4 ведущих колеса: Все четыре колеса… — журнал «АБС-авто»

Все четыре колеса… — журнал «АБС-авто»

Количество полноприводных моделей автомобилей, способных преодолевать тяжелое бездорожье, неуклонно стремится к нулю. Одновременно с этим полноприводными трансмиссиями все чаще оснащаются «подорожные» автомобили.

Что заставляет автопроизводителей идти по пути усложнения конструкции трансмиссии, как эволюционировал полный привод и как он устроен?

У большинства людей понятие «полный привод» прочно ассоциируется с внедорожником. Действительно, один из неотъемлемых атрибутов настоящего «проходимца» – колесная формула 4 × 4 (четыре колеса, все четыре – ведущие). Острословы метко именуют автомобили повышенной проходимости «четыре везде», имея в виду одно из принятых обозначений полноприводников – 4WD (Four Wheel Drive), или в русской транскрипции – «четыре вэ дэ». Однако в этот раз речь пойдет не об автомобилях, на которых можно смело «лезть в говны». Таких в программах автопроизводителей, к сожалению для многих любителей путешествий и автомобильного экстрима, осталось буквально единицы. Темой разговора будут полноприводные автомобили, предназначенные для передвижения по дорогам, пусть заметенным снегом и покрытым льдом, но все-таки дорогам.

В эту категорию можно отнести на вид обычные легковые автомобили и всю многочисленную группу так называемой автотехники спортивного назначения – SUV (Sport Utility Vehicles). Кстати, трудно придумать более абсурдное название – какое отношение к спорту имеет чрезмерно большой и тяжелый «шарабан» с немаленьким прожорливым мотором? Ровно такое же, как и к форсированию бездорожья. Ведь полный привод и увеличенный дорожный просвет – далеко не единственные атрибуты настоящих «проходимцев». Тем более что и конструкция трансмиссии не совсем та, и просвет не так светел, о чем предупреждают сами автопроизводители. Единственная доступная «сувам» зона вне дорог – придорожные бордюры и обочины, что не без риска демонстрируют некоторые их владельцы. Пожалуй. ближе к истине многочисленные критики этой выдуманной маркетологами автобизнеса абракадабры. Они расшифровывают аббревиатуру SUV как Super Useless Vehicle, т. е. «супер бесполезный автомобиль» – совсем не городской, на трассе – далеко не лучший, вне дорог – так себе. Впрочем, поговорку «понты дороже денег» тоже неглупые люди придумали, а если продолжить «…и важнее практичности», то и производителей, и потребителей «излишеств разных нехороших» понять можно. По большому счету, нам все равно, как называют этот «мейнстрим» мирового автомобилестроения. Главное, что «сувы» – автомобили дорожные и, по большей части, полноприводные.

Прежде чем продолжить, внесем ясность в терминологию. За рубежом (правда, не везде и не всегда) термином 4WD принято называть трансмиссии, которые могут работать в двух основных режимах: с передачей крутящего момента от двигателя ко всем колесам или к колесам одной из осей. Причем переключение режимов – забота водителя, которую он осуществляет с помощью различных устройств: механических, пневматических, электрических и т. п. Режим выбирается в зависимости от дорожных условий. Вторую ось рекомендуется подключать только в случае, когда они никудышные: в снег, гололед или при движении без дорог. На покрытии с высокими сцепными свойствами это делать запрещено, так как грозит поломкой трансмиссии (почему – выясним позже). Трансмиссии типа 4WD также называют part time, по-русски – подключаемый полный привод. Поскольку на «реальных жыпах» традиционно использовались трансмиссии с такой логикой работы, к ним (жыпам) и приклеилось выражение «четыре везде», в смысле «воткнул» все четыре – и гоняй везде и всюду.

Столь же часто употребляемая аббревиатура AWD (All Wheel Drive) используется для обозначения трансмиссий типа full time, т. е. с постоянно включенным полным приводом или полным приводом, который подключается автоматически вне зависимости от воли драйвера. AWD-трансмиссиям не страшны любые дорожные условия. Это, безусловно, не значит, что не существуют правила их эксплуатации, ограничения или рекомендации автозавода. Иногда общепринятую терминологию нарушают, порой по незнанию, порой – намеренно, в интересах поминавшегося выше маркетинга. Поскольку нам чужды маркетинговые интересы, постараемся следовать правилу, по крайней мере там, где это зависит от нас.

Вначале прикинем, чем «грозит» дорожному автомобилю полноприводная трансмиссия. Сразу оговоримся, что на этот счет существуют противоречивые мнения. Апологеты полного привода доказывают, что он – чистое благо. Противники выкатывают внушительный перечень недостатков.

Jensen FF, английский автомобиль класса GT (1966–1971), на который задолго до известной всем Audi 80 Quattro (1980) устанавливалась полноприводная трансмиссия типа AWD. Кстати, и электромеханическая АБС

В стремлении доказать свою правоту и те и другие слегка шельмуют, выбирая в качестве примеров трансмиссии таких конструктивных схем и принципов действия, которые наилучшим образом иллюстрируют их аргументы. Рассуждая логически и не вдаваясь в детали устройства, можно отметить следующие недостатки полного привода в сравнении с приводом колес одной оси.

Во-первых, в полноприводной трансмиссии выше потери мощности. Каждая «лишняя» пара шестерен, карданный шарнир, цепная передача, ШРУС и т. д. имеют КПД меньше единицы и неумолимо съедают суммарный КПД трансмиссии, так что «на круг» набегает немало. Во-вторых, все эти «излишки» добавляют автомобилю веса, по самым скромным оценкам, килограммов 50–100. Это равносильно тому, что владелец полноприводного авто постоянно возит с собой лишнего пассажира: кто-то миниатюрную девушку, кто-то – здоровенного бугая. Отсюда проистекают (при прочих равных и в обычных условиях движения) такие следствия, как больший расход топлива, вредные выбросы и худшая динамика. В-третьих, согласно всеобщему закону техники увеличение количества компонентов системы однозначно отражается на ее надежности – вероятность отказа повышается. В-четвертых, более сложная трансмиссия стоит дороже. Следовательно, растет и цена автомобиля. Помимо этого отметим менее однозначный момент. Наличие тяги на всех четырех колесах способно значительно изменить характеристики управляемости и поворачиваемости автомобиля, а также реактивную силу на рулевом колесе («чувство руля»). В общем случае не в лучшую сторону. Чтобы выправить ситуацию, конструкторам приходится поломать голову над подвеской, рулевым механизмом, распределением массы между осями (развесовкой) и т. п. Казалось бы, какое дело до этого покупателю автомобиля – не его проблемы. Но давайте не будем забывать, что в конечном счете все оплачиваем мы, потребители. В том числе и усилия разработчиков.

Пока читающие эти «лживые строки» поборники идеи полного привода не закипели от негодования, спешим сообщить, что правда есть и на их стороне. Если бы у полнопривод­ных трансмиссий не было достоинств, причем таких, которые перевешивают озвученные недостатки, кому пришло бы в голову применять их в конструкции серийных дорожных автомобилей? Что же дает полный привод «подорожным» автомобилям? Если не умничать, можно сказать, что полноприводная трансмиссия «дает» не автомобилю, а драйверу: она позволяет увереннее контролировать автомобиль. Подчеркнем – при движении в сложных дорожных условиях. Как следствие, улучшаются потребительские качества автомобиля и, главное, возрастает безопасность «ездоков». А за безопасность, сами понимаете, не жалко заплатить и довольно высокую цену.

Как полный привод улучшает контроль над автомобилем? Начнем с самого простого и понятного. У автомобиля с четырьмя ведущими колесами меньше вероятность попасть в «безвыходную ситуацию». Многим из личного опыта известно, что машина с одноосным приводом обездвиживается довольно просто – достаточно заехать одним ведущим колесом на скользкую поверхность. Крутящий момент на проскальзывающем колесе станет близким к нулевому, свободный дифференциал моментально обнулит момент и на другом колесе оси и – приехали. В подобных случаях преимущества на стороне автомобилей со всеми ведущими колесами. Конечно, если в конструкции полноприводной трансмиссии приняты меры для независимого распределения крутящего момента между колесами. Такие меры, как правило, применяются. Полноприводник с продвинутой трансмиссией сохраняет способность к передвижению до тех пор, пока хотя бы одно колесо имеет сцепление с дорогой.

Полноприводные автомобили испытывают меньше проблем при резком ускорении. А какие вообще тут могут быть проблемы? Да никаких, если автомобиль стартует на дороге с хорошими сцепными свойствами и тяговые характеристики его двигателя не избыточны. В противном случае крутящий момент, который способно передать колесо, будет ограничиваться не тягой двигателя, а сцепными свойствами колеса с покрытием. Если сила сцепления, зависящая от коэффициента трения и весовой нагрузки, будет превышена, начнется проскальзывание колеса. С увеличением скольжения коэффициент трения вначале растет, а затем начинает быстро уменьшаться и проскальзывание развивается. Ускорение со значительным скольжением колес (с пробуксовкой) выглядит эффект­но, но абсолютно не эффективно – шума, а то и дыма много, а толку мало. Не составит труда понять, что опасность пробуксовки у полноприводного автомобиля в общем случае вдвое меньше – крутящий момент двигателя распределяется между четырьмя, а не двумя колесами. По этой же причине полноприводный автомобиль позволит водителю чувствовать себя увереннее на горных дорогах, особенно в условиях скользкого покрытия. Он сможет преодолеть такие подъемы, на которых обычный автомобиль будет безнадежно буксовать. При движении под уклон полный привод «простит» водителю ошибки, которые в случае обычной трансмиссии могут вызвать опасное скольжение колес ведущего моста.

Это то, что касается случаев прямолинейного движения автомобиля. Если говорить о маневрировании, тем более с довольно высокими скоростями, у полноприводников и здесь есть преимущества и, что не менее важно, большой потенциал для наращивания своего превосходства. Управляемый полный привод с регулируемым распределением крутящего момента все чаще используется в качестве одной из систем активной безопасности. Пояснить это не умничая не получится. Придется вспомнить такие характеристики автомобиля, как управляемость, устойчивость, поворачиваемость, и оценить, как полный привод может их улучшить. Этим мы и сейчас и займемся.

Теория движения колесных машин (для краткости будем называть эту науку ТДКМ) утверждает, что прямолинейное движение – понятие условное. Автомобили большую часть времени движутся криволинейно: изменяют траекторию под действием боковых сил, перестраиваются, объезжают препятствия, поворачивают. Собственно поворотом принято называть такое криволинейное движение, которое совершается по желанию водителя и при его содействии. Каждому водителю из личного опыта известно, что желание выполнить поворот на высокой скорости может привести к буквально катастрофическим последствиям. К каким и почему? Вот как отвечает на эти вопросы теория.

Погружение в теорию

ТДКМ – штука довольно сложная для восприятия. Поэтому погружаться в нее будем с осторожностью и лишь настолько, чтобы в принципе разобраться, в чем может быть польза полноприводной трансмиссии при скоростном маневрировании. Согласно теории предельными случаями потери устойчивости автомобиля являются неконтролируемое боковое скольжение (занос) одной или нескольких осей и опрокидывание. Первый из них наиболее распространенный. Так что будем искать условие возникновения заноса оси при прохождении поворота.

При повороте автомобиля с высокой скоростью главным «возмутителем спокойствия» является центробежная сила (ЦС):

Fцб = mаV2/rп ,

где mа – масса автомобиля; V – скорость; rп – радиус траектории поворота.

По направлению действия ЦС является боковой (или поперечной) силой. Ее равнодействующая считается приложенной в центре масс автомобиля. Поскольку ЦС имеет инерционный характер, она «делится» между колесами в соответствии с распределением массы по автомобилю (его развесовкой). Чем ближе к оси расположен центр масс, тем большая часть ЦС приходится на ось и, в свою очередь, на каждое ее колесо. Таким образом, каждое колесо автомобиля в повороте нагружается боковой силой.

Не будь никакого механизма противодействия боковым силам, колеса (а вместе с ними и автомобиль) бесконтрольно смещались бы на внешнюю часть траектории. Что удерживает их от перемещения? Логика и знание основ физики подсказывают: «тут не обходится без сил сцепления колеса с дорогой». Действительно, они имеют место быть. Но ограничиться такой фразой значило бы профанировать науку о движении автомобилей – она не отражает всей сложности процессов в контактной зоне колеса, описанию которых посвящена примерно треть увесистого «талмуда» ТДКМ. Поэтому позволим себе еще несколько фраз.

Согласно ТДКМ, как только на катящееся эластичное колесо действует любая поперечная сила (центробежная, сила ветра и т. д.), возникает его боковой увод. Вектор скорости колеса отклоняется от плоскости вращения в направлении действия боковой силы. Иными словами, колесо движется под углом к плоскости вращения, который называют углом увода. В результате движения колеса с уводом в пятне контакта возникает так называемая боковая реакция (Ry), которая уравновешивает ЦС и препятствует скольжению колеса. Механизм ее формирования объясняется так. Боковая сила смещает колесо в поперечном направлении, в то время как часть шины в районе опорной площадки остается на месте за счет сцепления. В результате происходит сложная боковая деформация шины, изменяются форма и ориентация пятна контакта. В зоне деформации возникают поперечные касательные напряжения, которые в сумме и составляют боковую реакцию колеса. Она действует на колесо со стороны дороги. «По Ньютону» боковая реакция равна по величине боковой силе и направлена противоположно ей. Соответственно, сумма боковых реакций всех колес равна равнодействующей ЦС.

Явление бокового увода важно как минимум по двум причинам. Во-первых, уводом определяется способность колеса воспринимать боковую нагрузку. Эта способность появляется только тогда, когда колесо катится под углом к направлению движения. Во-вторых, установившиеся под действием боковой силы углы увода колес в конечном счете определяют кинематику движения автомобиля при маневрировании. В реальных условиях они могут достигать величины порядка 10°, что соизмеримо с углом поворота управляемых колес. Не случайно соотношение углов увода колес передней и задней оси характеризует поворачиваемость автомобиля. Колеса могут одновременно двигаться с разными углами увода, что создает сложную для анализа картину. Для ее упрощения рассматривают «велосипедную» схему. Пару колес одной оси представляют в виде одного колеса, расположенного на оси симметрии автомобиля, а угол его увода принимают равным среднему значению.

Определим граничные условия устойчивого движения автомобиля в интересующем нас случае скоростного поворота в свете концепции бокового увода. По мере роста боковой силы (ЦС) углы увода колес автомобиля возрастают. В свою очередь, это приводит к увеличению боковых реакций. В то время как для роста боковой силы теоретически нет предела, боковая реакция небеспредельна. Это видно из кривой зависимости боковой реакции от угла увода (график 1). На ней можно выделить три характерных участка. Участок 0b соответствует повороту с умеренной скоростью (или небольшой кривизной траектории), когда центробежные силы невелики. В этом случае боковая реакция и угол увода связаны прямо пропорциональной зависимостью:

Ry = kyδ.

Здесь Ry – боковая реакция, δ – угол увода, ky – коэффициент сопротивления боковому уводу шины.

Коэффициент сопротивления боковому уводу – важная характеристика шины, зависящая от большого количества ее технических и эксплуатационных параметров: конструкции, геометрии профиля, внутреннего давления, весовой нагрузки на колесо и др. Численно коэффициент равен тангенсу угла наклона отрезка 0b к оси абсцисс. Чем он выше, тем большую боковую реакцию способна генерировать шина при данном угле увода и тем большую боковую силу она может воспринимать. Увеличению коэффициента сопротивления боковому уводу способствуют, например, такие меры, как использование широких, низкопрофильных шин, повышение давления в шине и прижимной силы.

Когда углы увода становятся больше 2–4°, в пятне контакта начинается частичное проскальзывание участков шины и рост боковой реакции замедляется (участок bс). При дальнейшем увеличении угла увода (т.е. боковой силы) проскальзывание растет. В точке с боковая реакция достигает критического значения и начинается полное скольжение контактной зоны колеса в боковом направлении (участок сd). Максимальная боковая реакция колеса определяется силой его сцепления с дорогой:

Ry max = φуRz,

где φу – коэффициент сцепления в поперечном направлении (по сути – коэффициент трения скольжения), в наибольшей степени зависящий от свойств шины и состояния дорожного покрытия;

Rz – вертикальная реакция, равная весовой нагрузке на колесо.

Отсюда можно выразить условие возникновения заноса оси автомобиля:

Ryo ≥ φуRzo,

где Ryo и Rzo – боковая и вертикальная реакции, действующие на пару колес оси.

Видно, что с уменьшением нагрузки на ось опасность ее заноса увеличивается. Нужно отметить, что занос одной из осей не всегда означает потерю устойчивости всего автомобиля. Он наиболее опасен, если возникающая в результате заноса оси сила инерции суммируется с ЦС. В этом случае неустойчивость развивается лавинообразно. Такая картина наблюдается при скольжении задней оси, в то время как занос передней оси гасится автоматически.

Ближе к теме

Если все сказанное до сих пор понятно, остается непонятным одно – какое отношение к этому имеет схема трансмиссии автомобиля. Действительно, полученное нами условие заноса оси не содержит величин, непосредственно зависящих от типа привода. Разве что вертикальная реакция оси Rz0, которая определяется развесовкой автомобиля. По идее, наиболее склонными к потере устойчивости под действием ЦС должны быть переднеприводные автомобили с их наименее нагруженной задней осью. И наоборот, задне- и полноприводные машины с их более равномерной развесовкой должны демонстрировать лучшую устойчивость. Но, во‑первых, развесовка не всегда строго определяется типом привода. Во-вторых, она изменяется с загрузкой автомобиля. В-третьих, мы судим об устойчивости автомобиля в условиях действия только боковой силы. А это всего лишь частный случай динамичного маневра, соответствующий повороту с отпущенной педалью газа.

В повороте автомобиль испытывает значительно большее сопротивление движению, чем при езде по прямой. Если не принять контрмер, скорость автомобиля на вираже быстро падает. Причем падение тем больше, чем выше начальная скорость и меньше радиус траектории. Техника прохождения поворотов с потерей скорости устроит разве что чайника. Настоящие драйверы, поклонники героев сериала «Двойной форсаж», не смирятся с этим и обязательно «прибавят газу». Проанализируем, каковы возможные последствия с точки зрения ТДКМ.

С ростом угла увода боковая реакцк увеличивается. Ее предельное значение определяется силой сцепления: k y – коэффициент сопротивления уводу; 1 – продольные реакции отсутствуют; 2 – в условиях действия тяговых (тормозных) сил

Прибавить газу – значит передать на колеса ведущей оси крутящий момент. При этом в зонах контакта колес с дорогой возникают продольные реакции – силы тяги. В этом случае ведущее колесо будет испытывать действие результирующей силы, которая равна геометрической сумме боковой и продольной реакций:

RΣ = √Ry2 Rx2.

Соответственно, изменится условие возникновения заноса оси:

√Ry0 + Rx02 ≥ φRz0 ,

где Rx0 – суммарная продольная реакция колес ведущей оси;

φ – коэффициент сцепления в направлении действия RΣ.

Анализ этого соотношения показывает, что продольные реакции увеличивают опасность заноса. Даже если прибавка газа не привела к увеличению центробежной силы! Любопытно, что условие выполняется независимо от «знака» реакции. Что сила тяги, что сила торможения – эффект одинаков. Мало того, что выросла левая часть соотношения, так еще и правая уменьшилась. Коэффициент сцепления φ оказывается меньше φу. Понять это проще, если принять полную силу сцепления шины с дорогой за константу. Чем большая часть сцепления используется для передачи продольных реакций, тем меньшая остается для реакций боковых. И наоборот. Получается, что с увеличением крутящего момента ведущие колеса приближаются к пределу по сцеплению в поперечном направлении.

Теория бокового увода дает этому факту более наукообразное объяснение. Если взглянуть на зависимость коэффициента сопротивления боковому уводу от продольной реакции (график 2), видно, что она имеет симметричный эллиптический характер. С увеличением продольной силы коэффициент сопротивления боковому уводу уменьшается (углы увода растут). Происходит это тем быстрее, чем ближе сила к своему максимальному значению, определяемому сцеплением в продольном направлении. Когда тяговые или тормозные силы достигают предела, возникает соответственно пробуксовка или блокировка колеса. В этот момент ky становится равным нулю, т. е. колесо полностью теряет способность воспринимать боковую нагрузку.

Здесь напрашивается первый серьезный аргумент в пользу полного привода. Ведь если крутящий момент передать не на одну ось, а перераспределить его между двумя осями, у каждой останется больший «запас» для передачи боковых сил. Это означает, что можно пройти поворот с большей скоростью без опасности срыва автомобиля в занос. Данное преимущество наиболее ощутимо на скользкой дороге, когда легко «переборщить» с газом, получить пробуксовку колес и, как результат, неуправляемую ось. Справедливости ради нужно сказать, что этот аргумент не самый неотразимый. Его «отражают» переднеприводные автомобили, у которых наиболее «опасная» задняя ось вообще не передает тяговых сил, да и тормозит менее эффективно. По этой причине они считаются самыми устойчивыми к заносу в условиях действия продольных сил. Машины же с симметричным полным приводом с этой точки зрения занимают промежуточное положение между передне- и заднеприводными. Вот если полный привод несимметричный, то, как говорится, возможны варианты. А если распределением крутящего момента между осями и отдельными колесами оперативно управлять, то открываются заманчивые перспективы для оптимизации устойчивости автомобиля в повороте.

Как упоминалось, соотношение углов увода задней и передней осей является одной из характеристик поворачиваемости. Поворачиваемость изначально зависит от распределения массы по осям автомобиля (чем задаются величины вертикальных нагрузок и боковых инерциальных сил) и коэффициентов сопротивления боковому уводу шин. Исходя из развесовки переднеприводные автомобили считают склонными к недостаточной поворачиваемости, заднеприводные – к избыточной, а машины с полным приводом – к нейтральной. Конечно, если в их конструкции не предусмот­рено специальных мер для изменения этой ситуации. Таковыми могут быть, например, оптимизация компоновки или характеристик подвески.

Принимая в расчет влияние продольных реакций на углы увода колес, нетрудно понять, что при маневрировании в тяговом режиме поворачиваемость автомобиля может изменяться. С ростом тяговых реакций углы увода ведущих колес растут. При этом у переднеприводных автомобилей увеличивается тенденция к недостаточной поворачиваемости, а у заднеприводных – к избыточной. Поворачиваемость автомобилей с симметричным полным приводом не меняется. Хорошо это или не очень – вопрос неоднозначный. Многие идеалом считают недостаточную поворачиваемость на входе в поворот, нейтральную – в его средней части и избыточную – на выходе. Но не в этом соль. Соль опять же в том, что, используя в конструкции полноприводного автомобиля трансмиссию с несимметричным распределением крутящего момента между осями, можно придать автомобилю желаемую управляемость в тяговом режиме. Более того, можно сделать трансмиссию регулируемой, чтобы оптимизировать поведение автомобиля на разных режимах движения и даже на разных фазах поворота.

Еще активнее воздействовать на поворачиваемость автомобиля можно с помощью полностью управляемой трансмиссии, которая также позволяет перераспределять крутящий момент между колесами каждой оси. Об этом мы поговорим в следующий раз.

  • Сергей Самохин
  • Евгений Тимофеев

трансмиссия

Системы полного привода: какие бывают и каких проблем ждать от каждой из них

Для большинства полный привод — это когда ведущими являются все четыре колеса. Однако, копнув чуть глубже, мы обнаружим, что, даже если на машине стоит шильдик AWD, это не значит, что момент от двигателя поступает на обе оси. Разобраться с тем, что сегодня представляют собой полноприводные системы и какие технические проблемы за собой тянут, мы решили вместе с техническими специалистами сервисного центра «Дилижанс», специализирующегося на ремонте автомобилей концерна VAG.

На сегодняшний день в гражданском автомобилестроении существует два основных вида полного привода: подключаемый полный (Part-time) и постоянный полный (Full-time). В условные подвиды можно выделить электронно-управляемый полный привод (On-demand) и многофункциональный полный привод, который у разных марок, как правило, носит собственное название.

Подключаемый полный привод

В данной системе автомобиль по умолчанию едет в моноприводном режиме. В случае если появляется необходимость во всех ведущих колесах, вторая ось подключаются либо по желанию водителя, либо по сигналу электроники. Причем в первом варианте система принципиально различается по своему конструктивному устройству.

Жестко подключаемый, или полный привод Part-time

Этот тип привода считается самым простым и надежным, так как не имеет никаких сложных систем, которые должны отвечать за автоматическое распределение тяги по осям. По умолчанию крутящий момент передается только на одну ось, вторая ось включается только по необходимости с помощью раздаточной коробки с кулачковой муфтой. При включении «раздатки» обе оси жестко соединяются между собой, обеспечивая постоянное симметричное распределение крутящего момента.

Несмотря на конструктивную простоту, система имеет значимую особенность: невозможность ездить в режиме полного привода постоянно, а также на высоких скоростях и по ровным сухим поверхностям. Вернее, ездить-то можно, только с огромной вероятностью повредить систему полного привода.

Дело в том, что при повороте каждое из четырех колес вращается с разной скоростью и проходит свою траекторию поворота. Между осями нет никаких систем, компенсирующих разность этих скоростей, а потому вся нагрузка ложится на «раздатку», которая со временем и выходит из строя. Проще говоря, подключать вторую ось необходимо только для увеличения проходимости автомобиля на покрытиях, допускающих проскальзывание колес, таких как грязь, песок, снег, лед или в крайнем случае сильный дождь.

Проблемы

Что же касается технических проблем, то основной причиной выхода из строя раздаточной коробки как раз является пренебрежение правилами использования полного привода. Например, «раздатка» регулярно ломается на автомобилях Suzuki Jimny в силу того, что основными потребителями этого автомобиля являются представительницы прекрасной половины человечества, не особо разбирающиеся в конструктивных нюансах системы Part-time.

Если жесткое включение происходит не старым добрым рычагом, а с помощью электропривода, то система может не включиться. Происходит это чаще всего на стоящей машине, потому что зубья валов не попадают в зацеп и электроника дает отбой. Неисправностью это не является и исправляется просто накатом, чтобы в момент движения зацеп все же произошел.

Очень часто автомобили с системой Part-time являются объектами серьезного внедорожного тюнинга, а следовательно, и жесточайших нагрузок. Так что развалившиеся межколесные дифференциалы, оборванная цепь переднего вала и менянные главные передачи — не редкость на подобных авто. Однако в большинстве случаев узел настолько прост и надежен, что может вызвать вопросы лишь в случае огромных пробегов или халатного отношения владельца, например к замене масла.

К автомобилям с системой Parttime относится большинство современных пикапов и серьезных внедорожников: «УАЗ Патриот», Toyota Hilux, Foton Sauvana и даже Suzuki Jimny. Как правило, большинство автомобилей с подобной системой имеют в «раздатке» дополнительно понижающий редуктор, а также заднюю межколесную блокировку — штатно или в качестве опции

Автоматически подключаемый или полный привод On-demand

Самый массовый тип полного привода, в основе которого — многодисковая муфта, способная перебрасывать момент от основной ведущей оси к вспомогательной. Серьезным оружием на бездорожье такой тип привода не является (хотя есть исключения) и служит в большей степени как дополнительная система для более уверенного движения по неровностям и более эффективного распределения крутящего момента по колесам в зависимости от типа поверхности.

По умолчанию система On-demand функционирует в моноприводном режиме. Как только электроника получает сигнал о пробуксовке ведущих колес, с помощью электронно-управляемой многодисковой муфты момент подается на вторую ось. Дополнительно с помощью вспомогательных электронных систем может регулироваться и момент на каждом колесе.

Конструктивно система работает по принципу сцепления: внутри муфты находятся диски, которые при поступлении сигнала с датчиков механически прижимаются друг к другу, передавая момент на ведомую ось. Системы у разных марок отличаются в основном принципом прижимания этих дисков и «навороченностью» электронных «мозгов» привода, которая выражается в быстродействии или наличии различных ручных режимов включения. Простые системы, опираются, например, на информацию от датчиков ABS и ESP, а премиум-кроссоверы умеют отслеживать уже такие показатели, как угол поворота руля, крен кузова и т. д.

 

Проблемы

Учитывая, что принцип работы фрикционной муфты основан на трении, главной проблемой системы On-demand является перегрев, при котором система выдает ошибку и отключает ведомую ось. В большинстве случаев он возникает при длительных пробуксовках, например при попытке покорить какое-либо бездорожье, причем иногда даже самое безобидное. Как правило, остыв, муфта вновь становится работоспособной. Регулярное повторение подобного приводит к замене пакета фрикционов.

Еще одной распространенной проблемой является выход из строя подшипника корпуса муфты, признаками износа которого является шум, вой или вибрации. Само собой, состояние и уровень масла в муфте также сильно влияет на работоспособность привода. Исправность датчиков, с которых «мозги» муфты получают информацию, напрямую влияет на включение полного привода. Также часто можно столкнуться с неисправностью приводного механизма, сжимающего диски.

В целом можно сказать, что, хотя система On-demand отлично изучена и хорошо известна механикам, в ремонте она достаточно капризна и дорога. Радует то, что большая часть проблем фрикционной муфты связана с ее жесткой эксплуатацией, то есть когда городские кроссоверы начинают использовать как внедорожники. Если же полный привод используется время от времени в легком режиме, система почти не доставляет проблем.

К автомобилям с системой Ondemand относится большинство современных кроссоверов: Nissan XTrail, Kia Sportage, Mitsubishi Outlander. Однако встречаются и различные интересные исключения. Например, Renault Duster получил в пару к обычной муфте имитацию понижающей передачи, а Nissan Juke вообще имеет систему из двух независимых муфт на каждом из задних колес

Полный привод на основе муфты Haldex

Хотя система конструктивно является разновидностью подключаемого привода On-demand, она заслуживает отдельного упоминания, так как представляет собой нечто среднее между подключаемым и постоянным полным приводом.

В основе конструкции все та же многодисковая фрикционная муфта, управляемая посредством электрогидравлики. Фишка в том, что электроника запрограммирована даже на сухой ровной дороге часть момента передавать на заднюю ось, в результате чего автомобили с муфтой Haldex получаются с постоянным приводом. А отключается ось, например, при равномерном прямолинейном движении (например, на трассе) для экономии топлива.

 

Устройство муфты Haldex

Проблемы

На текущий момент муфта Haldex существует уже в пятом поколении. Проблемы с ней ровно те же, что и с обычными фрикционными муфтами, описанными выше. Особенности исключительно конструктивные: расположена муфта прямо в корпусе задней главной передачи, вместе с насосом и блоком управления. Учитывая, что первые версии Haldex скоро отметят двадцатилетие, у многих машин уже начинают отгнивать крышки электронного блока. Внимательно нужно относиться к замене масла, которая предполагает сокращенные интервалы: каждые 60 тыс. км.

Муфты Haldex используются такими марками, как Volvo, Land Rover, Ford, концерн VAG и многие другие 

Постоянный полный привод

Автомобили с такой системой полного привода всегда передают крутящий момент на все четыре колеса, что понятно из англоязычного названия Full-time. В своей основе система оснащена межосевым дифференциалом, который имеет несколько конструктивных вариантов: симметричный и несимметричный, блокируемый и неблокируемый. Блокировка, в свою очередь, может выполняться в автоматическом или ручном режиме. Все это зависит от того, для каких целей создается полный привод. Чаще всего используется самоблокируемый дифференциал, который также может быть выполнен на основе одной из трех систем: вязкостной или фрикционной муфты и с блокировкой типа Torsen.

Если в двух словах, то система Full-time и конструктивно, и функционально совмещает в себе принцип работы систем Part-time и On-demand. Дифференциал напрямую передает крутящий момент от одной оси к другой, а установленная с ним в одном корпусе муфта в зависимости от степени блокировки может перераспределять этот момент исходя из условий. Навороченные системы с двумя приводными валами, наподобие трансмиссии SuperSelect от Mitsubishi, умеют дополнительно «отстегивать» одну ось, превращаясь в отключаемый полный привод.

Дифференциал Torsen

Отдельно стоит упомянуть трансмиссию на основе дифференциала Torsen, который становится все популярнее. У него вместо муфт используется три пары червячных шестерней, которые осуществляют перераспределение момента. В свободном состоянии распределение тяги по осям равное, как только скорости вращения колес начинают отличаться, вращение шестерней заставляет частично блокироваться выходные валы, передавая момент на колесо с лучшим зацепом.

В зависимости от задач автомобили с подобными системами также дополнительно комплектуются задним (и иногда передним) блокируемым межколесным дифференциалом, понижающим редуктором и даже дополнительной муфтой. Комбинации могут быть совершенно разными в зависимости от задач — внедорожных, спортивных или экономящих топливо. Например, трансмиссия от Audi на легковых моделях и кроссоверах — quattro ultra — имеет многодисковую межосевую муфту и дополнительно дифференциал с кулачковой муфтой в приводе задней оси, также способной к полному отключению.

Система Quattro Ultra Full-Time (слева) и планетарный редуктор Mercedes-Benz (справа)

Проблемы

Как ни трудно догадаться, из-за невероятной сложности отдельных конструкций любая неисправность систем постоянного полного привода грозит непростым и недешевым ремонтом.

Системы на основе вязкостных и фрикционных муфт, как и в случае с системами On-demand, склонны к перегреву. Не избежал этой участи и дифференциал Torsen, шестерни которого также сильно нагреваются и требуют для охлаждения специального графитового масла.

Кроме того, на автомобилях Audi, например, дифференциал находится в блоке коробки передач DSG, так что любая проблема с «роботом» автоматически ведет к разбору и этого механизма. На сложных системах с отдельным передним валом прибавляйте встречающиеся проблемы привода — его включения/отключения либо датчика работы.

Соответственно, всевозможные датчики и управляющие электронные блоки при сбое и трансмиссию выводят из правильного режима работы. То же самое касается работы коробки передач, функционирование которой напрямую влияет на работу полного привода. Люфты карданов и вой редукторов — частая болезнь серьезных внедорожников.

Устройство дифференциала на спортивных полноприводных моделях Audi

К автомобилям с системой Fulltime относится большинство современных премиум-моделей, дорогих или просто серьезных внедорожников, а также отдельных версий пикапов: Mitsubishi Pajero, Toyota LC, VW Touareg, Land Rover Discovery

Каков итог?

Как ни крути, ни одной универсальной системы полного привода, подходящей на все случаи жизни, до сих пор не создано. Ее выбор зависит исключительно от поставленных задач и приоритетов. Внедорожные вылазки ограничиваются не чищенной грунтовкой на дачу? Вам за глаза хватит системы On-demand. Мечтаете покорять Эверест, пробиваться сквозь тундру и нырять в болота? Вам нужна система Part-time, способная выдержать многое вдали от цивилизации. Но придется пожертвовать ездовым комфортом и получить навыки уверенного вождения на заднем приводе. Хочется, чтобы было и то и другое? Тогда вам необходима система Full-time, однако стоить она будет как сама по себе, так и в ремонте немалых денег.

Редакция журнала «Движок» выражает благодарность сервисному центру «Дилижанс» за помощь в подготовке материала.

лучших гоночных рулей для игр PS5 и PS4 — GT7 и не только

Почувствуйте еще большую связь с дорогами с помощью специального контроллера гоночного руля от лицензированных партнеров PlayStation.

Фанатек

Gran Turismo DD Pro

Официальный руль с прямым приводом для Gran Turismo®, сочетающий производительность консоли PlayStation 5 с технологией FANATEC® Direct Drive для детальной и отзывчивой обратной связи.

Уникальный руль, разработанный в сотрудничестве с Polyphony Digital, включает в себя четыре джойстика направления для использования в Gran Turismo®. Этот готовый к гонке комплект включает в себя все необходимое для начала: рулевое колесо, колесную базу, педали и зажим для стола. Компактный двигатель имеет максимальный крутящий момент 5 Нм, который можно увеличить до 8 Нм с помощью Boost Kit 180 (продается отдельно).

Узнать больше

Гоночный руль Podium F1®

Наиболее реалистичная система силовой обратной связи для PlayStation, технология прямого привода FANATEC® класса Podium использует двигатель промышленной мощности, разработанный специально для гоночных симуляторов. С максимальным крутящим моментом 20 Нм его широкий динамический диапазон обеспечивает невероятно реалистичную силовую обратную связь. Прилагаемое рулевое колесо F1® оснащено огромным набором входов, включая тумблеры, энкодеры и магнитную систему переключения передач с функцией двойного аналогового сцепления.

Узнать больше

Получите больше впечатлений от Gran Turismo® 7 с помощью гоночного руля

Испытайте свои навыки вождения в новой части знаменитой гоночной серии, которая уже вышла на PS4 и PS5.

Узнать больше

Thrustmaster

T-GT II

Гоночный руль T-GT II — это средоточие чрезвычайно инновационных технологий, созданных в результате глубокого изучения всех необходимых ощущений, необходимых для ультрареалистичных автомобильных гонок. Наслаждайтесь совершенно новыми уровнями точности и долговечности.

Официально лицензированный как для PlayStation 5, так и для Gran Turismo, гоночный руль T-GT II обеспечивает ключевые преимущества и реалистичные ощущения в GT Sport благодаря новаторским технологиям, включая T-DFB (трехмерное восприятие эффектов силовой обратной связи).

Узнать больше

T300RS GT Edition

Гоночный руль Thrustmaster T300RS GT Force Feedback позволяет геймерам оттачивать свои навыки и повышать производительность благодаря быстрой, мощной и чрезвычайно плавной системе с двумя ремнями, готовой для экосистемы Thrustmaster.

Технология бесщеточного двигателя T300RS GT Edition обеспечивает чрезвычайно тихую гонку, а выносливость бесщеточного двигателя позволяет гоночному рулю поддерживать постоянную интенсивность и мощность с точки зрения силовой обратной связи, избегая потери ощущений даже во время очень длительных игровых сессий.

Узнать больше

T248

Разработанный для всех геймеров, T248 представляет собой гоночный руль с упором на производительность и погружение в игру для тех, кто хочет улучшить свои навыки.

Официально лицензированная для PlayStation 5 и PlayStation 4 и совместимая с ПК, T248 имеет три типа обратной связи Hybrid Force Feedback (включая предустановки), совместима со всеми играми и может быть изменена на лету прямо на руле через дисплей:

  • FFB 1: Силовая обратная связь на 100% пропорциональна силе, запрошенной игрой.
  • FFB 2: улучшенная обратная связь по усилию для лучшего контроля заноса.
  • FFB 3: усиленная силовая обратная связь, позволяющая пользователям отчетливо ощущать все гоночные эффекты на трассе, такие как бордюры, занос вне трассы и многое другое.

Узнать больше

Логитек

G923

Технология нового поколения TRUEFORCE в G923 подключается к игровым движкам для обеспечения обратной связи в высоком разрешении. Испытайте непревзойденные впечатления от вождения с обработкой управления двигателем со скоростью 4000 раз в секунду. Выходите на старт чище и быстрее благодаря программируемому двойному сцеплению, которое имитирует помощь при трогании с места в реальном гоночном автомобиле.

Точная настройка скорости с помощью встроенного в G923 светодиодного индикатора оборотов, встроенных элементов управления игрой, 24-позиционного переключателя и прогрессивной тормозной пружины. Кроме того, обновленный дизайн Logitech G Gear включает в себя высококачественные материалы, такие как прошитый вручную черный кожаный чехол для руля и полированные металлические педали.

Узнать больше

G29

Driving Force модели G29 имитирует ощущение вождения настоящего автомобиля благодаря точному рулевому управлению и чувствительным к давлению педалями, а встроенный в руль светодиодный индикатор оборотов, встроенные игровые элементы управления и 24-позиционный селектор позволяют гонщикам точно настраивать свои скорость.

Чувствительная к давлению нелинейная педаль тормоза обеспечивает отзывчивое и точное ощущение торможения на прочной основе с регулируемыми поверхностями педали для более точного управления. Вращение Drive Force от упора до упора означает, что вы можете повернуть руль два с половиной раза, передавая руку на широких поворотах в течение 900-градусный поворот — как у настоящей гоночной машины.

Узнать больше

Типы колес машиниста паровоза

Ведущие колеса паровоза

Как и любой другой компонент паровоза, конструкция ведущих колес
изменился за эти годы в результате достижений в области технологий. Очевидно,
Основное назначение ведущих колес паровоза — поддерживать
веса локомотива и передают линейную силу от поршней к
сила вращения, приложенная к рельсам. Однако существует множество других
важные аспекты ведущих колес паровоза, которые могут не
сразу видно. Например:

  • Приводы должны включать противовес, чтобы компенсировать вес боковых тяг.
  • Диаметр приводов влияет на максимальную скорость и тяговое усилие локомотива. Диаметр привода используется в уравнении для тягового усилия.
  • Водители состоят из «колеса» и «шины». Внутреннее колесо было отлито из стали, а внешняя шина изнашивается и должна периодически заменяться.
  • Большинство драйверов имеют фланцы. Некоторые драйверы, называемые «слепыми», этого не делают. Слепые машинисты могут использоваться на локомотивах с очень длинной жесткой колесной базой.
  • Водитель испытывает огромное количество как скручивающей, так и поперечной силы. Если в приводе появлялись трещины, обычно это был основной привод, к которому крепились штоки поршня.

Почти с самого начала паровозов водители были брошены
со сплошными спицами, соединяющими внутреннюю втулку с внешним ободом. «шина» из
более прочная сталь была нагрета и запрессована на внешний обод колеса.

Ближе к концу пара, новые технологии были использованы для создания внутреннего
часть ведущих колес. Основные причины смены технологии
заключались в усилении водителя и обеспечении лучшего уравновешивания
основные стержни. Обе эти проблемы были решены с помощью «драйверов дисков».
спицованных драйверов. Было четыре типа дисковых ведущих колес для пара.
локомотивы. Каждый из них был сделан другой компанией, и каждый немного отличался от
остальные по внешнему виду. Четыре типа были:

  • Драйверы дисков Boxpok
    • Изготовлено General Steel Castings of Granite City, IL
    • Номера патентов US1960039 и US2042160
  • Дисководы Scullin
    • Изготовлено Scullin Steel из Сент-Луиса, Миссури
    • Номер патента US2177693
  • Драйверы дисков Baldwin
    • Изготовлено Baldwin of Eddystone, PA
    • Номера патентов US2065217 и US2065217
  • Универсальные драйверы дисков
    • Изготовлено LFM (Locomotive Furnished Metals)

Как ни странно, так как локомотивы были куплены и их колеса были заменены на дисковые.
водителей, новые дисковые колеса не всегда применялись на всех
колеса локомотива одновременно. Фотограф по имени Эйленбергер
записан локомотив Grand Trunk Western № 6039 (гора) в Элсдоне.
машинный терминал в марте 1939 г. с водителями бокспока только на втором водителе
оси, а 21.09.1941, у него были драйверы boxpok по крайней мере на
вторая и третья оси (и, возможно, первая, которая затемнена на
фото), но не на четвертом.

Смешанные фотографии водителя
  • BM 4-6-2 Pacific 3659 (спицы на оси 1 и 3, Boxpok на оси 2)
  • CB&Q 4-6-4 Hudson 4000 (спицы на оси 1 и 3, Boxpok на оси 2)
  • CMStP&P 4-6-4 Hudson 126 (спицевый на оси 1 и 3, универсальный на оси 2)

Драйвер C&O 1601. Фото Уэса Барриса, 2018 г.

Традиционные водители паровозов были отлиты в виде колеса со спицами. Этот
конструкция была прочной и функциональной. Для компенсации был добавлен противовес
для веса шатунов и основных шатунов. Как вы можете видеть на фото,
большие, тяжелые стержни требовали большого противовеса. Эта конструкция успешно
служил своей цели на протяжении большей части паровой эры.

Фотографии
  • BM 4-6-2 Pacific 3649
  • CMStP&P 4-6-4 Хадсон 125

Дисковый привод Boxpok Type A (центральная ось).

Драйвер диска Boxpok Type B на UP 4014. Фото Уэса Барриса.

Слово «Бокспок» на самом деле является сокращенным сочетанием двух слов: «Бокс» и
«Spoke» или «Box-Spoke» — фирменное название General Steel.
Дизайн отливок. Однако я не уверен, что слова «коробка» или «спица» когда-либо существовали.
на самом деле используется для описания драйвера «Boxpok». У водителя этого типа было меньше
«спицы», чем обычные колеса локомотива, и были построены из
коробчатые секции. Оказалось, что конструкция значительно улучшила боковые
прочность и жесткость обода. Если смотреть сбоку, то отверстие между
спицы были яйцевидными, а не клиновидными. Быть пустым стало легче
применить уравновешивание. Помимо яйцевидных отверстий, внешняя поверхность
был гладким, без выступов или приподнятых краев.

У более ранних колес Boxpok Type-A было меньше отверстий большего размера.
позже у колес Type-B Boxpok было больше отверстий меньшего размера.

Драйверы boxpok оказались важной модификацией в высокоскоростном обслуживании.
Многие железные дороги использовали приводы дисков Boxpok в 1930-х и 1940-х годах.
включая Union Pacific на их Big Boys.

Фотографии
  • Устройство поперечного баланса Отто Ябельмана (фото American Locomotive Company, коллекция Джона Буша)
  • АТ&СФ 2912 показаны балансирующие грузы (фото Криса Мэя на Flickr)
  • AT&SF 3751 с грузами для поперечной балансировки (фото Алекса Гиллмана в архиве изображений RR)
  • CB&Q 4-6-4 Хадсон 4001
  • AT&SF 4-8-4 Северный 3759
  • AT&SF 4-8-4 Northern 2912 (обратите внимание на драйверы Boxpok на оси 1-3 и водителя Baldwin на оси 4)
  • AT&SF 4-8-4 Северный 2925
  • CB&Q 4-8-4 Северный 5614
  • CB&Q 4-8-4 Северный 5626
  • Нью-Йорк 4-8-4 Ниагара 6000
  • Нью-Йорк 4-8-4 Ниагара 6000
  • УП 4-8-4 Северный 806
  • Драйвер Boxpok (Фото Дидье Дюфореста)

Драйвер диска Скаллина

Дисковые драйверы Scullin были представлены в 1932 году, что предшествовало Boxpok.
дизайн. Драйверы Scullin были легче, чем драйверы Boxpok, и поэтому
на трассе легче. Они имели гораздо меньшую массу, чем традиционные
отливки со спицами и ободом. Их легко узнать по маленькому круглому
отверстия. В них также было меньше отверстий, чем в традиционных дисководах Boxpok.
Они использовались в основном на обтекаемых Hudsons в Нью-Йорке.

  • Обтекаемый NYC Hudsons
  • Один класс SLSF Mountains 4300 и половина 4400, 1522?
  • Один класс гор Нью-Йорка
Фотографии
  • Дисковые драйверы Scullin
  • Нью-Йорк Обтекаемый 4-6-4 Гудзон 5429
  • Нью-Йорк Обтекаемый 4-6-4 Гудзон 5450
  • Нью-Йорк Обтекаемый 4-6-4 Гудзон 5450

Универсальный дисковый драйвер, AT&SF 3415. Фото Джона Буша.

Дисководы универсального типа были редкостью. Если бы эта конструкция использовалась, это было бы
когда локомотив был перестроен. Универсальный дисковод был больше, больше
отверстия треугольной формы, чем у дисководов других типов.

Back to top