит через центр шара

3.Полый тонкостенный цилиндр или кольцо радиуса rи массыm

Ось цилиндра

4.Сплошной цилиндр или диск радиуса rи массыm

Ось цилиндра

5.Сплошной цилиндр длины l, радиусаrи массыm

Ось перпендикулярна к цилиндру и проходит через его центр масс

9.Как определить направление момента силы?

Момент силы относительно некоторой точки — это векторное произведение силынакратчайшее расстояниеот этой точки до линии действия силы.

[M]= Ньютон · метр

M— момент силы (Ньютон · метр),F— Приложенная сила (Ньютон),r— расстояние от центра вращения до места приложения силы (метр),l— длина перпендикуляра, опущенного из центра вращения на линию действия силы (метр),α— угол, между вектором силыFи вектором положенияr

M= F·l= F·r·sin(α)

M=F*r

(м,F,r-векторные величины)

Момент силы — аксиальный вектор. Он направлен вдоль оси вращения.

Направление вектора момента силы определяется правилом буравчика, а величина его равнаM.

10.Как складываются момент сил, угловые скорости, моменты импульса?

Момент сил

Если на тело, которое может вращаться вокруг какой-либо точки, действует одновременно несколько сил, то для сложения моментов этих сил следует использовать правило сложения моментов сил.

Правило сложения моментов сил гласит — Результирующий вектор момента силы равен геометрической сумме составляющих векторов моментов с

Для правила сложения моментов сил различают два случая

1. Моменты сил лежат в одной плоскости, оси вращения параллельны. Их сумма определяется путем алгебраического сложения. Правовинтовые моменты входят в сумму со знаком минус. Левовинтовые — со знаком плюс

2. Моменты сил лежат в разных плоскостях, оси вращения не параллельны. Сумма моментов определяется путем геометрического сложения векторов.

Угловые скорости

Углова́я ско́рость(рад/с) — физическая величина, являющаяся аксиальным вектором и характеризующая скорость вращения материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен углу поворота точки вокруг центра вращения в единицу времени

направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону.

Угловые скорости откладываются на оси вращения и могут складываться в том сллучае если они направлены в одну сторону, в противоположную - вычитаются

Момент импульса

В Международной системе единиц (СИ) импульс измеряется в килограмм-метр в секунду (кг·м/с).

Моме́нт и́мпульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Если имеется материальная точка массой , двигающаяся со скоростью и находящаяся в точке, описываемой радиус-вектором , то момент импульса вычисляется по формуле:

где  — знак векторного произведения

Чтобы рассчитать момент импульса тела, его надо разбить на бесконечно малые кусочки и векторнопросуммировать их моменты как моменты импульса материальных точек, то есть взять интеграл:

11.Сформулируйте закон сохранения полной механической энергии применительно к телу, вращающемуся вокруг неподвижной оси.

MgH=(IоW^2)/2

потенциальная энергия максимальна в начальной точке движения маятника. Потенциальная энергия MgH переходит в кинетическую, которая максимальна в момент приземления маятника на землю.

Iо-момент инерции относительно оси для одного грузика ( их у нас 4 )

I= 4Iо=4ml^2 ( Io=ml^2)

следовательно

MgH=2ml^2W^2

12.Сформулируйте закон сохранения полной механической энергии применительно к телу, вращающемуся вокруг неподвижной оси.

Момент импульса вращающегося тела прямо пропорционален скорости вращения тела, его массе и линейной протяженности. Чем выше любая из этих величин, тем выше момент импульса.

В математическом представлении момент импульса Lтела, вращающегося с угловой скоростьюω, равенL = Iω, где величинаI, называемаямоментом инерции

скорость вращения маятника многократно возрастает вследствие уменьшения момента инерции при сохранении момента вращения. Тут мы и убеждаемся наглядно, что чем меньше момент инерции I, тем выше угловая скоростьωи, как следствие, короче период вращения, обратно пропорциональный ей.

Момент импульса вращающегося тела   

 

где  – масса тела;  – скорость;  – радиус орбиты, по которой перемещается тело;  – момент инерции;  – угловая скорость вращающегося тела.

Закон сохранения момента импульса:

– для вращательного движения

 при ;

13.Каким выражением определяется работа момента сил

= МОМЕНТ_СИЛЫ * УГОЛ

В системе СИ работа измеряется в Джоулях, момент силы в Ньютон* метр, а УГОЛ в радианах

Обычно известна угловая скорость в радианах в секунду и время действия МОМЕНТА .

Тогда совершенная МОМЕНТОМ силы РАБОТА рассчитывается как:

= МОМЕНТ_СИЛЫ * *

14.Получите формулу, определяющую мощность, развиваемую моментом сил.

Если сила совершает действие на каком-либо расстоянии, то она совершает механическую работ. Также если момент силы совершает действие через угловое расстояние, он совершает работу.

= МОМЕНТ_СИЛЫ * УГЛОВАЯ_СКОРОСТЬ

В системе CИ мощность измеряется в Ваттах, момент силы в ньютон-метрах, а УГЛОВАЯ СКОРОСТЬ в радианах в секунду.

studfiles.net

Момент силы | Лекции и примеры решения задач механики

Моментом силы называют вращательное усилие создаваемое вектором силы относительно другого объекта (оси, точки).

Момент силы

Размерность — [Н∙м] (Ньютон на метр) либо кратные значения [кН∙м]

Аналогом момента силы является момент пары сил.

Обязательным условием возникновения момента является то, что точка, относительно которой создается момент не должна лежать на линии действия силы.

Определение

Момент определяется как произведение силы F на плечо h:

M(F)=F∙h

Плечо силы h, определяется как кратчайшее расстояние от точки до линии действия силы.

Например, сила величиной 7 кН приложенная на расстоянии 35см от рассматриваемой точки дает момент M=7×0,35=2,45 кНм.

Пример момента силы

Наиболее наглядным примером момента силы может служить поворачивание гайки гаечным ключом.

Гайки заворачиваются вращением, для этого к ним прикладывается момент, но сам момент возникает при воздействии нашей силы на гаечный ключ.

Вы конечно интуитивно понимаете — для того чтобы посильнее закрутить гайку надо взяться за ключ как можно дальше от нее.

Пример момента силы - заворачивание гайки гаечным ключом

В этом случае, прикладывая ту же силу, мы получаем большую величину момента за счет увеличения её плеча (h3>h2).

Плечом при этом служит расстояние от центра гайки до точки приложения силы.

Плечо момента силы

Рассмотрим порядок определения плеча h момента:

Пусть заданы точка A и некоторая произвольная сила F, линия действия которой не проходит через эту точку. Требуется определить момент силы.

Сила и точка

Покажем линию действия силы F (штриховая линия)

Линия действия силы

Проведем из точки A перпендикуляр h к линии действия силы

Плечо момента силы

Длина отрезка h есть плечо момента силы F относительно точки A.

Момент принимается положительным, если его вращение происходит против хода часовой стрелки (как на рисунке).

Так принято для того, чтобы совпадали знаки момента и создаваемого им углового перемещения.

Примеры расчета момента силы

Сила расположена перпендикулярно оси стержня

Расстояние между точками A и B — 3 метра.

Момент силы перпендикулярной стержню

Момент силы относительно точки A:

МA=F×AB=F×3м

Сила расположена под углом к оси стержня

Момент силы расположенной под углом к стержню

Момент силы относительно точки B:

MB=F×cos300×AB=F×cos300×3м

Известно расстояние от точки до линии действия силы

Момент силы для произвольно расположенного стержня

Момент силы относительно точки B:

MB=F×3м

См. также:

isopromat.ru

Момент силы относительно точки и оси

Момент силы относительно точки О - это вектор, модуль которого равен произведению модуля силы на плечо - кратчайшее расстояние от точки О до линии действия силы. Направление вектора момента силы перпендикулярно плоскости, проходящей через точку и линию действия силы, так, что глядя по направлению вектора момента, вращение, совершаемое силой вокруг точки О, происходит по часовой стрелке.

рис.1.2

Если известен радиус-вектор  точки приложения силы относительно точки О, то момент этой силы относительно О выражается следующим образом:

. (1.8)

Действительно, модуль этого векторного произведения:

. (1.9)

В соответствии с рисунком , поэтому:

|. (1.10)

Вектор , как и результат векторного произведения, перпендикулярен векторами, которые принадлежат плоскости Π. Направление векторатаково, что глядя по направлению этого вектора, кратчайшее вращение откпроисходит по часовой стрелке. Другими словами, вектордостраивает систему векторов () до правой тройки.

Зная координаты точки приложения силы в системе координат, начало которой совпадает с точкой О, и проекцию силы на эти оси координат, момент силы может быть определен следующим образом:

 . (1.11)

Момент силы относительно оси

Проекция момента силы относительно точки на некоторую ось, проходящую через эту точку, называется моментом силы относительно оси.

рис.1.3

Момент силы относительно оси вычисляется как момент проекции силы на плоскость Π, перпендикулярную оси, относительно точки пересечения оси с плоскостью Π:

(1.12)

Знак момента определяется направлением вращения, которое стремится придать телу сила F⃗ Π. Если, глядя по направлению оси Oz сила вращает тело по часовой стрелке, то момент берется со знаком ``плюс'', иначе - ``минус''.

1.2 Постановка задачи.

Определение реакций опор и шарнира С.

P1, кН

M, кН*м

q, кН/м

5,0

24,0

0,8

1.3 Алгоритм решения задачи.

Разделим конструкцию на части и рассмотрим равновесие каждой из конструкции.

Рассмотрим равновесие всей конструкции в целом. (рис.1.1)

рис. 1.1

Составим 3 уравнения равновесия для всей конструкции в целом:

(1)

(2)

(3)

Рассмотрим равновесие правой части конструкции.(рис 1.2)

рис.1.2

Составим 3 уравнения равновесия для правой части конструкции:

(4)

(5)

(6)

Из уравнения 3 находим YA

кН

Найдем Q:

кН/м

Найдем угол β:

Из уравнения 2 находим YB

кН

Из уравнения 6 находим XB

кН

Из уравнения 5 находим YC

кН

Из уравнения 4 находим XC

кН

Из уравнения 1 находим XA

кН

Составим уравнение проверки:

studfiles.net

Как определить направление момента силы

Момент силы рассматривается касательно точки и касательно оси. В первом случае момент силы является вектором, имеющим определенное направление . Во втором случае следует говорить лишь о проекции вектора на ось.

Инструкция

1. Пускай Q – точка, касательно которой рассматривается момент силы. Эта точка именуется полюсом. Проведите радиус-вектор r из этой точки к точке приложения силы F . Тогда момент силы M определяется как векторное произведение r на F : M=[rF] .

2. Итогом векторного произведения является вектор. Длина вектора выражается модулем: |M |=|r |·|F |·sin?, где ? – угол между векторами r и F . Вектор M ортогонален как вектору r , так и вектору F : M ?r , M ?F .

3. Направлен вектор M таким образом, что тройка векторов r , F , M является правой. Как определить, что тройка векторов именно правая? Представьте себе, словно вы (ваш глаз) находитесь на конце третьего вектора и глядите на два других вектора. Если кратчайший переход от первого вектора ко второму кажется протекающим супротив часовой стрелки, значит, это правая тройка векторов. В отвратном случае, вы имеете дело с левой тройкой.

4. Выходит, совместите начала векторов r и F . Это дозволено сделать параллельным переносом вектора F в точку Q. Сейчас через эту же точку проведите ось, перпендикулярную плоскости векторов r и F . Данная ось будет перпендикулярна обоим векторам сразу. Здесь допустимы, в тезисе, только два варианта направить момент силы: вверх либо вниз.

5. Испробуйте направить момент силы F вверх, нарисуйте стрелочку вектора на оси. Из этой стрелочки как бы взгляните на вектора r и F (можете нарисовать символический глаз). Кратчайший переход от r к F можете обозначить закругленной стрелочкой. Является ли тройка векторов r , F , M правой? Стрелочка указывает направление супротив часовой стрелки? Если да, то вы предпочли правильное направление для момента силы F. Если же нет, значит, нужно сменить направление на противоположное.

6. Определить направление момента силы дозволено также по правилу правой руки. Указательный палец совместите с радиус-вектором. Средний палец совместите с вектором силы. С конца поднятого вверх большого пальца посмотрите на два вектора. Если переход от указательного к среднему пальцу осуществляется вопреки часовой стрелки, то направление момента силы совпадает с направлением, которое указывает крупной палец. Если переход идет по часовой стрелке, то направление момента силы противоположно ему.

7. Правило буравчика дюже схоже на правило руки. Четырьмя пальцами правой руки как бы вращайте винт от r к F . Векторное произведение будет иметь то направление, куда закручивается буравчик при таком мысленном вращении.

8. Пускай сейчас точка Q располагается на той же прямой, которая содержит вектор силы F . Тогда радиус-вектор и вектор силы будут коллинеарны. В этом случае их векторное произведение вырождается в нулевой вектор и изображается точкой. Нулевой вектор не имеет никакого определенного направления, но считается сонаправленным любому иному вектору.

jprosto.ru

Момент силы относительно точки | Лекции и примеры решения задач механики

Если под действием приложенной силы твердое тело может совершать вращение вокруг некоторой точки, то для того, чтобы охарактеризовать вращательный эффект силы вводится понятие – момент силы относительно точки (или центра).

Определение

Моментом относительно точки (рисунок 1.1) называется векторное произведение радиус-вектора точки приложения силы на вектор силы.

MО(F) = r × F

Момент силы относительно точки

Рисунок 1.1

Вектор момента направлен перпендикулярно плоскости, в которой лежат сила и точка, в ту сторону, откуда поворот от действия силы виден происходящим против хода часовой стрелки.

Вычисление момента

Вектор момента характеризует положение плоскости и направление вращательного действия силы, а также дает меру этого действия:

|MО(F)| = F⋅ r⋅ sin α = F⋅ h,

где h – плечо силы (кратчайшее расстояние от точки O – центра момента – до линии действия силы). Если сила проходит через точку, то ее момент относительно этой точки равен нулю.

Момент силы относительно точки не меняется от переноса силы вдоль линии ее действия.

Если силы расположены в одной плоскости, то используется понятие алгебраического момента силы.

Алгебраическим моментом силы относительно точки (или центра) называется взятое со знаком плюс или минус произведение модуля силы на плечо (рисунок 1.2).

Правило знаков

Знак плюс выбирается в том случае, если сила стремится поворачивать плоскость относительно центра момента против хода часовой стрелки.

Алгебраический момент силы относительно точки (центра)

Рисунок 1.2

Если сила F задана своими проекциями на оси координат Fx, Fy, Fz и даны координаты x, y, z точки приложения этой силы, то момент силы относительно начала координат вычисляется следующим образом:

Формула момента силы относительно начала координат

Проекции момента силы на оси координат равны:

Проекции момента силы на оси координат

>> Момент силы относительно оси

isopromat.ru

Как определить направление момента силы

Момент силы рассматривается относительно точки и относительно оси. В первом случае момент силы является вектором, имеющим определенное направление. Во втором случае следует говорить лишь о проекции вектора на ось.

Инструкция

completerepair.ru

Правило моментов | Физика

С тех пор как Архимед установил правило рычага, оно просуществовало в первозданном виде почти 1900 лет. И лишь в 1687 г. французский ученый П. Вариньон придал ему более общую форму, воспользовавшись понятием момента силы.

Моментом силы называется физическая величина, равная произведению силы на ее плечо:

    M = Fl,    (21.1)

где

М — момент силы, F — сила, l — плечо силы.

Докажем, что рычаг находится в равновесии, если момент силы, вращающей его по часовой стрелке, равен моменту силы, вращающей его против часовой стрелки, т. е.

     М1 = М2    (21.2)

Для доказательства этого равенства воспользуемся формулой (20.1). Используя свойство пропорции (произведение крайних членов пропорции равно произведению ее средних членов), перепишем эту формулу в виде

F1l1 = F2l2

Но F2l2 = M2 — момент силы, стремящейся повернуть рычаг по часовой стрелке (см. рис. 50), а F1l1 = M1 — момент силы, стремящейся повернуть рычаг против часовой стрелки. Таким образом, M1 = M2, что и требовалось доказать.

Формула (21.2) выражает правило моментов. Это правило справедливо для любого твердого тела, способного вращаться вокруг закрепленной оси. Таково, например, тело, изображенное на рисунке 53. Ось вращения этого тела перпендикулярна плоскости рисунка и проходит через точку, обозначенную буквой O. Плечом силы F1 в данном случае является расстояние l1 от оси вращения до линии действия силы.Момент силыВ общем случае момент силы находят следующим образом. Сначала проводят линию действия силы. Затем из точки O, через которую проходит ось вращения, опускают на линию действия силы перпендикуляр. Длина этого перпендикуляра является плечом данной силы. Умножив силу на ее плечо, получают момент силы относительно оси вращения.

Момент силы характеризует вращающее действие силы. Это действие зависит как от силы, так и от ее плеча. Именно поэтому, например, желая открыть дверь, стараются приложить силу как можно дальше от оси вращения. С помощью небольшой силы при этом создают значительный момент, и дверь открывается. Открыть ее, оказывая давление около петель, значительно труднее. По той же причине гайку легче отворачивать более длинным гаечным ключом, шуруп легче вывернуть с помощью отвертки с более широкой ручкой и т. д.

Единицей момента силы в СИ является ньютон-метр (1 Н*м). Это момент силы 1 Н, имеющей плечо 1 м.

1. Что называют моментом силы? 2. Сформулируйте правило моментов. 3. Что характеризует момент силы? 4. Почему ручку у двери прикрепляют на противоположной от петель стороне? 5. Как находится момент силы в общем случае? 6. Что принимают за единицу момента силы?

phscs.ru