Датчик положения дроссельной заслонки гранта


Проверка цепи и датчика положения дроссельной заслонки Лада Гранта

Датчик положения дроссельной заслонки установлен сбоку на дроссельном узле и связан с осью дроссельной заслонки. Датчик представляет собой потенциометр, на один конец которого подается плюс напряжения питания (5 В), а другой конец соединен с «массой». С третьего вывода потенциометра (от ползунка) идет выходной сигнал к контроллеру. Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), изменяется напряжение на выходе датчика.

рис. 1

При закрытой дроссельной заслонке оно ниже 0,7 В. Когда заслонка открывается, напряжение на выходе датчика растет и при полностью открытой заслонке должно быть более 4 В. Отслеживая выходное напряжение датчика, контроллер корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя). Датчик положения дроссельной заслонки не требует никакой регулировки, так как контроллер воспринимает холостой ход (т.е. полное закрытие дроссельной заслонки) как нулевую отметку.

Специфической причиной рывков при установившемся движении автомобиля может быть повреждение датчика положения дроссельной заслонки.

Дополнительными симптомами, подтверждающими неисправность этого датчика, служат:

– неравномерная работа двигателя на холостом ходу;

– снижение максимальной мощности двигателя. Датчик не разборный и поэтому неремонтопригоден. Если выявлена неисправность датчика, его заменяют в сборе.

Проверка срабатывания датчика дроссельной заслонки

При выключенном зажигании отсоединяем колодку жгута проводов системы управления двигателем от датчика положения дроссельной заслонки.

Выводы «А» и «В» указаны на фиксаторе штекера, а маркировка вывода «С» нанесена на корпусе штекера с противоположной стороны.

Чтобы проверить цепь питания самого датчика, подсоединяем тестер к выводам «А» и «В» штекера. Должно быть напряжение 4,8 – 5,2 вольта.

Если нет напряжения на этих выводах, то нужно проверить исправность самой цепи (значит, где-то обрыв или замыкание на массу) между выводом №32 контроллера и выводом «А» колодки жгута проводов.

После проверяем цепь между выводом №17 контроллера и выводом «В» колодки – заземление датчика. Если цепь исправна, а напряжение не соответствует норме, значит неисправность контроллера.

Проверка датчика:

Для проверки датчика подсоединяем к нему штекер. И где выходят провода из штекера, вставляем две проволочки или две иглы, где выходят выводы «В» и «С». Подсоединяем тестер и включаем зажигание.

При закрытой дроссельной заслонке напряжение должно быть 0,35 – 0,7 В.

При открытой дроссельной заслонке (педаль газа нажата) напряжение должно быть 4,05 – 4,75 В

рис. 7

Если напряжение не соответствует этим показаниям, то датчик неисправен, и его надо заменить.

autoruk.ru

Проверка цепи и датчика положения дроссельной заслонки Lada Granta

Инструменты:

Детали и расходники:

Примечания:

Датчик положения дроссельной заслонки установлен сбоку на дроссельном узле и связан с осью дроссельной заслонки.

Датчик представляет собой потенциометр, на один конец которого подается плюс напряжения питания (5 В), а другой конец соединен с «массой». С третьего вывода потенциометра (от ползунка) идет выходной сигнал к контроллеру.

Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), изменяется напряжение на выходе датчика. При закрытой дроссельной заслонке оно ниже 0,7 В. Когда заслонка открывается, напряжение на выходе датчика растет и при полностью открытой заслонке должно быть более 4 В.

Отслеживая выходное напряжение датчика, контроллер корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя). Датчик положения дроссельной заслонки не требует никакой регулировки, так как контроллер воспринимает холостой ход (т.е. полное закрытие дроссельной заслонки) как нулевую отметку.

Специфической причиной рывков при установившемся движении автомобиля может быть повреждение датчика положения дроссельной заслонки.

Дополнительными симптомами, подтверждающими неисправность этого датчика, служат:

Датчик неразборный и поэтому неремонтопригоден. Если выявлена неисправность датчика, его заменяют в сборе.

Проверка цепи датчика дроссельной заслонки

1. При выключенном зажигании отсоедините колодку жгута проводов системы управления двигателем от датчика положения дроссельной заслонки.

2. Чтобы проверить цепь питания самого датчика, подсоедините тестер к выводам «А» и «В» штекера. Должно быть напряжение 4,8-5,2 В.

Примечание:

Выводы «А» и «В» указаны на фиксаторе штекера, а маркировка вывода «С» нанесена на корпусе штекера с противоположной стороны.

3. Если нет напряжения на этих выводах, то нужно проверить исправность самой цепи (значит, где-то обрыв или замыкание на массу) между выводом №32 контроллера и выводом «А» колодки жгута проводов.

4. После проверьте цепь между выводом №17 контроллера и выводом «В» колодки – заземление датчика. Если цепь исправна, а напряжение не соответствует норме, значит неисправность контроллера.

Проверка и замена датчика дроссельной заслонки

1. Для проверки датчика подсоедините к нему штекер. И где выходят провода из штекера, вставьте две проволочки или две иглы (где выходят выводы «В» и «С»). Подсоедините тестер и включите зажигание. 

- При закрытой дроссельной заслонке напряжение должно быть 0,35-0,7 В.

- При открытой дроссельной заслонке (педаль газа нажата) напряжение должно быть 4,05-4,75 В.

Примечание:

Если напряжение не соответствует этим показаниям, то датчик неисправен, и его надо заменить.

2. Для снятия датчика дроссельной заслонки, крестовой отверткой отверните два винта его крепления.

3. Снимите датчик из дроссельного узла.

Примечание:

Обратите внимание на поролоновую прокладку, которая находится в посадочном месте. Если она повреждена, то ее необходимо будет заменить на новую.

В статье не хватает:

Источник: carpedia.club

[email protected]

carpedia.club

Система управления двигателем Лада Гранта - Датчики Замена #Гранта

СИСТЕМА УПРАВЛЕНИЯ ДВИГАТЕЛЕМ

 1 — выключатель зажигания: 2 - главное реле: 3 — аккумуляторная батарея: 4 — воздушный фильтр: 5 — диагностический разъем; 6 — щиток приборов; 7 — :>лсктровснтилятор системы охлаждения; 8 — реле включения электровентилятора; 9 — электронный блок управления: 10 — датчик температуры охлаждающей жидкости; 11 — катушка зажигания; 12 — топливная форсунка; 13 — дроссельный узел; 14 — датчик массового расхода воздуха; 15 — датчик концентрации кислорода (управляющий); 16 — свеча зажигания; 17 — датчик детонации: 18 — датчик положения коленчатого вала; 19 — датчик скорости автомобиля; 20 — датчик концентрации кислорода (диагностический); 21 — шкив коленчатого вала; 22 — реле включения топливного насоса; 23 — топливный модуль: 24 — электронная педаль газа; 25 — клапан продувки адсорбера  

 

Система управления двигателем

включает и выключает топливный насос, контролирует количество воздуха, поступающего в цилиндры двигателя, впрыскивает необходимое количество топлива во впускной трубопровод, управляет искрообразованием на свечах зажигания, корректирует угол опережения зажигания, регулирует частоту вращения коленчатого вала на холостом ходу, управляет элсктровентилятором системы охлаждения двигателя. Система управления двигателем — электронная, с распределенным впрыском топлива. Система состоит из следующих элементов: •    электронный блок управления; •    датчики: 1)    датчик положения педали газа; 2)    датчик положения дроссельной заслонки (встроен в дроссельный узел); 3)    датчик детонации; 4)    датчик температуры охлаждающей жидкости; 5)    датчик массового расхода воздуха; 6)    датчик скорости автомобиля; 7)    два датчика концентрации кислорода; 8)    датчик давления (для автомобилей с системой кондиционирования воздуха); •    исполнительные устройства: 1)    главное реле; 2)    реле топливного насоса; 3)    форсунки; 4)    катушки зажигания; 5)    электропривод дроссельной заслонки; 6)    реле электровентилятора системы охлаждения; 7)    щиток приборов; 8)    клапан продувки адсорбера; •    соединительные провода; •    колодка диагностического разъема. В систему управления двигателем также интегрирована противоугонная система (иммобилайзер). Главный управляющий элемент системы — электронный блок управления (ЭБУ), или, как часто его называют, — контроллер с встроенным микропроцессором. По сути ЭБУ — это специализированный мини-компьютер, в котором установлена только одна программа — управление двигателем, а датчики и исполнительные устройства образуют периферийное оборудование этого компьютера. Блок получает и анализирует сигналы датчиков. На основе полученных данных блок рассчитывает управляющие команды и выдает их на исполнительные устройства. В блоке имеется три типа памяти*: постоянное запоминающее устройство (ПЗУ), оперативное запоминающее устройство (ОЗУ) и перепрограммируемое запоминающее устройство (ППЗУ). ПЗУ — память энергонезависимая (то есть информация в памяти сохраняется при отключении питания) и представляет собой микросхему («чип*)*. В ПЗУ хранится программа вычислений и необходимые для расчета данные (параметры двигателя, передаточные отношения трансмиссии и другие характеристики). Эта информация индивидуальна для каждой модификации автомобиля. Неквалифицированное перепрограммирование ПЗУ может привести к нарушениям в работе двигателя, выходу из строя элементов системы управления двигателем, повреждению двигателя. В процессе работы ЭБУ контролирует исправность всех элементов и цепей системы управления двигателем. Обнаружив неисправность, ЭБУ переводит систему управления двигателем на резервный режим работы и включает контрольную лампу неисправности двигателя на щитке приборов. Двигатель при этом сможет продолжить работу (кроме случая неисправности датчика положения коленчатого вала, см. ниже), что позволяет доехать до места ремонта своим ходом. Коды обнаруженных неисправностей ЭБУ записывает в ОЗУ. Там же хранится оперативная информация, которую микропроцессор ЭБУ использует при расчетах. При отключении аккумуляторной батареи от бортовой сети автомобиля вся информация, хранящаяся в ОЗУ. будет удалена. В ППЗУ хранятся коды противоугонной системы автомобиля (иммобилайзера). Этот тип памяти энергонезависим. После активации иммобилайзера ЭБУ блокирует работу системы управления двигателем при попытке запуска двигателя без специальных электронных ключей. ЭБУ системы управления двигателем расположен за шумоизоляционным покрытием под правой стороной панели приборов.
 

Расположение элементов системы управления двигателем в моторном отсеке

1 —место установки датчика положения коленчатого вала; 2 — топливная форсунка третьего цилиндра (на фото не видны форсунки других цилиндров); 3 — дроссельный узел; 4 — датчик температуры охлаждающей жидкости; 5 — клапан продувки адсорбера; 6 —датчик массового расхода воздуха; 7 — свеча зажигания четвертого цилиндра; 8 — катушка зажигания и высоковольтные провода; 9— свеча зажигания третьего цилиндра; 10 — датчик детонации; 11 — свеча зажигания второго цилиндра; 12 — свсча зажигания первого цилиндра Датчик положения коленчатого вала (ДПКВ)

предназначен для формирования сигналов, по которым ЭБУ синхронизирует свою работу с тактами рабочего процесса двигателя. Поэтому часто этот датчик называют датчиком синхронизации. Действие датчика основано на принципе индукции — при прохождении мимо сердечника датчика зубьев шкива коленчатого вала в цепи датчика возникают импульсы напряжения переменного тока.   Частота появления импульсов соответствует частоте вращения коленчатого вала. Зубья расположены по окружности шкива (через 6*)- Два из них отстоят друг от друга на угловом расстоянии 18’. Сделано это для формирования в цепи датчика опорных сигналов — своеобразных точек отсчета, относительно которых ЭБУ определяет положение коленчатого вала — верхние мертвые точки в первом/четвертом и втором/третьем цилиндрах. Работа двигателя с неисправным датчиком положения коленчатого вала невозможна. Датчик положения коленчатого вала ремонту не подлежит — в случае неисправности он заменяется в сборе. Датчик детонации (ДД)

 пьезоэлектрический, реагирует на вибрацию двигателя. По сигналам датчика ЭБУ определяет момент возникновения детонации при работе двигателя и в соответствии с этим корректирует угол опережения зажигания. При неисправности ДД электронный блок управления переводит систему на резервный режим работы. Датчик детонации установлен на пере дней стенке блока цилиндров На автомобили устанавливают датчик массового расхода воздуха частотного типа, зарекомендовавший себя как более надежный. У такого датчика в выходном сигнале измеряется не напряжение, а частота.  

Датчик массового расхода воздуха (ДМРВ)

 установлен между воздушным фильтром и дроссельной заслонкой.   По сигналу датчика ЭБУ рассчитывает количество воздуха, поступающего в цилиндры двигателя. При неисправности ДМРВ электронный блок управления переводит систему на резервный режим работы. Для того, чтобы двигатели могли соответствовать более жестким экологическим стандартам привода дроссельной заслонки оборудован мотор-редуктором. Педаль газа электронная, она не имеет механической связи с дроссельной заслонкой. Управление двигателем полностью электронное. По сути, водитель, нажимая педаль газа, только обозначает, какое ускорение он желал бы придать автомобилю, а система управления двигателем реализует это. Тоже происходит, когда водитель ослабляет нажим на педаль газа, удерживает ее нажатой в одном положении или совсем убирает ногу1 с педали газа. Такую систему на АвтоВАЗе называют «Е-газ» (Е-GAS). Двигатели с такой системой могут соответствовать экологическим стандартам ЕВРО IV—V. Количество воздуха, поступающего в цилиндры двигателя, регулируется дроссельным узлом, который установлен между ресивером впускного трубопровода и воздушным фильтром. Дроссельный узел Дроссельную заслонку поворачивает электродвигатель через редактор. Оба встроены в корпус дроссельного узла. При запуске и прогреве двигателя, а также в режиме холостого хода поступление воздуха в цилиндры регулируется открыванием дроссельной заслонки. Положение дроссельной заслонки контролируют два датчика, встроенные в корпус дроссельного узла. При запуске и прогреве двигателя, а также в режиме холостого хода поступление воздуха в цилиндры регулируется открыванием дроссельной заслонки. Положение дроссельной заслонки контролируют два датчика, встроенные в корпус дроссельного узла. Угол открытия дроссельной заслонки задает электронный блок управления (ЭБУ) в зависимости от расчетного количества воздуха, которое должно поступить в цилиндры двигателя. При этом учитывается режим работы двигателя (запуск, прогрев, холостой ход и так далее), температура окружающего воздуха и двигателя, положение педали газа. Управляющие команды поступают в дроссельный узел на электродвигатель. Одновременно ЭБУ контролирует угол открытия заслонки и, при необходимости, подаст соответствующие команды для корректировки ее положения. В результате того, что ЭБУ одновременно регулирует количество впрыскиваемого топлива и поступающего воздуха, поддерживается оптимальный состав горючей смеси при любом режиме работы двигателя. Дроссельный узел с электроприводом дроссельной заслонки чувствителен к отложениям, которые могут накапливаться на его внутренней поверхности. Образовавшийся слой отложений может помешать плавному движению дроссельной заслонки, подклинивая ее (особенно при малых углах открытия). В результате двигатель будет неустойчиво работать и даже глохнуть на холостом ходу, плохо запускаться, могут появиться провалы и на переходных режимах. Чтобы избежать этого в качестве профилактической меры следует удалять отложения специальными моющими составами при выполнении очередного технического обслуживания автомобиля. Большой слой отложений может совсем заблокировать движение заслонки. Если промывкой не удастся восстановить работоспособность дроссельного узла, то необходимо его заменить. Неисправность или некорректная работа дроссельного узла могут быть вызваны нарушением контакта в его электрической цепи (окислившимися выводами в соединительной колодке жгута проводов). В этом случае восстановить работу удастся, обработав выводы специальным составом для очистки и защиты электрических контактов. Возможны и другие причины неисправности: —    на дроссельный узел не поступает напряжение питания; —    не поступают сигналы с обоих датчиков положения дроссельной заслонки; —    ЭБУ не может распознать сигналы с датчиков положения дроссельной заслонки. В этих случаях система управления двигателем переходит в аварийный режим работы. При этом автомобиль сохраняет возможность самостоятельно передвигаться на небольшое расстояние с медленной скоростью, что, в крайнем случае, позволит переместить его в безопасное место (съехать на обочину, покинуть перекресток и тому' подобное). О том, что дроссельный узел работает в аварийном режиме, может свидетельствовать горящая контрольная лампа неисправности системы управления двигателем и повышенная частота вращения коленчатого вала на холостом ходу (около 1500 мин-1, не смотря на то, что двигатель прогрет до рабочей температуры). Двигатель при этом не будет реагировать на нажатие педали газа. Каждый из датчиков положения дроссельной заслонки представляет собой потенциометр. В процессе работы происходит постепенный износ токопроводящих дорожек и подвижных контактов. Со временем износ может достичь такой степени, что корректная работа датчика станет невозможной. Наличие двух датчиков увеличивает надежность всего узла. В случае если из строя выйдет только один датчик загорится контрольная лампа, но система управления двигателем перейдет на резервный режим работы. При этом двигатель будет адекватно реагировать на нажатие педали газа, но с худшими эксплуатационными параметрами. Резервный режим позволяет доехать на автомобиле до места ремонта своим ходом. Электронная педаль газа состоит из пластмассового рычага, который выполнен заодно с педалью и двух датчиков, встроенных в кронштейн. Все элементы представляют собой единую конструкцию, которую иногда называют модулем педали газа. Электронная педаль газа Каждый датчик положения педали газа (встроенный в кронштейн педали газа) представляет собой потенциометр, подвижный контакт которого жестко связан с поворотной осью рычага педали. Электронный блок управления (ЭБУ) по сигналам датчиков непрерывно отслеживает положение педали. Изменение положения контролируется по меняющемуся сопротивлению на выводах обоих датчиков. В соответствии с этими параметрами ЭБУ подаст управляющие команды на мотор-редуктор дроссельного узла и на топливные форсунки. В результате износа подвижных контактов или токопроводящих дорожек, датчики могут выйти из строя или поступающие с них сигналы будут не корректны. При нарушении сигналов двигатель будет работать неустойчиво, возможны «провалы» на переходных режимах. При работе на холостом ходу частота вращения коленчатого mu а двигателя может самопроизвольно меняться. В случае, выхода из строя одною из датчиков (или его цени), загорится контрольная лампа неисправности системы управления двигателем. Если за контрольное время сигнал с датчика не восстановится, ЭБУ переведет систему на резервный режим работы. В этом режиме при резком нажатии педали газа ло упора, обороты будут расти медленно. На автомобиле можно будет продолжить движение до места ремонта своим ходом. Возможно некоторое увеличение расхода топлива и изменение некоторых других технических показателей двигателя. В случае, когда из строя выйдут оба датчика, ЭБУ переведет систему управления двигателем в аварийный режим работы. Двигатель будет работать только на оборотах чуть выше холостого хода (1500 мин '). При этом автомобиль сохраняет способность самостоятельно двигаться, хотя и с медленной скоростью. Это позволит в случае необходимости покинуть перекресток, съехать на обочину или переместить автомобиль в безопасное место на («большое расстояние.   В системе управления двигателем для перехода на некоторые режимы работы требуется отслеживать положение педали тормоза. В качестве датчика положения педали тормоза задействован выключатель сигналов торможения, в котором имеются две пары контактов. Выключатель соединен с ЭБУ дополнительным проводом. Также потребуется датчик, отслеживающий включение и выключение сцепления. Его устанавливают в кронштейн педали сцепления.

Датчик концентрации кислорода

подает выходной сигнал, по которому ЭБУ определяет концентрацию кислорода в отработавших газах. По полученным данным ЭБУ корректирует количество топлива, впрыскиваемого в цилиндры двигателя. тем самым поддерживая оптимальную пропорцию смеси воздуха с топливом (это необходимо для эффективной работы каталитического нейтрализатора). Чувствительный элемент датчика концентрации кислорода расположен в потоке отработавших газов (перед каталитическим нейтрализатором). Работоспособность датчика возможна только при нагреве его чувствительного элемента до температуры не ниже 300 *С. Для сокращения времени прогрева в датчик встроен нагревательный элемент.   Датчик концентрации кислорода: 1 соединительная колодка; 2 — жгут проводов; 3 — уплотнительное кольцо; 4 — чувствительный элемент с отверстиями для подвода отработавших газов Чтобы двигатель соответствовал требованиям норм токсичности ЕВРО IV, в систему выпуска отработавших газов после нейтрализатора встроен второй датчик концентрации кислорода. Наличие в отработавших газах соединений свинца и кремния может привести к выходу из строя датчика концентрации кислорода. Поэтому не допускается использование этилированною бензина. При ремонте двигателя нельзя применять герметик с большим содержанием силикона (соединения кремния), пары которого могут попасть через систему вентиляции картера в цилиндры и далее в выпускной тракт. Следует использовать герметик, на упаковке которого указано, что он безопасен для датчика концентрации кислорода.

Датчик температуры охлаждающей жидкости (ДТОЖ)

     полупроводниковый прибор термистор, электрическое сопротивление которого меняется при изменении температуры окружающей среды. ДТОЖ установлен в корпусе термостата. По сопротивлению датчика ЭБУ оценивает тепловой режим двигателя. Полученные данные используются при расчете большинства управляющих команд для элементов системы управления двигателем, а также для включения электровентилятора системы охлаждения двигателя. При неисправности ДТОЖ электронный блок управления переводит систему на резервный режим работы. Датчик скорости автомобиля установлен на коробке передач.   Принцип действия датчика основан на эффекте Холла. По импульсам, вырабатываемым датчиком, ЭБУ рассчитывает скорость автомобиля. Сигнал с датчика поступает также на спидометр. В системе зажигания двигателей применяется одна катушка зажигания. Она представляет собой две двухвыводные катушки зажигания, выполненные в едином корпусе. Искрообразован ие происходит в двух цилиндрах одновременно (1—4 или 2-3). Катушка зажигания соединена со свечами зажигания четырьмя высоковольтными проводами с несъемными наконечниками.  

Элементы системы зажигания: 1 — катушка зажигания; 2 — комплект высоковолътных проводов

На двигателях применяются свечи зажигания А17ДВРМ, где: А — резьба Ml4x1,25; 17    — калильное число; Д — длина резьбовой части 19 мм, с плоской посадочной поверхностью; В — выступание теплового конуса изолятора за торец резьбовой части корпуса; Р — встроенный резистор; М — биметаллический центральный электрод. На двигатель можно установить свечи аналогичного типа других производителей: -    WR7DCX (BOSCH); -    LR15YC-1 (BRISK).   Свеча зажигания: 1 — боковой электрод; 2 — центральный электрод (в тепловом конусе изолятора); 3 — резьбовая часть корпуса; 4 — уплотнительное кольцо; 5 — шестигранная часть корпуса под ключ; 6 — изолятор (на нем нанесена маркировка свечи зажигания); 7 — контактный наконечник (съемный, установлен на резьбе) Форсунка — это электромагнитный игольчатый клапан, на выходном патрубке которого выполнен распылитель с четырьмя калиброванными отверстиями. Форсунка открывается по сигналу ЭБУ, при этом топливо под давлением впрыскивается непосредственно на впускной клапан. Количество топлива, поступающего в цилиндр, регулируется временем открытия форсунки. На двигателе установлено по одной форсунке на каждый цилиндр. Форсунка двигателя: 1 — распылитель; 2    — уплотнительное резиновое кольцо; 3    — выводы для подсоединения жгута проводов Клапан продувки адсорбера установлен на корпусе воздушного фильтра Колодка диагностического разъема предназначена для подключения внешнего диагностического устройства к системе управления двигателем. Колодка установлена справа от центральной консоли.   МЕРЫ БЕЗОПАСНОСТИ ПРИ ОБСЛУЖИВАНИИ И РЕМОНТЕ СИСТЕМЫ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ При техническом обслуживании и ремонте системы управления двигателем необходимо соблюдать предосторожности: •    Не касайтесь выводов ЭБУ руками — система управления двигателем — микропроцессорная, электронные компоненты ЭБУ могут быть повреждены электростатическим разрядом. •    Приступая к ремонту автомобиля (особенно, если операции связаны с демонтажом элементов системы управления двигателем), снимите клемму с отрицательного вывода аккумуляторной батареи. При отсоединении аккумуляторной батареи от сети автомобиля из памяти ЭБУ будут удалены коды неисправностей. •    Во многих случаях для проверки элементов системы управления двигателем необходимо наличие в электрической цепи системы напряжения питания. При этом отсоединять колодки проводов от датчиков и исполнительных элементов системы управления двигателем допускается только после выключения зажигания. •    Отсоединять колодку жгута проводов от ЭБУ можно только после снятия клеммы с отрицательного вывода аккумуляторной батареи. •    При необходимости подсоединить аккумуляторную батарею к электрической сети автомобиля во время ремонта предварительно убедитесь в том, что отсоединенные провода (выводы колодок, концы проводов) не замыкают на «массу» и что зажигание выключено. Подсоедините сначала клемму к положительному выводу аккумуляторной батареи, а затем к отрицательному. Включайте зажигание только на время выполнения измерений. •    В системе управления двигателем используются электронные компоненты, напряжение питания которых 5 В. Подача на них напряжения от электрической сети автомобиля (напряжение в которой более 12 В) приведет к выходу из строя системы управления двигателем. •    Для проверки системы управления двигателем используйте мультиметр, внутреннее сопротивление прибора в режиме вольтметра должно быть не менее 10 МОм. При необходимости для проверки цепей питания, находящихся под напряжением 12 В, можно воспользоваться контрольной лампой, но мощность лампы должна быть меньше 4 Вт (подойдет контрольная лампа щитка приборов А 12-1,2-1 мощность 1,2 Вт или лампа подсветки прикуривателя АМН 12-3-1 —3    Вт). •    Перед запуском двигателя убедитесь, что клеммы надежно закреплены на выводах аккумуляторной батареи. •    Во избежание выхода из строя электронных компонентов ЭБУ нельзя при работающем двигателе отсоединять клеммы проводов от выводов аккумуляторной батареи. Проверка состояния элементов системы управления двигателем показана далее в соответствующих разделах главы «Система управления двигателем».ПРОВЕРКА ТЕХНИЧЕСКОГО СОСТОЯНИЯ СИСТЕМЫ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ   Электронный блок управления (ЭБУ) системы управления двигателем имеет режим самодиагностики. При включении зажигания должна загореться контрольная лампа неисправности системы управления двигателем, что свидетельствует о работоспособности системы диагностики. Если система управления двигателем исправна, то после запуска двигателя лампа должна погаснуть. В процессе работы ЭБУ контролирует исправность всех элементов и цепей системы управления двигателем. Обнаружив неисправность, ЭБУ переводит систему упраатения двигателем на резервный режим работы и включает контрольную лампу неисправности двигателя, расположенную на щитке приборов. Двигатель при этом сможет продолжить работу (кроме случая неисправности датчика положения коленчатого вала), что позволяет доехать до места ремонта своим ходом. Коды обнаруженных неисправностей ЭБУ записывает в оперативную память (ОЗУ). Для считывания кодов неисправности к системе управления двигателем необходимо подключить внешнее диагностическое устройство. Для этого в системе выполнен диагностический разъем.

Считывать коды неисправности можно в сервисном центре, располагающем необходимым оборудованием.

www.granta-service.ru

Устройство электронной системы управления двигателем в автомобилях семейства Лада-Самара, Лада-Калина, Лада-Гранта с контролером М74 ЕВРО-4)

Схемы ЭСУД: Смотрите : Схема электрооборудования автомобиля Лада-Гранта (Lada-Granta) Диагностика электронной системы управления двигателем (ЭСУД) ЕВРО-4 М74 автомобилей семейства ЛАДА-САМАРА, ЛАДА-КАЛИНА с двигателем 11183

1. КОНТРОЛЛЕР И ДАТЧИКИ КОНТРОЛЛЕРА

Контроллер является центральным устройством системы управления двигателем. Он получает информацию от датчиков и управляет исполнительными механизмами, обеспечивая оптимальную работу двигателя при заданном уровне показателей автомобиля. Он расположен под консолью панели приборов и закреплен на кронштейне (рис. 1.1, 1.2).Контроллер управляет исполнительными механизмами, такими как топливные форсунки, катушка зажигания, электропривод дроссельной заслонки, нагреватель датчика кислорода, клапан продувки адсорбера и различными реле. Контроллер управляет включением и выключением главного реле, через которое напряжение питания от аккумуляторной батареи поступает на элементы системы (кроме электробензонасоса, электровентилятора, блока управления и индикатора состояния автомобильной противоугонной сигнализации (АПС)). Он включает главное реле при включении зажигания. При выключении зажигания контроллер задерживает выключение главного реле на время, необходимое для подготовки к следующему включению (завершение вычислений, установка регулятора холостого хода в положение, предшествующее запуску двигателя).

Рис. 1.1. Расположение контроллера в салоне автомобилей семейства LADA SAMARA: 1 - контроллер

Рис. 1.2. Расположение контроллера в салоне автомобилей семейства LADA KALINA: 1 - контроллер

При включении зажигания контроллер, кроме выполнения упомянутых выше функций, обменивается информацией с АПС (если функция иммобилизации включена, см. раздел 1.2). Если в результате обмена определяется, что доступ к автомобилю разрешен, то контроллер продолжает выполнение функций управления двигателем. В противном случае работа двигателя блокируется. Контроллер выполняет также функцию диагностики системы. Он определяет наличие неисправностей элементов системы, включает сигнализатор и сохраняет в своей памяти коды, обозначающие характер неисправности и помогающие механику осуществить ремонт. Дополнительные сведения об использовании диагностической функции контроллера см. в разделе "Диагностика". Контроллер подает на различные устройства напряжение питания 5 В или 12 В. В некоторых случаях оно подается через резисторы контроллера, имеющие столь высокое сопротивление, что при включении в цепь контрольной лампочки она не загорается. В большинстве случаев обычный вольтметр с низким внутренним сопротивлением не дает точных показаний.

Для контроля напряжения выходных сигналов контроллера необходим цифровой вольтметр с внутренним сопротивлением не менее 10 МОм.

Память контроллера

Контроллер имеет три типа памяти: программируемое постоянное запоминающее устройство (ПЗУ), оперативное запоминающее устройство (ОЗУ) и электрически репрограммируемое запоминающее устройство (ЭРПЗУ). Постоянное запоминающее устройство (ПЗУ) В ПЗУ хранится программа управления, которая содержит последовательность рабочих команд и калибровочную информацию. Калибровочная информация представляет собой данные управления впрыском, зажиганием, холостым ходом и т.п., которые в свою очередь зависят от массы автомобиля, типа и мощности двигателя, от передаточных отношений трансмиссии и других факторов. Эта память является энергонезависимой, т.е. ее содержимое сохраняется при отключении питания. Оперативное запоминающее устройство (ОЗУ) Оперативное запоминающее устройство используется микропроцессором для временного хранения измеряемых параметров, результатов вычислений, кодов неисправностей. Микропроцессор может по мере необходимости вносить в ОЗУ данные или считывать их. Эта память является энергозависимой. При прекращении подачи питания (отключение аккумуляторной батареи или отсоединение от контроллера жгута проводов) содержащиеся в ОЗУ диагностические коды неисправностей и расчетные данные стираются. Электрически репрограммируемое запоминающее устройство (ЭРПЗУ) ЭРПЗУ используется для хранения идентификаторов контроллера, двигателя и автомобиля, а также кодов-паролей автомобильной противоугонной системы (АПС). Коды-пароли, принимаемые контроллером от блока управления АПС, сравниваются с хранимыми в ЭРПЗУ и меняются микропроцессором по определенному закону.

ЭРПЗУ является энергонезависимой памятью и может хранить информацию без подачи питания на контроллер.

ВНИМАНИЕ. Для предотвращения повреждений контроллера при отсоединении провода от клеммы "минус" аккумуляторной батареи или жгута проводов от контроллера зажигание должно быть выключено. ВНИМАНИЕ. В случае неисправности контроллера для замены необходимо использовать "чистый" контроллер (см. раздел "Иммобилизатор").

1 После замены контроллера необходимо выполнить процедуру адаптации нуля дроссельной заслонки и процедуру адаптации функции диагностики пропусков воспламенения. Процедура адаптации нуля дроссельной заслонки: - на стоящем автомобиле необходимо включить зажигание, выждать 30 с, выключить зажигание, дождаться отключения главного реле. Адаптация будет прервана, если: - прокручивается двигатель; - автомобиль движется; - нажата педаль акселератора; - температура двигателя ниже 5 °С или выше 100 °С; - температура окружающего воздуха ниже 5 °С. Процедура адаптации функции диагностики пропусков воспламенения: - прогреть двигатель до рабочей температуры (контролируемый параметр TMOT_W = 60...90 °С); - разогнать автомобиль на 2-й передаче до достижения повышенных оборотов коленчатого вала (NMOT_W = 4000 мин"1) и произвести торможение двигателем (NMOTW = 1000 мин1); - выполнить торможение двигателем шесть раз за одну поездку.

2 Провести диагностику (см. порядок в карте А "Проверка диагностической цепи").

ДАТЧИК МАССОВОГО РАСХОДА ВОЗДУХА (ДМРВ) ДАТЧИК ТЕМПЕРАТУРЫ ВОЗДУХА (ДТВ)

В системе управления двигателем используется датчик массового расхода воздуха термоанемометрического типа с частотной характеристикой цифрового выходного сигнала. Он расположен между воздушным фильтром и шлангом впускной трубы (рис. 1.3). Сигнал ДМРВ представляет собой цифровой сигнал, частота следования импульсов которого зависит от количества воздуха, проходящего через датчик (увеличивается при увеличении расхода воздуха). Диагностический прибор считывает показания датчика как расход воздуха в килограммах в час. При возникновении неисправности цепи ДМРВ контроллер заносит в свою память ее код и включает сигнализатор. В этом случае контроллер рассчитывает значение массового расхода воздуха по частоте вращения коленчатого вала и положению дроссельной заслонки. Датчик массового расхода воздуха имеет встроенный датчик температуры воздуха. Чувствительным элементом является термистор (резистор, изменяющий сопротивление в зависимости от температуры), установленный в потоке воздуха (см. табл. 1). Выходной сигнал подключенного к контроллеру ДТВ представляет собой напряжение постоянного тока в диапазоне 0,1...4,8 В, величина которого зависит от температуры воздуха, проходящего через датчик.

При возникновении неисправности цепи ДТВ контроллер заносит в свою память ее код и включает сигнализатор. В этом случае контроллер заменяет показания датчика фиксированным значением температуры воздуха (33 °С).

Рис. 1.3. Расположение датчика массового расхода воздуха в подкапотном пространстве автомобилей семейств LADA SAMARA и LADA KALINA: 1 - ДМРВ

Таблица 1.1. Таблица зависимости сопротивления ДТВ от температуры всасываемого воздуха (±3,5%).

ВНИМАНИЕ. Отсутствие уплотнительной втулки может привести к нарушению работы двигателя. При работе с датчиком соблюдать осторожность. Не допускать попадания внутрь датчика посторонних предметов. Повреждение датчика приведет к нарушению нормальной работы системы управления двигателем. Запрещается вынимать чувствительный элемент из корпуса датчика, так как это может привести к изменению его характеристики.

ДАТЧИКИ ПОЛОЖЕНИЯ ДРОССЕЛЬНОЙ ЗАСЛОНКИ (ДПДЗ)

В системе Дроссельного Патрубка с Электроприводом (ЭДП) применяются два ДПДЗ. ДПДЗ представляет собой резистор потенциометрического типа, на один из выводов которого подается опорное напряжение (5 В) с контроллера, а на второй масса с контроллера. С вывода, соединенного с подвижным контактом потенциометра, подается выходной сигнал ДПДЗ на контроллер. Контроллер управляет положением дроссельной заслонки с помощью электропривода в соответствии с положением педали акселератора. По показаниям ДПДЗ контроллер отслеживает положение дроссельной заслонки. При включении зажигания контроллер устанавливает заслонку в предпусковое положение, степень открытия которой зависит от температуры охлаждающей жидкости. В предпусковом положении дроссельной заслонки выходной сигнал ДПДЗ 1 должен быть в пределах 0,6...0,8 В, выходной сигнал ДПДЗ 2 в пределах 4,2...4,4 В. Если в течение 20-30 секунд не запустить двигатель или не нажать на педаль акселератора, то контроллер обесточивает электропривод дроссельного патрубка и дроссельная заслонка устанавливается в положение 10-11 % открытия дросселя. В обесточенном состоянии электропривода дроссельной заслонки выходной сигнал ДПДЗ 1 находится в пределах 0,9...1,0 В, выходной сигнал ДПДЗ 2 в пределах 4,0...4,1 В. При любом положении дроссельной заслонки сумма сигналов ДПДЗ 1 и ДПДЗ 2 должна быть равна (5+0,1) В.

При возникновении неисправности цепей ДПДЗ контроллер обесточивает электропривод дроссельной заслонки, заносит в свою память ее код и включает сигнализатор. При этом дроссельная заслонка устанавливается в положение 10-11 % открытия дросселя.

ЭЛЕКТРОННАЯ ПЕДАЛЬ АКСЕЛЕРАТОРА (ЭПА)

На автомобилях с ЭДП применяется электронная педаль акселератора (ЭПА), которая электрически передает сигнал о положении педали акселератора контроллеру. ЭПА располагается на кронштейне под правой ногой водителя.

В ЭПА используются два датчика положения педали акселератора (ДППА). ДППА представляют собой резисторы потенциометрического типа на которые подается питание от контроллера 5 В. ДППА механически связаны с приводом от рычага педали. Две независимые пружины между рычагом педали и корпусом создают возвратное усилие. Получая аналоговый электрический сигнал от ЭПА, контроллер формирует сигнал для управления положением дроссельной заслонки. Выходное напряжение ДППА меняется пропорционально нажатию педали акселератора. При отпущенной педали акселератора сигнал ДППА 1 должен быть в пределах 0,5...0,85 В, сигнал ДППА 2 в пределах 0,25...0,43 В. При нажатой педали акселератора сигнал ДППА 1 увеличивается до 4,4 В, сигнал ДППА 2 увеличивается до 2,2 В.

При любом положении педали акселератора сигнал ДППА 1 должен быть в два раза больше сигнала ДППА 2.

Рис. 1.4. Расположение электронной педали акселератора в салоне автомобилей семейства LADA KALINA: 1 - электронная педаль акселератора

ДАТЧИК ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ (ДТОЖ)

Датчик установлен в потоке охлаждающей жидкости двигателя на термостате, на головке цилиндров (рис. 1.5, 1.6). Чувствительным элементом датчика температуры охлаждающей жидкости является термистор, т. е. резистор, электрическое сопротивление которого изменяется в зависимости от температуры. Высокая температура вызывает низкое сопротивление, а низкая температура охлаждающей жидкости - высокое сопротивление (см. табл. 1.2). Датчик соединен со входом контроллера, подключенным к внутреннему источнику напряжения 5 В через резистор 2,15 кОм. Температуру охлаждающей жидкости контроллер рассчитывает по падению напряжения на ДТОЖ. Падение напряжения относительно высокое на холодном двигателе и низкое на прогретом. Температура охлаждающей жидкости используется в большинстве функций управления двигателем.

При возникновении неисправности цепей ДТОЖ контроллер заносит в свою память ее код, включает сигнализатор и вентилятор системы охлаждения и рассчитывает значение температуры охлаждающей жидкости по специальному алгоритму.

Рис. 1.5. Расположение датчика температуры охлаждающей жидкости в подкапотном пространстве автомобилей семейства LADA KALINA: 1 - датчик температуры охлаждающей жидкости

Рис. 1.6. Расположение датчика температуры охлаждающей жидкости в подкапотном пространстве автомобилей семейства LADA SAMARA:

1 - датчик температуры охлаждающей жидкости.

Таблица 1.2Таблица зависимости сопротивления ДТОЖ от температуры охлаждающей жидкости (±2% )

ДАТЧИК ДЕТОНАЦИИ (ДД)

Рис. 1.7. Расположение датчика детонации на двигателе 11183: 1 - датчик детонации

Датчик детонации (ДД) установлен на блоке цилиндров (рис. 1.7). Пьезокерамический чувствительный элемент ДД генерирует сигнал напряжения переменного тока, ампли-туда и частота которого соответствуют параметрам вибраций двигателя. При возникновении детонации амплитуда вибраций определенной частоты повышается. Контроллер при этом корректирует угол опережения зажигания для гашения детонации.

При возникновении неисправности цепей ДД контроллер заносит в свою память ее код и включает сигнализатор. Для определения и устранения неисправности необходимо использовать соответствующую диагностическую карту.

УПРАВЛЯЮЩИЙ ДАТЧИК КИСЛОРОДА (УДК)

Наиболее эффективное снижение токсичности отработавших газов бензиновых двигателей достигается при массовом соотношении воздуха и топлива в смеси (14,5...14,6) : 1. Данное соотношение называется стехиометрическим. При этом составе топливовоздушной смеси каталитический нейтрализатор наиболее эффективно снижает количество углеводородов, окиси углерода и окислов азота, выбрасываемых с отработавшими газами. Для оптимизации состава отработавших газов с целью достижения наибольшей эффективности работы нейтрализатора применяется управление топливоподачей по замкнутому контуру с обратной связью по наличию кислорода в отработавших газах. Контроллер рассчитывает длительность импульса впрыска по таким параметрам, как массовый расход воздуха, частота вращения коленчатого вала, температура охлаждающей жидкости и т.д. Для корректировки расчетов длительности импульса впрыска используется информация о наличии кислорода в отработавших газах, которую выдает датчик кислорода. УДК устанавливается на выпускном коллекторе (рис. 1.8). Его чувствительный элемент находится в потоке отработавших газов. УДК генерирует напряжение, изменяющееся в диапазоне 50...900 мВ. Это выходное напряжение зависит от наличия или отсутствия кислорода в отработавших газах и от температуры чувствительного элемента УДК. Когда УДК находится в холодном состоянии, выходной сигнал датчика отсутствует, поскольку в этом состоянии его внутреннее электрическое сопротивление очень высокое -несколько МОм. По мере прогрева датчика сопротивление падает и появляется способность генерировать выходной сигнал.

Для эффективной работы УДК должен иметь температуру не ниже 300°С. Для быстрого прогрева после запуска двигателя УДК снабжен внутренним электрическим подогревающим элементом, которым управляет контроллер. Коэффициент заполнения импульсных сигналов управления нагревателем (отношение длительности включенного состояния к периоду следования импульсов) зависит от температуры УДК и режима работы двигателя.

Рис. 1.8. Расположение управляющего и диагностического датчика кислорода в подкапотном пространстве автомобилей семейства LADA KALINA: 1 - управляющий датчик кислорода; 2 - диагностический датчик кислорода

Если температура датчика выше 300°С, то в момент перехода через точку стехиометрии, выходной сигнал датчика переключается между низким уровнем (50...200 мВ) и высоким (700...900 мВ). Низкий уровень сигнала соответствует бедной смеси (наличие кислорода), высокий - богатой (отсутствует кислород).

Описание работы цепи

Контроллер выдает в цепь УДК стабильное опорное напряжение 3,3 В. Когда УДК не прогрет, напряжение выходного сигнала датчика находится в диапазоне 1,3...3,6 В. По мере прогрева датчика его внутреннее сопротивление уменьшается, и он начинает генерировать меняющееся напряжение, выходящее за пределы этого диапазона. По изменению напряжения контроллер определяет, что УДК прогрелся, и его выходной сигнал может быть использован для управления топливоподачей в режиме замкнутого контура. При нормальной работе системы подачи топлива в режиме замкнутого контура выходное напряжение УДК изменяется между низким и высоким уровнями.

Отравление датчика кислорода

УДК может быть отравлен в результате применения этилированного бензина или использования при сборке вулканизирующихся при комнатной температуре герметиков, содержащих в большом количестве силикон (соединения кремния) с высокой летучестью. Испарения силикона могут попасть в систему вентиляции картера и присутствовать при процессе сгорания. Присутствие соединений свинца или кремния в отработавших газах может привести к выходу УДК из строя.

Неисправности цепей УДК, дефект датчика, его отравление или непрогретое состояние могут вызвать длительное нахождение напряжения сигнала в диапазоне 1,3...3,6 В. При этом в память контроллера занесется соответствующий код неисправности. Управление топливоподачей будет осуществляться по разомкнутому контуру.

Если контроллер получает сигнал с напряжением, свидетельствующим о длительном состоянии обедненности смеси, в его память заносится соответствующий код неисправности (низкий уровень сигнала датчика кислорода). Причиной неисправности может быть замыкание выходной цепи УДК на массу, негерметичность системы впуска воздуха или пониженное давление топлива.

Если контроллер получает сигнал с напряжением, свидетельствующим о длительном состоянии обогащенности смеси, в его память заносится соответствующий код неисправности (высокий уровень сигнала датчика кислорода). Причиной неисправности может быть замыкание выходной цепи УДК на источник напряжения или повышенное давление топлива в рампе форсунок. При возникновении кодов неисправности датчика кислорода контроллер осуществляет управление топливоподачей в режиме разомкнутого контура.

При повреждениях жгута, колодки или штекеров датчика кислорода, ДК необходимо заменить. Ремонт жгута, колодки или штекеров не допускается. Для нормальной работы ДК должен сообщаться с атмосферным воздухом. Сообщение с атмосферным воздухом обеспечивается воздушными зазорами проводов датчика. Попытка отремонтировать провода, колодки или штекеры может привести к нарушению сообщения с атмосферным воздухом и ухудшению работы ДК. При обслуживании ДК необходимо соблюдать следующие требования: Не допускается попадание жидкости для чистки контактов или других материалов на датчик или колодки жгутов. Эти материалы могут попасть в ДК и вызвать нарушение работы. Кроме того, не допускаются повреждения изоляции проводов, приводящие к их оголению. Запрещается сильно сгибать или перекручивать жгут ДК и присоединяемый к нему жгут проводов системы впрыска. Это может нарушить поступление атмосферного воздуха в ДК.

Для исключения неисправности в результате попадания воды необходимо не допускать повреждений уплотнения на периферии колодки жгута системы управления.

ДАТЧИК СКОРОСТИ АВТОМОБИЛЯ (ДСА)

Датчик скорости автомобиля выдает импульсный сигнал, который информирует контроллер о скорости движения автомобиля. ДСА установлен на коробке передач (рис. 1.9.).

Рис. 1.9. Расположение датчика скорости в подкапотном пространстве автомобилей семейства LADA SAMARA: 1 - датчик скорости

При вращении ведущих колес ДСА вырабатывает 6 импульсов на метр движения автомобиля. Контроллер определяет скорость автомобиля по частоте следования импульсов. При неисправности цепей ДСА контроллер заносит в свою память ее код и включает сигнализатор.

ДАТЧИК ПОЛОЖЕНИЯ КОЛЕНЧАТОГО ВАЛА (ДПКВ)

Датчик положения коленчатого вала установлен на крышке масляного насоса (рис. 1.10) на расстоянии около 1+0,4 мм от вершины зубца задающего диска, закрепленного на коленчатом валу двигателя. Задающий диск объединен со шкивом привода генератора и представляет собой зубчатое колесо с 58 зубьями, расположенными с шагом 6°, и "длинной" впадиной для синхронизации, образованной двумя пропущенными зубьями. При совмещении середины первого зуба зубчатого сектора диска после "длинной" впадины с осью ДПКВ коленчатый вал двигателя находится в положении 114° (19 зубьев) до верхней мертвой точки 1-го и 4-го цилиндров.

При вращении задающего диска изменяется магнитный поток в магнитопроводе датчика, наводя импульсы напряжения переменного тока в его обмотке. Контроллер определяет положение и частоту вращения коленчатого вала по количеству и частоте следования этих импульсов и рассчитывает фазу и длительность импульсов управления форсунками и катушкой зажигания.

Провода ДПКВ защищаются от помех экраном, замкнутым на массу. При возникновении неисправности в цепи датчика положения коленчатого вала двигатель перестает работать, контроллер заносит в свою память код неисправности и включает сигнализатор.

Рис. 1.10. Расположение датчика положения коленчатого вала на двигателе 11183:

1 - датчик положения коленчатого вала

ВЫКЛЮЧАТЕЛЬ СИГНАЛА ТОРМОЖЕНИЯ

Рис. 1.11. Расположение выключателя сигнала торможения в салоне автомобилей семейства LADA SAMARA: 1 - выключатель сигнала торможения

Выключатель сигнала торможения входит в состав узла педали тормоза и предназначен для подачи на контроллер ЭСУД соответствующих сигналов о нажатии /отпускании водителем педали тормоза. В системах управлением дроссельной заслонкой по проводам (Е-газ) сигналы выключателя педали тормоза играют важную роль, поскольку используются функцией безопасности ПО контроллера ЭСУД. По этой причине очень важно обеспечить, чтобы выключатель сигнала тормоза всегда находился в рабочем состоянии. В случае несоответствия его функциональной характеристики переключения, например, при самопроизвольном изменении значений регулировок, указанных в инструкции (из-за вибраций педали тормоза износа выключателя и блока педалей), двигатель автомобиля может переходить в аварийный режим работы с принудительно уменьшенной мощностью. Величина регулировочного зазора выключателя должна быть в пределах 0,2…0,5 мм. Выключатель сигнала торможения имеет две группы контактов, первая из которых коммутирует напряжение с Кл. 15, а вторая - напряжение с Кл. 30, поступающее на питание лампы стоп-сигнала. Оба эти сигнала поступают на контроллер ЭСУД. В состоянии отпущенной педали тормоза контакты первой группы должны быть нормально замкнуты, а контакты второй - нормально разомкнуты. При неисправности выключателя сигнала торможения контроллер заносит в свою память ее код и включает сигнализатор. Код неисправности также заносится при неправильной регулировке зазора между насадкой приводного толкателя и корпусом выключателя.

ВЫКЛЮЧАТЕЛЬ СИГНАЛА ПОЛОЖЕНИЯ ПЕДАЛИ СЦЕПЛЕНИЯ

Выключатель сигнала положения педали сцепления входит в состав узла педали сцепления и предназначен для подачи на контроллер ЭСУД сигнала о нажатой педали сцепления. Выключатель имеет одну группу контактов, коммутирующую напряжение с Кл. 15. Сигнал выключателя положения педали сцепления используется ПО контроллера ЭСУД для улучшения ездовых характеристик автомобиля.

Рис. 1.12. Расположение выключателя сигнала положения педали сцепления в салоне автомобилей семейства LADA KALINA: 1 - выключатель сигнала торможения При неисправности выключателя сигнала положения педали сцепления контроллер заносит в свою память ее код и включает сигнализатор.

2. ИММ0БИЛИЗАТОР АПС-6

Рис.2.1. Состав иммобилизатора автомобилей семейства LADA KALINA: 1 - сигнализатор иммобилизатора в комбинации приборов; 2 - пульт дистанционного управления (рабочий ключ зажигания); 3 - обучающий ключ зажигания; 4 - контейнер красного цвета с транспондером (кодирующим устройством)

Иммобилизатор (автомобильная противоугонная система) предназначен для предотвращения несанкционированного запуска двигателя. Иммобилизатор АПС-6 состоит из: блока управления АПС; катушки связи, конструктивно расположенной в выключателе зажигания; обучающего ключа 3 (рис.2.1.) с контейнером красного цвета 4; рабочего ключа 2 (для автомобилей семейства LADA KALINA являющегося одновременно пультом дистанционного управления системой блокировки дверей); сигнализатора 1; соответствующей части программного обеспечения контроллера системы управления двигателем. Режимы работы и состояния иммобилизатора отображаются при помощи сигнализатора и зуммера внутри блока управления АПС. Блок управления АПС расположен на автомобилях семейства LADA KALINA в салоне автомобиля за накладкой консоли панели приборов, на автомобилях семейства LADA SAMARA слева под панелью приборов. Сигнализатор расположен на автомобилях семейства LADA KALINA в комбинации приборов, на автомобилях семейства LADA SAMARA на панели приборов справа от рулевого колеса. Блок управления АПС подключается к контроллеру ЭСУД через диагностическую линию. Блок управления имеет встроенное реле, которое подключает или отключает колодку диагностики от контроллера. Если к диагностической колодке не подключен диагностический прибор, то реле размыкает диагностическую цепь, и линия используется для связи контроллера и блока управления. При подключении диагностического прибора к колодке диагностики, реле замыкает диагностическую цепь, что позволяет производить обмен информацией между прибором и контроллером. Однако, блок управления АПС имеет приоритет перед диагностическим прибором при работе с контроллером, и в случае необходимости блок управления прерывает связь контроллера с диагностическим прибором (например, для обмена информацией между блоком управления и контроллером при запуске двигателя). Контроллер ЭСУД и блок управления АПС (контроллер электропакета) могут находиться в одном из двух состояний: - с выключенной функцией иммобилизации ("чистый"). В этом состоянии контроллер ЭСУД и блок управления АПС не представляют собой единую систему и запуск двигателя разрешен независимо от АПС; - с включенной функцией иммобилизации ("обученный"). В этом состоянии работа двигателя возможна только при получении контроллером ЭСУД правильного пароля от блока управления АПС. В обученное состояние контроллер ЭСУД и блок управления АПС (контроллер электропакета) переходят после выполнения процедуры обучения рабочего кодового ключа, которая выполняется при помощи обучающего ключа. После ее выполнения оба блока переходят в обученное состояние и вернуть их в чистое состояние невозможно. При выполнении процедуры обучения в системе генерируется новый пароль, который сохраняется в энергонезависимой памяти контроллера ЭСУД и блока управления АПС (контроллера электропакета). Этот новый пароль также записывается в обучающий ключ.

ВНИМАНИЕ. Обучающий ключ нельзя использовать для обучения любой другой пары блок управления АПС - контроллер ЭСУД.

Во время процедуры перевода АПС в обученное состояние, одновременно обучается и рабочий кодовый ключ. Этот ключ используются для снятия АПС с охраны при эксплуатации автомобиля.

Замена неисправного контроллера ЭСУД

В случае неисправности контроллера для замены необходимо использовать "чистый" (необученный) контроллер. Для восстановления работоспособности АПС после замены необходимо выполнить процедуру обучения рабочего кодового ключа, используя имеющиеся обучающий и рабочий кодовый ключ.

Замена неисправного блока управления АПС-6

В случае неисправности блока управления АПС для замены необходимо использовать любой работоспособный блок управления. Для восстановления работоспособности АПС после замены необходимо выполнить процедуру обучения рабочего кодового ключа, используя имеющийся обучающий кодовый ключ.

Далее >>Страница 2

www.sigtura.ru


Смотрите также