Сила Лоренца, определение, формула, физический смысл. Сила лоренца измеряется в


Формула силы Лоренца

ОПРЕДЕЛЕНИЕ

Сила Лоренца – сила, действующая на точечную заряженную частицу, движущуюся в магнитном поле.

Она равна произведению заряда, модуля скорости частицы, модуля вектора индукции магнитного поля и синуса угла между вектором магнитного поля и скоростью движения частицы.

   

Здесь – сила Лоренца, – заряд частицы, – модуль вектора индукции магнитного поля, – скорость частицы, – угол между вектором индукции магнитного поля и направления движения.

Единица измерения силы – Н (ньютон).

Сила Лоренца — векторная величина. Сила Лоренца принимает своё наибольшее значение когда векторы индукции и направления скорости частицы перпендикулярны ().

Направление силы Лоренца определяют по правилу левой руки:

Если вектор магнитной индукции входит в ладонь левой руки и четыре пальца вытянуты в сторону направления вектора движения тока, тогда отогнутый в сторону большой палец показывает направление силы Лоренца.

В однородном магнитном поле частица будет двигаться по окружности, при этом сила Лоренца будет центростремительной силой. Работа при этом не будет совершаться.

Примеры решения задач по теме «Сила Лоренца»

ПРИМЕР 1
Задание Найти силу Лоренца, действующую на частицу с зарядом 10 Кл, движущаяся со скоростью 9 м/с под углом к вектору магнитной индукции.Индукция магнитного поля равна 3 Тл.
Решение Подставим значения в формулу:

   

Ответ Сила Лоренца приблизительно равна 233,83 ньютон.
ПРИМЕР 2
Задание Под действием силы Лоренца частица массы m с зарядом q движется по окружности. Магнитное поле однородно, его напряжённость равна B. Найти центростремительное ускорение частицы.
Решение Вспомним формулу силы Лоренца:

   

Кроме того, по 2 закону Ньютона:

   

В данном случае сила Лоренца направлена к центру окружности и ускорение, ею создаваемое, направлено туда же, то есть это и есть центростремительное ускорение. Значит:

   

Осталось узнать α. Обратим внимание на рисунок. – это угол между вектором скорости и направлением вектора магнитной индукции. Нетрудно увидеть, что эти векторы перпендикулярны, т.е. .

   

Значит:

   

Ответ
Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Сила Лоренца: формула, определение и направление

Наряду с силой Ампера, кулоновского взаимодействия, электромагнитными полями в физике часто встречается понятие сила Лоренца. Это явление является одним из основополагающих в электротехнике и электронике, на ряду с законом Кулона, электромагнитной индукцией Фарадея и прочими. Она воздействует на заряды, которые двигаются в магнитном поле. В этой статье мы кратко и понятно рассмотрим, что такое сила Лоренца и где она применяется.

Определение

Когда электроны движутся по проводнику – вокруг него возникает магнитное поле. В то же время, если поместить проводник в поперечное магнитное поле и двигать его – возникнет ЭДС электромагнитной индукции. Если через проводник, который находится в магнитном поле, протекает ток – на него действует сила Ампера.

Её величина зависит от протекающего тока, длины проводника, величины вектора магнитной индукции и синуса угла между линиями магнитного поля и проводником. Она вычисляются по формуле:

Рассматриваемая сила отчасти похожа на ту, что рассмотрена выше, но действует не на проводник, а на движущуюся заряженную частицу в магнитном поле. Формула имеет вид:

Важно! Сила Лоренца (Fл) действует на электрон, движущийся в магнитном поле, а на проводник – Ампера.

Из двух формул видно, что и в первом и во втором случае, чем ближе синус угла aльфа к 90 градусам, тем большее воздействие оказывает на проводник или заряд Fа или Fл соответственно.

Итак, сила Лоренца характеризует не изменение величины скорости, а то, какое происходит воздействие со стороны магнитного поля на заряженный электрон или положительный ион. При воздействии на них Fл не совершает работы. Соответственно изменяется именно направление скорости движения заряженной частицы, а не её величина.

Что касается единицы измерения силы Лоренца, как и в случае с другими силами в физике используется такая величина как Ньютон. Её составляющие:

Как направлена сила Лоренца

Чтобы определить направление силы Лоренца, как и с силой Ампера, работает правило левой руки. Это значит, чтобы понять, куда направлено значение Fл нужно раскрыть ладонь левой руки так, чтобы в руку входили линии магнитной индукции, а вытянутые четыре пальца указывали направление вектора скорости. Тогда большой палец, отогнутый под прямым углом к ладони, указывает направление силы Лоренца. На картинке ниже вы видите, как определить направление.

Внимание! Направление Лоренцового действия перпендикулярно движению частицы и линиям магнитной индукции.

При этом, если быть точнее, для положительно и отрицательно заряженных частиц имеет значение направление четырёх развернутых пальцев. Выше описанное правило левой руки сформулировано для положительной частицы. Если она заряжена отрицательно, то линии магнитной индукции должны быть направлены не в раскрытую ладонь, а в её тыльную сторону, а направление вектора Fл будет противоположным.

Теперь мы расскажем простыми словами, что даёт нам это явление и какое реальное воздействие она оказывает на заряды. Допустим, что электрон движется в плоскости, перпендикулярной направлению линий магнитной индукции. Мы уже упомянули, что Fл не воздействует на скорость, а лишь меняет направление движения частиц. Тогда сила Лоренца будет оказывать центростремительное воздействие. Это отражено на рисунке ниже.

Применение

Из всех сфер, где используется сила Лоренца, одной из масштабнейших является движение частиц в магнитном поле земли. Если рассмотреть нашу планету как большой магнит, то частицы, которые находятся около северного магнитного полюсов, совершают ускоренное движение по спирали. В результате этого происходит их столкновение с атомами из верхних слоев атмосферы, и мы видим северное сияние.

Тем не менее, есть и другие случаи, где применяется это явление. Например:

Заключение

Подведем итоги и обозначим четыре основных тезиса этой статьи простым языком:

  1. Сила Лоренца действует на заряженные частицы, которые движутся в магнитном поле. Это вытекает из основной формулы.
  2. Она прямо пропорциональна скорости заряженной частицы и магнитной индукции.
  3. Не влияет на скорость частицы.
  4. Влияет на направление частицы.

Её роль достаточно велика в «электрических» сферах. Специалист не должен упускать из вида основные теоретические сведения об основополагающих физических законах. Эти знания пригодятся, как и тем, кто занимается научной работой, проектированием и просто для общего развития.

Напоследок рекомендуем просмотреть полезные видео для закрепления изученного материала:

Теперь вы знаете, что такое сила Лоренца, чему она равна и как действует на заряженные частицы. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

samelectrik.ru

определение, формула, физический смысл, применение

Силой Лоренца называют силу, которая действует со стороны электромагнитного поля на движущийся электрический заряд. Весьма нередко силой Лоренца называют лишь магнитную составляющую этого поля. Формула для определения:

F = q(E+vB),

где q — заряд частицы; Е — напряжённость электрического поля; B — магнитная индукция поля; v — скорость частицы. 

Сила Лоренца очень похожа по своему принципу на силу Ампера, разница заключается в том, что последняя действует на весь проводник, который в целом электрически нейтральный, а сила Лоренца описывает влияние электромагнитного поля лишь на единичный движущийся заряд.

Она характеризуется тем, что не изменяет скорость перемещения зарядов, а лишь воздействует на вектор скорости, то есть способна изменять направление движения заряженных частиц.

В природе сила Лоренца позволяет защищать Землю от воздействия космической радиации. Под её воздействием падающие на планету заряженные частицы отклоняются от прямой траектории благодаря присутствию магнитного поля Земли, вызывая полярные сияния.

В технике сила Лоренца используется очень часто: во всех двигателях и генераторах именно она приводит во вращение ротор под действием электромагнитного поля статора.

Таким образом, в любых электромоторах и электроприводах основным видом силы является Лоренцева. Кроме того, она применяется в ускорителях заряженных частиц, а также в электронных пушках, которые раньше устанавливались в ламповых телевизорах. В кинескопе испускаемые пушкой электроны отклоняются под влиянием электромагнитного поля, что происходит при участии Лоренцевой силы.

Кроме того, эта сила используется в масс-спектрометрии и масс-электрографии для приборов, способных сортировать заряженные частицы в зависимости от их удельного заряда (отношение заряда к массе частицы). Это позволяет с высокой точностью определять массу частиц. Также находит применение в других КИП, например, в бесконтактном способе измерения расхода электропроводящих жидких сред (расходомеры). Это очень актуально, если жидкая среда обладает очень высокой температурой (расплав металлов, стекла и др.).

pue8.ru

Сила Лоренца

msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist> msimagelist>
Адроны
Альфа-распад
Альфа-частица
Аннигиляция
Антивещество
Антинейтрон
Антипротон
Античастицы
Атом
Атомная единица массы
Атомная электростанция
Барионное число
Барионы
Бета-распад
Бетатрон
Бета-частицы
Бозе – Эйнштейна статистика
Бозоны
Большой адронный коллайдер
Большой Взрыв
Боттом. Боттомоний
Брейта-Вигнера формула
Быстрота
Векторная доминантность
Великое объединение
Взаимодействие частиц
Вильсона камера
Виртуальные частицы
Водорода атом
Возбуждённые состояния ядер
Волновая функция
Волновое уравнение
Волны де Бройля
Встречные пучки
Гамильтониан
Гамма-излучение
Гамма-квант
Гамма-спектрометр
Гамма-спектроскопия
Гаусса распределение
Гейгера счётчик
Гигантский дипольный резонанс
Гиперядра
Глюоны
Годоскоп
Гравитационное взаимодействие
Дейтрон
Деление атомных ядер
Детекторы частиц
Дирака уравнение
Дифракция частиц
Доза излучения
Дозиметр
Доплера эффект
Единая теория поля
Зарядовое сопряжение
Зеркальные ядра
Избыток массы (дефект массы)
Изобары
Изомерия ядерная
Изоспин
Изоспиновый мультиплет
Изотопов разделение
Изотопы
Ионизирующее излучение
Искровая камера
Квантовая механика
Квантовая теория поля
Квантовые операторы
Квантовые числа
Квантовый переход
Квант света
Кварк-глюонная плазма
Кварки
Коллайдер
Комбинированная инверсия
Комптона эффект
Комптоновская длина волны
Конверсия внутренняя
Константы связи
Конфайнмент
Корпускулярно волновой дуализм
Космические лучи
Критическая масса
Лептоны
Линейные ускорители
Лоренца преобразования
Лоренца сила
Магические ядра
Магнитный дипольный момент ядра
Магнитный спектрометр
Максвелла уравнения
Масса частицы
Масс-спектрометр
Массовое число
Масштабная инвариантность
Мезоны
Мессбауэра эффект
Меченые атомы
Микротрон
Нейтрино
Нейтрон
Нейтронная звезда
Нейтронная физика
Неопределённостей соотношения
Нормы радиационной безопасности
Нуклеосинтез
Нуклид
Нуклон
Обращение времени
Орбитальный момент
Осциллятор
Отбора правила
Пар образование
Период полураспада
Планка постоянная
Планка формула
Позитрон
Поляризация
Поляризация вакуума
Потенциальная яма
Потенциальный барьер
Принцип Паули
Принцип суперпозиции
Промежуточные W-, Z-бозоны
Пропагатор
Пропорциональный счётчик
Пространственная инверсия
Пространственная четность
Протон
Пуассона распределение
Пузырьковая камера
Радиационный фон
Радиоактивность
Радиоактивные семейства
Радиометрия
Расходимости
Резерфорда опыт
Резонансы (резонансные частицы)
Реликтовое микроволновое излучение
Светимость ускорителя
Сечение эффективное
Сильное взаимодействие
Синтеза реакции
Синхротрон
Синхрофазотрон
Синхроциклотрон
Система единиц измерений
Слабое взаимодействие
Солнечные нейтрино
Сохранения законы
Спаривания эффект
Спин
Спин-орбитальное взаимодействие
Спиральность
Стандартная модель
Статистика
Странные частицы
Струи адронные
Субатомные частицы
Суперсимметрия
Сферическая система координат
Тёмная материя
Термоядерные реакции
Термоядерный реактор
Тормозное излучение
Трансурановые элементы
Трек
Туннельный эффект
Ускорители заряженных частиц
Фазотрон
Фейнмана диаграммы
Фермионы
Формфактор
Фотон
Фотоэффект
Фундаментальная длина
Хиггса бозон
Цвет
Цепные ядерные реакции
Цикл CNO
Циклические ускорители
Циклотрон
Чарм. Чармоний
Черенковский счётчик
Черенковсое излучение
Черные дыры
Шредингера уравнение
Электрический квадрупольный момент ядра
Электромагнитное взаимодействие
Электрон
Электрослабое взаимодействие
Элементарные частицы
Ядерная физика
Ядерная энергия
Ядерные модели
Ядерные реакции
Ядерный взрыв
Ядерный реактор
Ядра энергия связи
Ядро атомное
Ядерный магнитный резонанс (ЯМР)

nuclphys.sinp.msu.ru

Сила Лоренца | Формулы и расчеты онлайн

Сила Лоренца действующая на электрон

В частном случае носителем заряда является электрон. Тогда в формулу (5) в качестве Q следует подставить

\[ е = — 1.602 · 10^{-19} Кл. \]

При определении направления движения электронов с помощью правила левой руки следует учитывать, что направление движения электронов противоположно техническому направлению тока.

Сила Лоренца действующая на электрон и протон

Величина и направление силы Лоренца определяются соотношением

\[ \vect{F_{L}}= e \vect{v} × \vect{B} \]

где $\vect{v}$, $\vect{B}$ и $\vect{F}$ образуют правую систему.

Для электронов, движущихся перпендикулярно магнитному полю, формула упрощается:

\[ F_{L} = evB \]

Так как сила действует перпендикулярно скорости и направлению поля, она создает центростремительное ускорение, т.е. изменяет направление скорости, не меняя ее величины. Поэтому электрон движется в магнитном поле по окружности.

Вычислить, найти силу Лоренца действующую на электрон или протон

Радиус траектории электрона в магнитном поле

Для определения радиуса круговой траектории электрона приравняем силу Лоренца и центростремительную силу.

Если

rmeevB
радиус круговой траектории электрона,метр
9,11 · 10-31 кг — масса электрона,кг
1,602 · 10-19 Кл — элементарный электрический заряд,Кулон
скорость электрона,м/с
магнитная индукция,Тесла

то, приравнивая обе силы, получаем

\[ evB = \frac{m_{e} · v^{2}}{r} \]

и, следовательно,

\[ r = \frac{m_{e} · v}{eB} \]

Сила Лоренца действующая на протон

Электрический заряд протона равен по модулю заряду электрона, но имеет положительный знак.

\[ p = + 1.602 · 10^{-19} Кл. \]

При определении направления движения протонов с помощью правила левой руки направление движения протонов совпадает с техническим направлением тока и с картинкой.

Таким образом электрон и протон влетая в магнитное поле в одном направлении будут отклоняться в разные стороны.

Сила Лоренца действующая на протон

Величина силы действующая на электрон и на протон будет одинакова (определяется формулой №3), но поскольку протон гораздо тяжелее электрона, радиус закручивания для протона будет больше.

Радиус траектории протона в магнитном поле

Если

rmppvB
радиус круговой траектории протона,метр
1,67 · 10-27 кг — масса протона,кг
1,602 · 10-19 Кл — элементарный электрический заряд,Кулон
скорость протона,м/с
магнитная индукция,Тесла

Радиус траектории для протона будет вычисляться по аналогичной формуле

\[ r = \frac{m_{p} · v}{pB} \]

Из этой формулы видно что при одинаковых скоростях электрона и протона радиус траектории протона будет значительно больше, чем у электрона пропорционально отношению масс этих частиц

В помощь студенту

Сила Лоренца
стр. 665

www.fxyz.ru

Сила Лоренца - это... Что такое Сила Лоренца?

Сила Лоренца — сила, с которой, в рамках классической физики, электромагнитное поле действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического и магнитного полей. Выражается в СИ как:

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено Хевисайдом[2].

Макроскопическим проявлением силы Лоренца является сила Ампера.

Уравнение (единицы СИ)

Заряженная частица

Сила Лоренца f действующая на заряженную частицу (заряда q) при движении (с постоянной скоростью v). E поле и B поле меняются в пространстве и во времени.

Сила F действующая на частицу с электрическим зарядом q, движущуюся с постоянной скоростью v, во внешнем электрическом E и магнитном B полях, такова:

где × векторное произведение. Все величины выделенные жирным являются векторами. Более явно:

где r — радиус-вектор заряженной частицы, t — время, точкой обозначена производная по времени.

Непрерывное распределение заряда

Сила Лоренца (на единичный 3-объём) f действующая на непрерывное распределение заряда (зарядовая плотность ρ) при движении. 3-плотность потока J соответствует движению заряженного элемента dq в объеме dV .

Для непрерывного распределения заряда, сила Лоренца принимает вид:

где dF — сила, действующая на маленький элемент dq.

Ковариантная запись

4-сила выражается через вектор 4-скорости частицы по формуле

, где  — 4-сила, q — заряд частицы,  — тензор электромагнитного поля,  — 4-скорость.

Частные случаи

Направление движения частицы в зависимости от её заряда при векторе магнитной индукции, перпендикулярном вектору скорости (к нам из плоскости рисунка, перпендикулярно ей)

В однородном магнитном поле, направленном перпендикулярно вектору скорости, под действием силы Лоренца заряженная частица будет равномерно двигаться по окружности постоянного радиуса (называемого также гирорадиусом). Сила Лоренца в этом случае является центростремительной силой:

Работа силы Лоренца будет равна нулю, поскольку векторы силы и скорости всегда ортогональны. При скорости , намного меньшей скорости света, круговая частота не зависит от :

Если заряженная частица движется в магнитном поле так, что вектор скорости составляет с вектором магнитной индукции угол , то траекторией движения частицы является винтовая линия с радиусом и шагом винта :

Применение силы Лоренца

Эксперимент, показывающий воздействие силы Лоренца на заряженные частицы Пучок электронов, движущихся по круговой траектории под воздействием магнитного поля. Свечение вызвано возбуждением атомов остаточного газа в баллоне

В электроприборах

Основным применением силы Лоренца (точнее, её частного случая — силы Ампера) являются электрические машины (электродвигатели и генераторы). Сила Лоренца широко используется в электронных приборах для воздействия на заряженные частицы (электроны и иногда ионы), например, в телевизионных электронно-лучевых трубках, а также в масс-спектрометрии и МГД генераторах.

В ускорителях заряженных частиц

Сила Лоренца также используется в ускорителях заряженных частиц, задавая орбиту, по которой движутся эти частицы.

В вооружении

Другие применения

Примечания

  1. ↑ Такая двойственность применения термина «сила Лоренца», очевидно, объясняется историческими причинами: дело в том, что сила, действующая на точечный заряд со стороны только электрического поля была известна задолго до Лоренца — Закон Кулона был открыт в 1785 году. Лоренц же получил общую формулу для действия и электрического и магнитного полей, отличающуюся от прежней как раз выражением для магнитного поля. Поэтому то и другое, вполне логично, называют его именем.
  2. ↑ Болотовский Б. М. Оливер Хевисайд. — Москва: Наука, 1985. — С. 43-44. — 260 с.

См. также

med.academic.ru

. Сила Лоренца

Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I, находящийся в магнитном поле B,

может быть выражена через силы, действующие на отдельные носители заряда.

Пусть концентрация носителей свободного заряда в проводнике есть n, а q – заряд носителя. Тогда произведение n q υ S, где υ – модуль скорости упорядоченного движения носителей по проводнику, а S – площадь поперечного сечения проводника, равно току, текущему по проводнику:

Выражение для силы Ампера можно записать в виде:

F = q n S Δl υB sin α.

Так как полное число N носителей свободного заряда в проводнике длиной Δl и сечением S равно n S Δl, то сила, действующая на одну заряженную частицу, равна

FЛ = q υ B sin α.

Эту силу называют силой Лоренца. Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции  Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика. Взаимное расположение векторов , и для положительно заряженной частицы показано на рис. 1.18.1.

Сила Лоренца направлена перпендикулярно векторам и

При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется.

Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору то частица будет двигаться по окружности радиуса

Сила Лоренца в этом случае играет роль центростремительной силы (рис. 1.18.2).

Рисунок 1.18.2.

Круговое движение заряженной частицы в однородном магнитном поле

Период обращения частицы в однородном магнитном поле равен

Это выражение показывает, что для заряженных частиц заданной массы m период обращения не зависит от скорости υ и радиуса траектории R.

Угловая скорость движения заряженной частицы по круговой траектории

называется циклотронной частотой. Циклотронная частота не зависит от скорости (следовательно, и от кинетической энергии) частицы. Это обстоятельство используется в циклотронах – ускорителях тяжелых частиц (протонов, ионов). Принципиальная схема циклотрона приведена на рис. 1.18.3.

Рисунок 1.18.3.

Движение заряженных частиц в вакуумной камере циклотрона

Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода в виде полых металлических полуцилиндров (дуантов). К дуантам приложено переменное электрическое напряжение, частота которого равна циклотронной частоте. Заряженные частицы инжектируются в центре вакуумной камеры. Частицы ускоряются электрическим полем в промежутке между дуантами. Внутри дуантов частицы движутся под действием силы Лоренца по полуокружностям, радиус которых растет по мере увеличения энергии частиц. Каждый раз, когда частица пролетает через зазор между дуантами, она ускоряется электрическим полем. Таким образом, в циклотроне, как и во всех других ускорителях, заряженная частица ускоряется электрическим полем, а удерживается на траектории магнитным полем. Циклотроны позволяют ускорять протоны до энергии порядка 20 МэВ.

Однородные магнитные поля используются во многих приборах и, в частности, в масс-спектрометрах – устройствах, с помощью которых можно измерять массы заряженных частиц – ионов или ядер различных атомов. Масс-спектрометры используются для разделения изотопов, то есть ядер атомов с одинаковым зарядом, но разными массами (например, 20Ne и 22Ne). Простейший масс-спектрометр показан на рис. 1.18.4. Ионы, вылетающие из источника S, проходят через несколько небольших отверстий, формирующих узкий пучок. Затем они попадают в селектор скоростей, в котором частицы движутся в скрещенных однородных электрическом и магнитном полях. Электрическое поле создается между пластинами плоского конденсатора, магнитное поле – в зазоре между полюсами электромагнита. Начальная скорость заряженных частиц направлена перпендикулярно векторам и

На частицу, движущуюся в скрещенных электрическом и магнитном полях, действуют электрическая сила и магнитная сила Лоренца. При условии E = υB эти силы точно уравновешивают друг друга. Если это условие выполняется, частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, движущиеся со скоростью υ = E / B.

Далее частицы с одним и тем же значением скорости попадают в камеру масс-спектрометра, в которой создано однородное магнитное поле Частицы движутся в камере в плоскости, перпендикулярной магнитному полю, под действием силы Лоренца. Траектории частиц представляют собой окружности радиусов R = mυ / qB'. Измеряя радиусы траекторий при известных значениях υ и B' можно определить отношение q / m. В случае изотопов (q1 = q2) масс-спектрометр позволяет разделить частицы с разными массами.

Современные масс-спектрометры позволяют измерять массы заряженных частиц с точностью выше 10–4.

Рисунок 1.18.4.

Селектор скоростей и масс-спектрометр

Если скорость частицы имеет составляющую вдоль направления магнитного поля, то такая частица будет двигаться в однородном магнитном поле по спирали. При этом радиус спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ┴ вектора а шаг спирали p – от модуля продольной составляющей υ|| (рис. 1.18.5).

Рисунок 1.18.5.

Движение заряженной частицы по спирали в однородном магнитном поле

Таким образом, траектория заряженной частицы как бы навивается на линии магнитной индукции. Это явление используется в технике для магнитной термоизоляции высокотемпературной плазмы, то есть полностью ионизированного газа при температуре порядка 106 K. Вещество в таком состоянии получают в установках типа «Токамак» при изучении управляемых термоядерных реакций. Плазма не должна соприкасаться со стенками камеры. Термоизоляция достигается путем создания магнитного поля специальной конфигурации. В качестве примера на рис. 1.18.6 изображена траектория движения заряженной частицы в магнитной «бутылке» (или ловушке).

Рисунок 1.18.6.

Магнитная «бутылка». Заряженные частицы не выходят за пределы «бутылки». Магнитное поле «бутылки» может быть создано с помощью двух круглых катушек с током

Аналогичное явление происходит в магнитном поле Земли, которое является защитой для всего живого от потоков заряженных частиц из космического пространства. Быстрые заряженные частицы из космоса (главным образом от Солнца) «захватываются» магнитным полем Земли и образуют так называемые радиационные пояса (рис. 1.18.7), в которых частицы, как в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за времена порядка долей секунды. Лишь в полярных областях некоторая часть частиц вторгается в верхние слои атмосферы, вызывая полярные сияния. Радиационные пояса Земли простираются от расстояний порядка 500 км до десятков земных радиусов. Следует вспомнить, что южный магнитный полюс Земли находится вблизи северного географического полюса (на северо-западе Гренландии). Природа земного магнетизма до сих пор не изучена.

Рисунок 1.18.7.

Радиационные пояса Земли. Быстрые заряженные частицы от Солнца (в основном электроны и протоны) попадают в магнитные ловушки радиационных поясов. Частицы могут покидать пояса в полярных областях и вторгаться в верхние слои атмосферы, вызывая полярные сияния

Контрольные вопросы

1.Опишите опыты Эрстеда и Ампера.

2.Что является источником магнитного поля?

3. В чем состоит гипотеза Ампера, объясняющая существования магнитного поля постоянного магнита?

4.В чем состоит принципиальное отличие магнитного поля от электрического?

5.Сформулируйте определение вектора магнитной индукции.

6. Почему магнитное поле называется вихревым?

7. Сформулируйте законы:

А) Ампера;

Б) Био-Савара-Лапласа.

8. Чему равен модуль вектора магнитной индукции поля прямого тока?

9. Сформулируйте определение единицы силы тока (ампера) в Международной системе единиц.

10. Запишите формулы, выражающую величину:

А) модуля вектора магнитной индукции;

Б) силы Ампера;

В) силы Лоренца;

Г) периода обращения частицы в однородном магнитном поле;

Д) радиуса кривизны окружности, при движении заряженной частицы в магнитном поле;

Тест для самоконтроля

        1. Что наблюдалось в опыте Эрстеда?

1) Взаимодействие двух параллельных проводников с током.

2) Взаимодействие двух магнитных стрелок

3) Поворот .магнитной стрелки вблизи проводника при пропускании через него тока.

4) Возникновение электрического тока в катушке пнри вдвигании в нее магнита.

Ответ:

        1. Как взаимодействуют два параллельных проводника, если по ним пропускают токи в одном направлении?

  1. Притягиваются;

  2. Отталкиваются;

  3. Сила и момент сил равны нулю.

  4. Сила равна нулю, но момент сил не равен нулю.

Ответ:

        1. Какая формула определяет выражение модуля силы Ампера?

  1. Ответ:

        1. Какая формула определяет выражение модуля силы Лоренца?

А)

Б)

В)

Г)

Ответ:

        1. Прямолинейный проводник с током длиной l= 10см, сила тока в котором I=3 А, находится в однородном магнитном поле с индукцией И= 4 Тл и расположен под углом =600 к вектору Чему равна сила, действующая на проводник со стороны магнитного поля?

  1. 0,6 Н; 2) 1 Н; 3) 1,4 Н; 4) 2,4 Н.

Ответ:

        1. Прямоугольную рамку с током поместили в однородное магнитное поле, линии индукции которого оказались параллельными её плоскости. При силе тока в рамке I=4 А на неё стал действовать момент сил М=2 Нм. Чему равен модуль индукции магнитного поля? Площадь рамки равна S=0,5 м2.

1) 0,5 Тл; 2) 1 Тл; 3) 2 Тл; 4) 0,8 Тл.

Ответ:

        1. Электрон со скоростью V влетает в магнитное поле с модулем индукции В перпендикулярно магнитным линиям. Какое выражение соответствует радиусу орбиты электрона?

Ответ: 1) 2)4)

8. Как изменится период обращения заряженной частицы в циклотроне при увеличении её скорости в 2 раза? ( V<<c).

1) Увеличится в 2 раза; 2) Увеличится в 2 раза;

3) Увеличится в 16 раз; 4) Не изменится.

Ответ:

9.Какой формулой определяется модуль индукции магнитного поля, созданного в центре кругового тока с радиусом окружности R?

1) 2) 3) 4)

Ответ:

10.Сила тока в катушке равна I. Какой из формул определяется модуль индукции магнитного поля в середине катушки длиной l c числом витков N?

1) 2) 3) 4)

Лабораторная работа №

Определение горизонтальной составляющей индукции магнитного поля Земли.

Краткая теория к лабораторной работе.

Магнитное поле это материальная среда, передающая так называемые магнитные взаимодействия. Магнитное поле является одной из форм проявления электромагнитного поля.

Источниками магнитных полей являются движущиеся электрические за­ряды, проводники с током и переменные электрические поля. Порождаясь дви­жущимися зарядами (токами), магнитное поле, в свою очередь, действует толь­ко на движущиеся заряды (токи), на неподвижные же заряды оно действия не оказывает.

Основной характеристикой магнитного поля является вектор магнитной индукции :

(1)

Модуль вектора магнитной индукции численно равен максимальной си­ле, действующей со стороны магнитного поля на проводник единичной длины, по которому протекает ток единичной силы. Вектор образует правую тройку с вектором силы и направлением тока. Таким образом, магнитная индукция это силовая характеристика магнитного поля.

Единицей магнитной индукции в СИ является Тесла (Тл).

Силовыми линиями магнитного поля называются воображаемые линии, в каждой точке которых касательные совпадают с направлением вектора магнитной индукции. Магнитные силовые линии всегда замкнуты, никогда не пересекаются.

Закон Ампера определяет силовое действие магнитного поля на проводник с током.

Если в магнитное поле с индукцией помещен проводник с током, то на каждый направленный по току элемент проводника действует сила Ампера, определяемая соотношением

.

(2)

Направление силы Ампера совпадает с направлением векторного произ­ведения , т.е. она перпендикулярна плоскости, в которой лежат векторы и (рис.1).

Рис. 1. К определению направления силы Ампера

Если перпендикулярен , то направление силы Ампера можно определить по правилу левой руки: четыре вытянутых пальца направить по току, ладонь расположить перпендикулярно силовым линиям, тогда большой палец покажет направление силы Ампера. Закон Ампера положен в основу определения магнитной индукции, т.е. соотношение (1) следует из формулы (2), записанной в скалярном виде.

Сила Лоренца – это сила, с которой электромагнитное поле действует на движущуюся в этом поле заряженную частицу. Формула силы Лоренца была впервые получена Г. Лоренцем как результат обобщения опыта и имеет вид:

.

(3)

где – сила, действующая на заряженную частицу в электрическом поле с напряженностью ; – сила, действующая на заряженную частицу в магнитном поле.

Формулу для магнитной составляющей силы Лоренца можно получить из закона Ампера, учитывая, что ток – это упорядоченное движение электрических зарядов. Если бы магнитное поле не действовало на движущиеся заряды, оно не оказывало бы действия и на проводник с током. Магнитная составляющая силы Лоренца определяется выражением:

.

(4)

Направлена эта сила перпендикулярно плоскости, в которой лежат векторы скорости и индукции магнитного поля ; её направление совпадает с направлением векторного произведения для q > 0 и с направлением для q>0 (рис. 2).

Рис. 2. К определению направления магнитной составляющей силы Лоренца

Если вектор перпендикулярен вектору , то направление магнитной составляющей силы Лоренца для положительно заряженных частиц можно найти по правилу левой руки, а для отрицательно заряженных частиц по правилу правой руки. Так как магнитная составляющая силы Лоренца всегда направлена перпендикулярно скорости , то работы по перемещению частицы она не совершает. Она может лишь изменять направление скорости , искривлять траекторию движения частицы, т.е. выполнять роль центростремительной силы.

Закон Био-Савара-Лапласа служит для расчёта магнитных полей (определения ), создаваемых проводниками с током.

Согласно закону Био-Савара-Лапласа, каждый направленный по току элемент проводника создаёт в точке, находящейся на расстоянии от этого элемента, магнитное поле, индукция которого определяется соотношением:

.

(5)

где Гн/м – магнитная постоянная;µ – магнитная проницаемость среды.

Рис. 3. К закону Био-Савара-Лапласа

Направление совпадает с направлением векторного произведения , т.е. перпендикулярен плоскости, в которой лежат векторы и. Одновременно является касательной к силовой линии, направление которой можно определить по правилу буравчика: если поступательное движение острия буравчика направить по току, то направление вращения рукоятки определит направление силовой линии магнитного поля (рис. 3).

Чтобы найти магнитное поле, создаваемое всем проводником, нужно применить принцип суперпозиции полей:

.

(6)

Например, вычислим магнитную индукцию в центре кругового тока (рис. 4).

Рис. 4. К расчёту поля в центре кругового тока

Для кругового тока и, поэтому соотношение (5) в скалярной форме имеет вид:

.

(7)

Все элементы создадут в т. O магнитные поля с одинаковым направлением , поэтому результирующая магнитная индукция

.

(8)

Закон полного тока (теорема о циркуляции магнитной индукции) является ещё одним законом для расчёта магнитных полей.

Закон полного тока для магнитного поля в вакууме имеет вид:

.

(9)

где Bl – проекция на элемент проводника , направленный по току.

Циркуляция вектора магнитной индукции по любому замкнутому контуру равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром.

Теорема Остроградского-Гаусса для магнитного поля выглядит следующим образом:

.

(10)

где Bn – проекция вектора на нормаль к площадке dS.

Поток вектора магнитной индукции через произвольную замкнутую поверхность равен нулю.

Характер магнитного поля следует из формул (9), (10).

Условием потенциальности электрического поля является равенство нулю циркуляции вектора напряженности.

Потенциальное электрическое поле порождается неподвижными электрическими зарядами; силовые линии поля не замкнуты, начинаются на положительных зарядах и кончаются на отрицательных.

Из формулы (9) мы видим, что в магнитном поле циркуляция вектора магнитной индукции отлична от нуля, следовательно, магнитное поле потенциальным не является.

Из соотношения (10) следует, что магнитных зарядов, способных создавать потенциальные магнитные поля, не существует. (В электростатике аналогичная теорема тлеет вид .

Магнитные силовые линии замыкаются сами на себя. Такое поле называется вихревым. Таким образом, магнитное поле – это вихревое поле. Направление силовых линий поля определяется правилом буравчика. У прямолинейного бесконечно длинного проводника с током силовые линии имеют вид концентрических окружностей, охватывающих проводник (рис. 3).

studfiles.net