Навигация жпс


Обзор GPS-навигаторов

23.04.2016 / 1619

С появлением новых технологий для прокладывания маршрутов и ориентирования на местности традиционная бумажная карта и компас используются все реже, ведь на смену им пришло высокоточное электронное устройство – навигатор, позволяющий определить свое местоположение с точностью до нескольких метров. Воспользоваться им может каждый - от пользователя не требуется никаких особых навыков, при этом не имеет значения, где находится объект: в мегаполисе, горах или лесу.

GPS-навигатор является электронным прибором, оснащенным специальным модулем для приема сигналов со спутников от глобальной системы позиционирования NAVSTAR, с помощью которых он определяет свое текущее местоположение на Земле. В мире существует две системы спутниковой навигации: GPS (Global Positioning System), являющаяся разработкой Министерства обороны США и находящаяся под его управлением, и российский аналог ГЛОНАСС. В зависимости от предназначения GPS-навигаторы бывают геодезические, морские, авиационные, автомобильные, портативные и имеют различное техническое исполнение.

Устройство GPS-навигатора

Аппаратная часть GPS-навигатора включает плато с процессором, антенну, дисплей, память, источник питания. Программное обеспечение состоит из операционной системы, программной оболочки, BIOS, навигационных программ и дополнительных приложений.

Карты в GPS-навигаторах

Основой любого навигатора служат карты, поскольку с помощью спутников система может лишь определить координаты объекта, но только с помощью карт на экране воссоздается графическая версия, позволяющая ориентироваться на местности. Карты в GPS-навигатор загружаются отдельно, и их выбор определяет сам владелец устройства. Разновидность карт может включать, помимо маршрута до пункта назначения, встречающиеся на пути следования достопримечательности, АЗС, отели, кафе и пр.

Принцип работы GPS-навигатора

Навигатор связывается со спутниками, получает от них сигналы, с помощью которых определяет параметры долготы, широты и высоты, подбирает соответствующую им карту и определяет местонахождение объекта. Спутники должны оставаться в зоне видимости, на качество сигнала влияет местность и погодные условия. Радиосигналы привязки передают более 24-х спутников, расположенных на 6-и околоземных орбитах. Спутники образуют взаимосвязанную сеть, которой управляют расположенные на тропических островах станции GPS, связанные с находящимся в США координационным центром.

В каждом навигаторе установлен приемник, который находится в прямом взаимодействии со спутниками. В поступающих со спутников радиосигналах содержится закодированная информация, включающая номер передающего спутника, его техническое состояние, местонахождение на орбите Земли, текущие дату и время. Для определения местоположения объекта GPS-навигатор вычисляет время, прошедшее с момента отправки сигнала со спутника до его получения на Земле. Полученная разница во времени, умноженная на скорость радиоволны, позволяет приемнику получить данные о расстоянии до конкретного спутника. Собрав информацию от нескольких спутников, GPS-навигатор может вычислить координаты своего местоположения. Имея сигналы от 3-х спутников, устройство может определить широту и долготу - так называемая «двумерная фиксация». Если спутников 4 и более, то навигатор может определить расположение объекта в 3-х мерном пространстве, то есть указать долготу, широту и высоту.

Область применения GPS-навигаторов

Этот прибор может пригодиться везде, за исключением мест, в которых недоступны спутниковые сигналы (под водой, под землей и т.п.). GPS-навигаторы нашли применение в военной отрасли, авиации, мореплавании, геодезии, на автомобильном транспорте, для туризма, охоты и рыбалки, спасательных работ, научной и исследовательской деятельности.

По своему назначению навигаторы можно разделить на профессиональные и бытовые. Профессиональные устройства характеризуются особым программным обеспечением и системами навигации, высокой точностью позиционирования и длительным временем автономной работы. Бытовые GPS-навигаторы получили широкое распространение после 01.05. 2000 г., т.к. до этой даты точность позиционирования искусственно понижалась с помощью специальной погрешности (SA), которая составляла ± 50-100 м. В настоящее время предельная точность бытового навигатора ± 3-5 м, а профессионального до нескольких см при условии корректирующего сигнала от наземной станции.

Виды GPS-навигаторов

Авиационные навигаторы. Эти приборы устанавливаются на различных летательных аппаратах и выполняют ряд специальных функций. У них особые карты и базы данных.

Морские навигаторы. Эти устройства содержат специальные морские карты, отражающие базу данных о глубинах, опасностях судоходства (мель, рифы), названиях островов, портов, заливов. Устанавливаются на всех видах морского транспорта и часто оснащаются эхолотами.

Автомобильные навигаторы. Эти самые популярные и распространенные бытовые навигаторы помогут найти нужный адрес, проложить самый короткий путь, избежать пробок. Они практичные и функциональные, простые и удобные в использовании, оснащены звуковыми интерактивными подсказками и большим количеством дополнительных функций.

Туристические (портативные) навигаторы. Эти компактные устройства имеют небольшой вес, есть модели с противоударным и влагонепроницаемым корпусом. Дисплей у них чаще черно-белый для экономии энергии. На экране прибора отображаются маршрут, особенности рельефа, высоты. Некоторые модели могут иметь дополнительные функции: высотомер, компас, солнечный и лунный календари, датчик температуры и др.

Спортивные навигаторы. Они используются спортсменами в циклических видах спорта на открытом воздухе (бег, лыжи, велогонки). Эти приборы обеспечивают регистрацию параметров организма спортсмена совместно с параметрами движения (скорость, траектория, пройденный путь). Устройства выполняются в виде наручных часов или с креплением на руль велосипеда, во влагонепроницаемом, противоударном корпусе, с минимальными габаритами и весом. Спортивные навигаторы оснащаются внешними датчиками, регистрирующими ЧСС, число оборотов педалей велосипеда, количество шагов и др., которые передают данные по радиоканалу в собственную энергонезависимую память.

Автомобильные GPS-навигаторы

Автонавигаторы внешне похожи на маленький телевизор, который крепится на кронштейне на приборную панель или подвешивается на лобовое стекло. Питание прибора осуществляется от собственного аккумулятора или прикуривателя. Навигаторы имеют мощный процессор, позволяющий быстро и без задержек «перерисовывать» карту и двигать машину на дисплее. Предназначением автомобильных GPS-навигаторов является автоматическое прокладывание маршрута с учетом его вариантов и дорожной инфраструктуры, сопровождаемое голосовыми подсказками.

Стандартными функциями автомобильного GPS-навигатора служат прокладка маршрута, адресный поиск, голосовая помощь. К дополнительным опциям относятся запоминание маршрутов, оповещение о ДТП, пробках и радарах по ходу движения, сенсорный дисплей, видеорегистратор, доступ к мультимедийным приложениям, проигрывание MP3-файлов, FM-трансмиттер, видеоплеер, Bluetooth, GSM/GPRS-модуль, ТВ-тюнер. Расширение функционала влечет за собой повышение стоимости прибора.

Самые популярные бренды автомобильных GPS-навигаторов

Garmin

Продукция американской компании Garmin отличается высоким качеством, надежностью и многофункциональностью. При этом устройства не оснащаются ненужными функциями, поскольку, по мнению разработчиков, навигатор служит исключительно для того, чтобы прокладывать точный маршрут. В автонавигаторах Garmin интуитивно понятное меню, встроена функция прокладки маршрута, загружены самые масштабные карты России, а наличие FM-антенны поможет отследить расположенные на маршруте движения пробки и светофоры. Одними из наиболее популярных моделей стали Garmin nuvi 2455, Garmin Nuvi 3597LMT и Garmin Nuvi 1410T.

Prestigio

Модели китайской компании Prestigio отличаются высокой степенью надежности, стильно выглядят, легко устанавливаются, хорошо вписываются в интерьер кабины автомобиля. Это верные помощники водителя, удобные и простые в использовании с программным обеспечением от Navitel. Автонавигаторы Prestigio оснащены навигационной программой с потрясающей 3-хмерной визуализацией зданий и достопримечательностей, голосовыми инструкциями, уведомлениями о дорожной обстановке. Лучшими моделями считаются Prestigio GeoVision 5056, Prestigio GeoVision 7777 и Prestigio GeoVision 5660GPRSHD.

TomTom

GPS-навигаторы бренда TomTom производятся в Нидерландах из высококачественных материалов, оснащены удобными креплениями, громким динамиком, полностью русифицированы. У них простой интерфейс, легкое интеллектуальное меню, собственное программное обеспечение и карты, расчет самого быстрого маршрута, информация о дорожной обстановке, голосовые команды, быстрый поиск объектов и бесплатное пожизненное обновление карт. Наиболее популярными моделями считаются TomTom Start 60, TomTom GO 610 World, TomTom GO 6000, TomTom Urban Rider 5, TomTom VIA 135 и др.

Отечественные производители представлены наиболее популярными брендами Lexand, Navitel, Explay, ТМ Shturmann, Prology, TeXet.

Lexand

Под маркой Lexand продаются недорогие и функциональные навигаторы, единственным недостатком которых можно назвать низкую антибликовую защиту. Покупатели оценили их за высокие возможности встроенной памяти, хорошее программное обеспечение, разнообразие функций и наличие видеорегистратора. Лучшими моделями являются Lexand D6HDR, LEXAND SA5 HD+ и Lexand ST-5650 PROHD.

TeXet

Российскую марку TeXet можно отнести к бюджетному сегменту, тем не менее, устройства оснащены видеорегистратором, встроенной памятью в 4 Гб, программным обеспечением СитиГид и Навител. Лучшими навигаторами являются модели TeXet TN-522HD DVR и TeXet TN-515DVR.

Explay

Навигаторы Explay можно смело назвать надежной, удобной и качественной техникой. В линейке представлены как компактные бюджетные приборы с минимальным набором необходимых для навигации функций по доступной цене, так и дорогие мультифункциональные модели с камерой, Bluetooth, ТВ-тюнером, GSM/GPRS-модулем и богатым выбором мультимедийных приложений. Все устройства оснащены большим широкоформатным экраном и крупным динамиком. Лучшими моделями являются Explay Patriot, Explay ND-41, Explay ND-52B, Explay PN-965 и Explay PN-955.

Navitel

В навигаторы компании Navitel уже загружены карты, охватывающие Россию и еще 11 стран. В некоторых моделях предусмотрена возможность получать информацию о пробках. Именно российская компания Navitel является разработчиком программы «Навител Навигатор», отличающейся точностью карт и актуальностью информации о дорожной обстановке, радарах и камерах. Лучшими навигаторами являются модели Navitel A730, Navitel A501.

ТМ Shturmann

У навигаторов ТМ Shturmann понятный полностью русифицированный интерфейс, возможность работать с мультимедийными приложениями, в том числе получение информации о пробках на дорогах с интернет-сервиса Яндекс. В приборы загружены карты и атласы, которыеявляются собственными разработками компании. Одними из наиболее популярных моделей стали Shturmann Link 500 FM, Shturmann Link 700HD, SHTURMANN Mini 100.

Prology

Российская компания Prology изготавливает свою продукцию в Китае, но GPS-навигаторы Prology так же, как и китайские телефоны, отличаются хорошим качеством и надежной сборкой. Установленное программное обеспечение «Навител Навигатор» не требует дополнительной покупки карт. Есть модели со встроенным видеорегистратором, FM-модулятором и Bluetooth. Наиболее популярными моделями считаются Prology iMap-5600 Black, Prology iMap-7300, Prology iMAP-4300, Prology iMap-580TR, Prology iMap-4020M.

Туристические GPS-навигаторы

Портативные GPS-навигаторы предназначены для того, чтобы их брать с собой в пеший или велосипедный поход, на рыбалку, охоту и т.д. Это компактные легкие устройства с небольшим экраном, емким аккумулятором и мощным приемником. Многие устройства оснащены дополнительными опциями, среди которых компас, барометр, высотомер, датчик температуры и др. В качестве альтернативного источника питания могут использоваться обычные батарейки, что очень удобно, когда нет доступа к электроэнергии. Портативные навигаторы выполняются в виде небольших планшетов или мобильных телефонов, в удобных узких форматах, позволяющих закрепить их на плече, запястье или руле велосипеда и в формате наручных часов. Для экстремальных условий выпускаются защищенные навигаторы в прорезиненном противоударном, пыле- и водонепроницаемом корпусе.

Самые популярные модели туристических GPS-навигаторов

Безусловным лидером на рынке туристических навигаторов является компания «Garmin», выпускающая ряд популярных серий: eTrex, GPSMAP, Fenix, Monterra, Dakota, Montana и Oregon.

Fenix

В этой серии представлены наручные часы-навигатор, оснащенные высотомером, барометром, компасом, секундомером, датчиком температуры. Этот легкий, компактный, удобный и надежный прибор со стабильным приемом спутникового сигнала весит всего 82 г. К сожалению, отображение карты на маленьком черно-белом экране оставляет желать лучшего. Русского языка нет, поэтому все сообщения поступают на английском (французском, немецком, испанском, итальянском) языке. Fenix может обмениваться накопленными данными с помощью BlueTooth, беспроводного сервиса Garmin ANT, через USB с компьютером.

Monterra

Это навигатор на базе ОС Android использует 2 навигационные системы: GPS и GLONASS и предустановленный набор карт. Устройство оснащено большим дисплеем с прочным минеральным стеклом, имеет встроенную фотокамеру и вспышку-фонарик. Водонепроницаемый корпус стандарта IPX7 гарантирует работоспособность прибора на глубине до 1 м в течение 30 минут.

Gpsmap 64

У прибора цветной экран, быстрый процессор, Bluetooth, слот для карты памяти, массивная антенна. Gpsmap 64 использует 2 навигационные системы: GPS и GLONASS и предустановленный набор карт. Кнопки расположены на передней панели прибора, корпус крепко собран, надежно защищен от ударов, пыли, погружения в воду и отрицательных температур.

Montana 650t

У этого навигатора память 3Гб, слот для карты памяти, большой сенсорный экран с антибликовым покрытием и простой интерфейс. Влагонепроницаемый корпус имеет повышенную прочность. Встроенный фотоаппарат (5 Mpx) позволяет делать фотографии с привязкой к координатам съемки. Устройство можно использовать в качестве автомобильного навигатора. Благодаря разъему для подключения наушников можно слушать в дороге голосовые подсказки.

Как выбрать GPS-навигатор

Отправной точкой при выборе GPS-навигатора является его предназначение и тот спектр задач, для выполнения которых предполагается использовать устройство. Как только вы определите перечень подходящих приборов, нужно определиться с приемлемым ценовым диапазоном. Внимательно изучите наиболее популярные модели и определите, что имеют более дорогие устройства и чего нет в дешевых. Затем решите, нужны ли вам дополнительные функции, присущие более дорогим моделям, или дешевого аналога будет вполне достаточно. При первом знакомстве с автомобильным навигатором уделите внимание диагонали дисплея и качеству картинки, выберите навигационное программное обеспечение. Остановившись на 2-х или 3-х моделях, обязательно попробуйте поработать с каждой, поскольку разница в удобстве эксплуатации может оказаться довольно большой. Один навигатор будет для вас понятным и удобным в использовании, а другой - чересчур сложным.

Число просмотров: 9159

truebrands.ru

прикладной потребительский центр и система информационного обеспечения

GPS — глобальная система определения координат

GPS (Global Positioning System — глобальная система определения координат) — спутниковая поисковая система, составленная из совокупности 24 спутников, помещенных на орбиту американским Министерством обороны и наземных станций слежения, объединенных в общую сеть. Глобальная система определения координат работает в любых метеорологических условиях, в любой точке мира, 24 часа в день. Никаких ограничений на использование системы определения координат не существует.

 

История развития GPS

GPS изначально разрабатывалась в сугубо военных целях: система обороны нуждалась, с одной стороны, в средствах наведения высокоточного оружия дальнего действия и, с другой стороны, в универсальной системе навигации, доступной для массового применения в армии. Объединив эти задачи в одну –создание системы точного позиционирования, - с 1960-х годов Министерство обороны США приступило к работе. Видя перспективность этой системы не только для военных целей, разработчикам была поставлена задача, чтобы оборудование было доступно широкому кругу пользователей, но при условии, что военные смогут в любой момент ограничить действие системы.

Когда основные требования к системе были определены, военно-морские и военно-воздушные силы США приступили к разработке концепции использования радиосигналов, излучаемых со спутников, в целях навигации. Безусловно, поводом послужил запуск первого искусственного спутника. США следили за его полетом, принимая сигнал бортового передатчика на наземных пунктах с заранее известными координатами. Были изучены параметры прохождения сигналов через толщу земной атмосферы и возникающий при движении спутника по орбите доплеровский сдвиг частоты, по которому можно вычислить полную орбиту спутника. Доктор Фрэнк МакКлар (FrankT McClure) из APL(Applied Physics Laboratory) указал, что, наоборот, если известна полная орбита спутника, то по доплеровскому сдвигу можно вычислить точное положение спутника на орбите. Возник интерес к обратной задаче: расчет координат приемника на основании принятых со спутника сигналов.

Система Transit, разработанная в 1964 году, стала предшественником GPS. Она состояла из 7 низкоорбитальных спутников, которые излучали стабильные сигналы. Несколько наземных станций контролировали и корректировали параметры орбиты. Пользователи определяли свои координаты на земной поверхности, измеряя доплеровский сдвиг частоты от каждого спутника. В 1967 году система Transit стала доступна для гражданских пользователей. Она была очень быстро приспособлена для навигации судов, но из-за большого количества недостатков не могла применяться в самолетах и других быстродвижущихся объектах.

Второй предшественник GPS, Timation, был разработан под руководством Роджера Истона в NRL (Naval Research Laboratory, Военно-морская исследовательская лаборатория). Программа исследований стартовала в 1964 году и включала в себя запуск двух искусственных спутников, несущих на борту сверхстабильные часы, передачу со спутника прецизионных сигналов точного времени и определение двухмерных координат приемника. Основная идея состояла в использовании синхронизированных передатчиков, излучающих закодированных сигнал. Измеряя задержку прохождения сигнала от спутников, имеющих заранее известные координаты, можно вычислить расстояние до спутников и рассчитать на основании этого координаты приемника. Таким образом, был заложен и экспериментально опробован базовый принцип работы GPS.

Тем временем ВВС США работали над трехмерной системой («Система 621В») с непрерывным доступом. В 1972 году была продемонстрирована работа системы, использующей новый метод разделения сигналов спутников – кодовое разделение на основе псевдослучайного шумоподобного сигнала. В этом варианте все спутники излучают на одной несущей частоте, которая модулируется сверхдлинным псевдослучайным кодом, индивидуальным для каждого спутника, который позволял значительно увеличить помехоустойчивость и передавать в сигнале информацию о положении спутников (эфемериды), а также метки точного времени. В простейшем случаем коды могли быть как открытыми для общего пользования, так и секретными. Гражданским пользователям были доступны только открытые коды, поэтому достаточно было внести преднамеренные погрешности в информацию, передаваемую открытыми кодами, как работоспособным останется только военное оборудование, а гражданские приемники перестанут функционировать с приемлемой точностью. Во время испытаний этой системы была сформулирована концепция глобальной системы из 16 спутников на геостационарных орбитах, чьи проекции на земную поверхность были вытянуты на 30° севернее и южнее экватора.

В течение последующих нескольких лет комитет, собранный для координации усилий всех исследовательских групп, разрабатывающих различные навигационные системы, окончательно определил, какой должна быть система спутниковой навигации. В апреле 1973 ода военно-воздушные силы были утверждены, как ведущий разработчик DNSS (Defensive Navigation Satellite System, оборонительная система спутниковой навигации). В декабре того же года Министерство обороны США утвердило и профинансировало первый из трех этапов разработки NAVSTAR GPS, системы, построенной по сформулированной концепции.

Первый этап подразумевал экспериментальное подтверждение пригодности общей концепции спутниковой навигационной системы, демонстрацию заложенного в нее потенциала и конкретизацию дальнейшего плана работ. Во второй этап включались полномасштабные инженерные разработки, в третий – производство и развертывание сегментов GPS. Первые экспериментальные спутники позволили опробовать метод измерения дальности с использованием широкополосного радиосигнала и прецизионных меток времени, получаемых от атомных часов. Круговые орбиты спутников последовательно увеличивались с 925 км до 13000 км, а затем достигли окончательной величины в 20145 км. Так же последовательно менялась несущая частота передатчиков: сначала 400 МГц, затем 1227 МГц, и позднее достигла современного значения 1575 МГц. Военные предусмотрели двойное назначение спутников GPS, в дополнение к имеющемуся оборудованию позиционирования и точного времени, спутники могли нести на борту датчики ядерного взрыва (NUDET, nuclear detonation), предназначенные для обнаружения фактов испытания ядерного оружия, выявления ядерной атаки и оценки масштабов разрушений.

В августе 1979 года все базовые компоненты системы были введены в строй, Объединенный Центр объявил о переходе к следующему этапу работ. Период с 1980 по 1989 годы отмечен попытками сохранить устойчивое развитие GPS, сопровождавшееся несколькими существенными спадами, связанными главным образом с проблемами финансирования. Первый спутник этого периода был выведен на орбиту в феврале 1989 года и приступил к работе в апреле. Затем были запущены еще 23 спутника.

Одновременно со спутниковым сегментом развивались наземный и пользовательский. Управление было перенесено на авиабазу Фэлкон, штат Колорадо. Система была полностью протестирована и продемонстрировала успешное взаимодействие между наземными пунктами управления, спутниками и оконечным оборудованием.

Первым полномасштабным боевым испытанием для системы стал кризис в Персидском заливе, случившийся в 1990-1991 годы. Спутники GPS позволили силам антииракской коалиции маневрировать, определяться на местности и вести огонь с беспрецедентной точностью 24 часа в сутки. Условия были тяжелейшие – частые песчаные бури, отсутствие мощенных дорог, растительного покрова и других ориентиров.

В марте 1994 года формирование созвездия GPS было завершено запуском 24-го спутника. Система поддерживает стометровую точность позиционирования для гражданских пользователей. Также было заявлено, что Министерство обороны США обязуется за 48 часов уведомлять гражданских пользователей о плановом отключении сервиса стандартного позиционирования и уведомлять об аварийных ситуациях. С 1996 года на орбиту начали выводить спутники нового типа, имеющие расширенные возможности, включая систему автономной навигации. Она позволяет спутнику, в случае невозможности контакта с наземной станцией, функционировать автономно без потери точности как минимум 180 дней.

Во время разработки первоначальной концепции GPS считалось, что точности в 100 метров будет достаточно для гражданских пользователей. При испытаниях в конце 1970-х годов выяснилось, что коды стандартной точности позволяют достичь значительно лучших результатов. Реальная точность позиционирования в то время находилась в пределах 20-30 м. Для обеспечения преимущества военных в использовании GPS было решено ввести преднамеренное ограничение точности для гражданских пользователей (вводились преднамеренные ошибки в передаваемые спутниками навигационные данные, занижалась точность эталонных сигналов времени). Применение GPS расширялось, и вскоре стандартная стометровая точность перестала удовлетворять людей. В полночь с 1 на 2 мая 2000 года принудительное отключение точности было отключено.

 

Состав системы

Система GPS состоит из трех сегментов:

Космический сегмент

количество штатных КА 32
высота орбиты 20 200 км.
количество плоскостей 6
большая полуось 26 560 км
период 11 ч. 58 мин.
наклонение 55 градусов

 

В настоящее время орбитальная группировка GPS насчитывает 32 КА.

В настоящее время осуществляется третий этап модернизации GPS, в ходе которого осуществляется разработка и производство космических аппаратов следующего поколения Block III с улучшенными характеристиками помехозащищенности, точности, доступности и целостности координатно-временного и навигационного обеспечения.

Восполнение орбитальной группировки осуществляется запуском космических аппаратов Block IIF. Согласно плану Block IIF предназначены для смены на орбите КА BlockIIA, КА Block III заменят Block IIR.

КА Block III с увеличенным сроком активного существования предназначены для предоставления навигационных услуг с использованием нового навигационного сигнала LIC и повышения точности эфемеридно-временной информации, доступности навигационного радиосигнала, мощности излучения.

Внедрение новых навигационных сигналов GPS обеспечивает совершенствование структуры цифровой информации и применением новых видов модуляции , а также переход от структуры навигационного сообщения типа NAV на структуры типа CNAV и CNAV-2, более точно передающие в новом формате информацию о состоянии GPS (текущее время, признаки состояния КА, эфемеридно-временная информация, альманах системы и т.п.). При этом сообщения передаются в виде пакетов различной длительности вместо используемой архитектуры суперкадров/кадров.

Существенным изменением структуры CNAV является увеличение количества КА, используемых по целевому назначению, с 32 до 63, а также возможность оперативно передать данные о работоспособности конкретного аппарата (целостности) с задержкой не более 6 с.

 

Дополнительные возможности

Система обнаружения ядерных взрывов.

Спутниковая система оповещения о чрезвычайных ситуациях DASS.

 

Блоки КА

 

Головной подрядчик Rockwell International
САС 7.5 лет
Масса на орбите 985 кг
Солнечные батареи 2 кремниевые панели мощностью 710 Вт
Аккумуляторные батареи 3 никель-кадмиевые
Сигналы L1 C/A, L1/2 P(Y)
БСУ 2Cs,2 Rb

 
 
Головной подрядчик Lockheed Martin
САС 10 лет
Масса на орбите 1126,7 кг
Габариты 1,58 м × 1,96 м × 2,21 м
Солнечные батареи 2 кремниевые панели типа n на p мощностью 1040 Вт
Аккумуляторные батареи 2 никель-водородные перезаряжаемые
Сигналы L1 C/A, L1/2 P(Y)
БСУ 3 Rb
 

 
Головной подрядчик Lockheed Martin
САС 10 лет
Масса на орбите 1126,7 кг
Габариты 1,58 м × 1,96 м × 2,21 м
Солнечные батареи 2 кремниевые панели типа n на p мощностью 1040 Вт
Аккумуляторные батареи 2 никель-водородные перезаряжаемые
Сигналы L1 C/A, L1/L2 P(Y), L2C, L1/2 M-Code
БСУ 3 Rb
 
 
Головной подрядчик Boeing
САС 12 лет
Масса на орбите 1465,1 кг
Габариты 2,49 м × 2,03 м × 2,24 м
Солнечные батареи 3 трехпереходные арсенид-галлиевые мощностью 1900 Вт
Аккумуляторные батареи 2 никель-водородные перезаряжаемые
Сигналы L1 C/A, L1/L2 P(Y), L2C, L1/2 M-Code, L5
БСУ 3 Rb, 1 Cs
Головной подрядчик Lockheed Martin
САС 15 лет
Масса на орбите 2161 кг
Габариты 2,46 м × 1,78 м × 3,40 м
Солнечные батареи 2 ультра трехпереходные (UTJ) мощностью 4480 Вт
Аккумуляторные батареи 2 никель-водородные перезаряжаемые
Сигналы L1 C/A, L1/L2 P(Y), L2C, L1/2 M-Code, L1C, L5
БСУ 3 Rb

Принцип работы

Спутники системы двигаются по точной орбите с периодом обращения 11 часов 58 минут и передают информацию на Землю. Приемники GPS принимают эту информацию и, используя триангуляцию (разбивку на треугольники), вычисляют точное местоположение пользователя. По существу, приемник GPS сравнивает время, переданное спутником со временем, когда это время было отправлено. Разница во времени говорит приемнику о том, как далеко находится спутник. Измерив такое расстояние еще до нескольких спутников, приемник может определить положение пользователя и, например, показать ее на электронной карте навигационного приемника (навигатора).

Навигатор должен быть привязан к сигналам, по крайней мере, трех спутников для определения двух координат (широта и долгота). Имея четыре или больше спутников в поле зрения, приемник может определить три координаты пользователя (широта, долгота и высота). Как только положение пользователя будет определено, система может вычислить другую информацию, типа скорости, курса, пройденного расстояния, расстояния до точки назначения, восхода солнца и времени заката и т.д.

Сегодняшние приемники глобальной системы определения координат чрезвычайно точны благодаря своей параллельной многоканальности. 12 параллельных приемников GPS способны поддерживать сигналы со спутников даже в плотной листве или городских зданиях. Некоторые атмосферные факторы и другие источники погрешности могут влиять на точность приемников глобальной системы.

Более новые модели приемников GPS с системой WAAS (Wide Area Augmentation System) способны улучшить точность определения координат до 2-3 метров. Эта расположенная в космосе система передает информацию, обеспечивающую непрерывность спутниковых сигналов, а также данные корректировок, определяемые наземными станциями. Правительства США, Канады и других государств установили дифференциальные GPS-станции (DGPS), предназначенные для передачи корректирующих сигналов. Эти станции работают в прибрежных районах, а также в бассейнах судоходных рек. Пользование системой DGPS является бесплатным. Сигналы, передаваемые станциями DGPS, не только корректируют ошибки при расчете местоположения, но также компенсируют ухудшение точности GPS, вызванное использованием программы SA (Selective Availability), проводимой Департаментом Обороны США. Для использования DGPS требуется дополнительное оборудование.

 

Источники ошибок сигнала GPS

Факторы, которые могут ухудшить сигнал GPS и таким образом повлиять на точность, следующие:

 

Применение GPS

Несмотря на то, что изначально проект GPS был направлен на военные цели, сегодня GPS широко используются в гражданских целях. GPS-приёмники продают во многих магазинах, торгующих электроникой, их встраивают в мобильные телефоны, смартфоны, КПК и онбордеры. Потребителям также предлагаются различные устройства и программные продукты, позволяющие видеть своё местонахождение на электронной карте; имеющие возможность прокладывать маршруты с учётом дорожных знаков, разрешённых поворотов и даже пробок; искать на карте конкретные дома и улицы, достопримечательности, кафе, больницы, автозаправки и прочие объекты инфраструктуры.

 

ppcmnic.ru

Спутниковая навигация: GPS, ГЛОНАСС и другие

На смену бумажным картам местности пришли карты электронные, навигация по которым осуществляется с помощью спутниковой системы GPS. Из данной статьи вы узнаете, когда появилась спутниковая навигация, что представляет из себя сейчас и что ждет ее в ближайшем будущем.

Первые предпосылки

Во время Второй мировой войны у флотилий США и Великобритании появился весомый козырь – навигационная система LORAN, использующая радиомаяки. По окончанию боевых действий технологию в свое распоряжение получили гражданские суда «про-западных» стран. Спустя десятилетие СССР ввела в эксплуатацию свой ответ – навигационная система «Чайка», основанная на радиомаяках, используется по сей день.

Навигационный радиомаяк LORAN в Канаде

Но у наземной навигации есть существенные недостатки: неровности земного рельефа становятся преградой, а влияние ионосферы негативно сказывается на времени передачи сигнала. Если между навигационным радиомаяком и судном слишком большое расстояние, погрешность определения координат может измеряться километрами, что недопустимо.

На смену наземным радиомаякам пришли спутниковые навигационные системы для военных целей, первая из которых – американская Transit (другое название NAVSAT) – была запущена в 1964 году. Шесть низкоорбитальных спутников обеспечивали точность определения координат до двух сотен метров.

Сеть навигационных спутников вокруг Земли

В 1976 году СССР запустила аналогичную военную навигационную систему «Циклон», а через три года – еще и гражданскую под названием «Цикада». Большим недостатком ранних систем спутниковой навигации было то, что пользоваться ими можно было лишь короткое время на протяжении часа. Низкоорбитальные спутники, да еще и в малом количестве, были не способны обеспечить широкое покрытие сигнала.

GPS vs. ГЛОНАСС

В 1974 году армия США вывела на орбиту первый спутник новой в то время системы навигации NAVSTAR, которую позже переименовали в GPS (Global Positioning System). В середине 1980-х технологию GPS разрешили использовать гражданским кораблям и самолетам, но на протяжении длительного времени им было доступно в разы менее точное позиционирование, чем военным. Двадцать четвертый спутник GPS, последний требовавшийся для полного покрытия поверхности Земли, запустили в 1993 году.

В 1982 году свой ответ представила СССР – им стала технология ГЛОНАСС (Глобальная навигационная спутниковая система). Завершающий 24-й спутник ГЛОНАСС вышел на орбиту в 1995 году, но малый срок эксплуатации спутников (три-пять лет) и недостаточное финансирование проекта почти на десятилетие вывели систему из строя. Восстановить всемирное покрытие ГЛОНАСС удалось только в 2010 году.

ГЛОНАСС – изначально советская, а теперь российская альтернатива GPS

Чтобы избежать подобных сбоев, и GPS, и ГЛОНАСС сейчас используют 31 спутник: 24 основных и 7 резервных, как говорится, на всякий «пожарный» случай. Летают современные навигационные спутники на высоте порядка 20 тыс. км и за сутки успевают дважды облететь Землю.

Принцип работы GPS

Позиционирование в сети GPS проводится путем измерения расстояния от приемника до нескольких спутников, местоположение которых в текущий момент времени точно известно. Расстояние до спутника измеряется путем умножения задержки сигнала на скорость света.Связь с первым спутником дает информацию лишь о сфере возможных расположений приемника. Пересечение двух сфер даст окружность, трех – две точки, а четырех – единственно верную точку на карте. В роли одной из сфер чаще всего используют нашу планету, что позволяет вместо четырех спутников позиционироваться только по трем. В теории точность позиционирования GPS может достигать 2 метров (на практике же погрешность значительно больше).

Для точного позиционирования нужно минимум три спутника и земной шар (либо четвертый спутник)

Каждый спутник отправляет приемнику большой набор информации: точное время и его поправку, альманах, данные эфемерид и параметры ионосферы. Сигнал точного времени требуется для измерения задержки между его отправкой и приемом.

Навигационные спутники оснащаются высокоточными цезиевыми часами, тогда как приемники – куда менее точными кварцевыми. Поэтому для проверки времени осуществляется контакт с дополнительным (четвертым) спутником.

Навигационный чип производства компании Leadtek

Но ошибаться могут и цезиевые часы, поэтому их сверяют с размещенными на земле водородными часами. Для каждого спутника в центре управления системой навигации индивидуально рассчитывается поправка времени, которая впоследствии вместе с точным временем отправляется приемнику.

Еще одним важным компонентом системы спутниковой навигации является альманах, который представляет собой таблицу параметров орбит спутников на месяц вперед. Альманах, как и поправка времени, рассчитываются в центре управления.

Туристический навигатор Garmin eTrex 10

Передают спутники и индивидуальные данные эфемерид, на основе которых вычисляются отклонения орбиты. А учитывая что скорость света нигде кроме вакуума не постоянна, в обязательном порядке учитывается задержка сигнала в ионосфере.

Передача данных в сети GPS ведется строго на двух частотах: 1575,42 МГц и 1224,60 МГц. Разные спутники транслируют сигнал на одной и той же частоте, но используют кодовое разделение каналов CDMA. То есть сигнал спутника – всего лишь шум, раскодировать который можно только при наличии соответствующего PRN-кода.

Автомобильный навигатор NAVIGON 3300 Max

Вышеописанный подход позволяет обеспечить высокую помехоустойчивость и использовать узкий частотный диапазон. Тем нее менее, иногда GPS-приемникам все равно приходится подолгу искать спутники, что вызвано рядом причин.

Во-первых, приемник изначально не знает, где находится спутник, удаляется он или приближается и какое смещение частоты его сигнала. Во-вторых, контакт со спутником считается удачным только тогда, когда от него получен полный набор информации. Скорость же передачи данных в сети GPS редко превышает показатель 50 бит/с. А стоит сигналу оборваться из-за радиопомех, как поиск начинается заново.

Запущенный в этом году экспериментальный GPS-спутник USA-242 может похвастаться длительным временем работы (более 10 лет) и более точным позиционированием (до полуметра)

Будущее спутниковой навигации

Сейчас GPS и ГЛОНАСС широко применяются в мирных целях и, по сути, являются взаимозаменяемыми. Новейшие навигационные чипы поддерживают оба стандарта связи и подключаются к тем спутникам, которые находят первыми.

Американская GPS и российская ГЛОНАСС – далеко не единственные в мире системы спутниковой навигации. К примеру, Китай, Индия и Япония начали развертывать собственные ССН под названием BeiDou, IRNSS и QZSS соответственно, которые будут действовать только внутри своих стран, а потому потребуют сравнительно малого количества спутников.

Но самый большой интерес, пожалуй, вызывает проект Galileo, который разрабатывается Европейским союзом и должен быть запущен на полную мощность до 2020 года. Изначально Galileo задумывалась как сугубо европейская сеть, но о своем желании поучаствовать в ее создании уже заявили страны Ближнего Востока и Южной Америки. Так что в скором времени на рынке глобальных ССН может появиться «третья сила». Если и эта система будет совместима с существующими, а скорей всего так и будет, потребители только выиграют – скорость поиска спутников и точность позиционирования должны вырости.

itc.ua

Как работает навигатор. Разберем рядовую машину, а также выясним, нужен ли интернет

В век цифровых технологий мы с вами начинаем отказываться от обычных компасов, переходя на совершенно новые технологии. Такими технологиями сейчас являются навигаторы. Они вам и дорогу проложат, и запомнят ваш выбор, и подскажут где пробки, в общем, куча полезного. Но зачастую владельцы не знают, как работают эти приборы. Некоторые говорят — что это спутниковый сигнал, другие что сотовый, третьи вообще — что он сам позиционируется на месте! Но где же правда, как работает автомобильный (или какой либо другой) навигатор? Давайте разбираться …

СОДЕРЖАНИЕ СТАТЬИ

Что хочется отметить, навигаторы это совершенно независимые устройства, работают автономно! ДА в некоторые из них может быть встроена сим карта, то есть позиционирование по сотовым вышкам, но это в качестве исключения, нежели в общей практике! Навигатор работает совершенно по другому принципу.

Техническая составляющая

Итак, прежде чем определять — как он работает, давайте вспомним, из чего же он состоит:

Если подвести итог навигатор будь то автомобильный или обычный, по сути это маленький компьютер, зачастую по своим функциям похож на планшетный ПК.

Как работает электроника навигатора?

Все что я перечислил сверху, это всего лишь физическая составляющая или как говорят программисты на своем сленге «ЖЕЛЕЗО», без программ оно работать не будет.

Чтобы заставить ЖЕЛЕЗО издавать хоть какие-то сигналы на него устанавливают BIOS, он то и начинает заставлять работать все вместе – материнскую плату, GPS датчик, дисплей, аккумулятор, память, процессор.

Далее на него уже устанавливается операционная система. Сейчас самые популярные это Windows CE и Android, причем вторая система активно вытесняет первую из-за своей гибкости, стабильности и быстрой работы. Однако существуют и другие разработчики со своими системами, например GARMIN и Tom Tom, у них свои «операционки» и оболочки. Все эти системы специально адаптированы под сенсорный монитор, то есть здесь присутствует специальная оболочка.

Ну все, поставили мы скажем — Android на свое «железо», но как он дальше будет работать? Как позиционировать?

Теперь нам нужно установить так называемую рабочую программу, сейчас их также десятки, самые распространенные в России, это конечно же Navitel, а также свои навигационные программы от поисковиков Яндекс и Google. Вообще если «порыть» можно найти не менее 10 программ, которые можно установить на свой навигатор.

Программа сама по себе начинает взаимодействовать с GPS модулем и определяет точку по координатам на мониторе вашего навигатора. Но вот без карт это бесполезно. Поэтому еще одной важной составляющей являются карты, которые как бы подкладываются в программу.

Как работают карты?

Навигатор как я написал выше, определяет координаты, в которых вы находитесь – долгота, ширина и высота. Если карт у вас в навигаторе нет, то на просто белом или черном дисплее вы будете видеть точку, возможно, будут указываться ваши координаты. Такая информация практически бесполезна. Подкладываются электронные карты, они также жестко привязаны к координатам, поэтому, когда навигатор определил место положения, то точка сопоставляется с местом на карте. Таким образом, вы видите свое местоположение.

Карты постоянно совершенствуются, на них появляются все больше опознавательных знаков, зачастую указаны адреса, улицы, дома, магазины, светофоры, радар-детекторы и прочая полезная информация. Нужно сказать, что это большая работа, и разработчикам постоянно нужно обновляться карты, ведь города и дороги изменяются.

Как работает «GPS» и «ГЛОНАСС»?

Вот мы и подошли к самому интересному, а именно к работе самого приемника. Чтобы узнать координаты, он отсылает через встроенную антенну, специальный запрос в Глобальную Систему Позиционирования (Global Position System или просто GPS), у которой на орбите нашей планеты есть группировка спутников. Дальше он получает ответ в зашифрованном виде, ответ с координатами, ответ передается навигационной программе, которая определяет место положения.

Для точности определения координат, и для корректной работы нужно как минимум связь с 4 спутниками, если их меньше, то программа может автоматически не заработать! Если на небе облака и тучи, то видимость спутников категорически падает. Также они практически не видны в зданиях, туннелях метро и других подземных частях.

GPS – это американская система позиционирования, однако Россия сейчас на данный момент разработала и успешно применяет свою альтернативную группировку спутников, которая получила название «ГЛОНАСС», да пока там спутников меньше, и работоспособность системы немного «плавает», но каждый год на орбиту выводятся новые и новые элементы стабильность растет год от года. Сейчас уже и не отличить где «GPS», а где «ГЛОНАСС».

В свою очередь навигаторы, будь то автомобильный или просто переносимый стационарный могут автоматически переключаться между системами позиционирования. Также доступен и ручной режим. В планах правительства России, сделать все современные автомобили оснащенными системой «ЭРА ГЛОНАСС».

Про сотовые вышки или нужен ли интернет?

Как вы, наверное, уже поняли навигатору не нужно интернет соединения ВООБЩЕ! Поэтому высказывания – «если нет интернета, нет и позиционирования» – МЯГКО СКАЗАТЬ ОШИБОЧНЫ! Навигационные системы работают на прямую, со спутниками и сотовые вышки им совершенно не нужны.

Но откуда же пошел такой миф? Все просто, виноваты в этом сотовые телефоны и первые навигационные системы от поисковиков (Яндекс Google). Именно они, в начале своего пути, позиционировали по расположению точки между базовыми станциями. То есть человек с телефоном запускал программу, она автоматически опрашивала сотовые вышки и они примерно, показывали ваше местоположение, погрешность была огромной, лично я сам помню до 2 километров, особенно в тех местах, где не было достаточно сотовых вышек (интернета). ДА и такое позиционирование было очень медленным, стояло выехать за город, сигнал терялся, интернет становился вообще «ниже плинтуса» и программа зависала. Проблема была еще и в том что вашему гаджету нужно было тянуть карты из интернета в режиме онлайн!

Сейчас совершенно другая ситуация, поисковики научили свои программы, корректно работать с GPS модулями:

Таким образом – ИНТЕРНЕТ для навигатора, даже в телефоне НЕ НУЖЕН! Вам достаточно включить GPS модуль, выкачать карты и пользоваться.

НА этом у меня все, читайте наш АВТОБЛОГ.

avto-blogger.ru

Как работает GPS навигация | принцип работы GPS

Как работает GPS навигация

Практически каждый современный телефон уже имеет встроенный модуль GPS-приемника, с помощью которого имеется возможность достаточно точно определить свое местоположение на планете Земля. Для работы и точного определения местоположения, GPS не требуется интернет, вышки мобильных сетей. Система может работать даже посреди пустыни вдалеке от цивилизации. Мы знаем, что это возможно благодаря спутникам, — но как именно это работает?

Основой системы GPS являются навигационные спутники, движущиеся вокруг Земли по 6 круговым орбитальным траекториям (по 4 спутника в каждой), на высоте 20180 км. Спутники GPS обращаются вокруг Земли за 12 часов, их вес на орбите составляет около 840 кг, размеры – 1.52 м. в ширину и 5.33 м. в длину, включая солнечные панели, вырабатывающие мощность 800 Ватт. 24 спутника обеспечивают 100 % работоспособность системы навигации GPS в любой точке земного шара. Максимальное возможное число одновременно работающих спутников в системе NAVSTAR ограничено числом 37. В настоящий момент на орбите находится 32 спутника, 24 основных и 8 резервных на случай сбоев.

Поскольку известно, что каждый из спутников делает по два оборота вокруг планеты за сутки, то становиться нетрудно вычислить, что скорость их движения составляет приблизительно 14 000 км/ч. Само расположение спутников, так же как и наклон их орбит, отнюдь не случайно: они расположены так, чтобы из любой открытой точки планеты было видно хотя бы четыре спутника — именно таково минимальное количество, необходимое для определения местоположения объекта на Земле. Почему именно четыре и как это работает?

Чтобы измерить какое-то очень длинное расстояние, мы можем послать сигнал и замерить время, за которое он достигнет нужной точки либо отразится от нее и дойдет до нас снова (главное при этом точно знать скорость движения сигнала). Во втором случае время придется делить на два, поскольку сигнал прошел удвоенное расстояние. Этот способ носит название эхолокация, и спектр его применения весьма широк: начиная от изучения формы морского дна (здесь сигналом выступает ультразвук) и заканчивая радарами (сигнал — электромагнитные волны).

Проблема в том, что при использовании этого способа мы должны заранее знать, где находится приемник. В случае с системой GPS приемником сигнала являетесь именно вы, стоящий на Земле. Спутник не имеет никакого представления о вашем местоположении, он не знает, где вы, и никогда не узнает, поэтому отправляет сигнал сразу на всю поверхность планеты под ним. В этом сигнале он кодирует информацию о том, где расположен сам, а также в какое время по его собственным часам сигнал был отправлен, и на этом его работа заканчивается.

GPS-модуль у вас в руках получил координаты спутника и информацию о времени отправки сигнала. Программа в вашем телефоне умножает скорость распространения сигнала (то есть скорость света) на разницу между временем получения и временем отправки, высчитывая таким образом расстояние до каждого спутника. Если бы часы модуля были в точности синхронизированы с часами всех сателлитов, то понадобилось бы еще два спутника, чтобы определить местоположение с помощью так называемой триангуляции.

Чтобы понять принцип действия триангуляции, давайте на секунду перейдем в двухмерное пространство. Представьте себе две точки на плоскости, расположенные на известном расстоянии друг от друга, допустим 5 метров. Вы также знаете, что какая-то новая точка находится, в свою очередь, на известных расстояниях от первых двух — например 3 и 4 метра соответственно. Чтобы найти эту новую точку, вы можете провести две окружности с радиусами 3 и 4 метра и центрами в первой и второй точках соответственно. Две полученные окружности пересекутся ровно в двух точках, одна из которых и будет искомой.

Вернемся в трехмерное пространство. Теперь нам уже нужны три опорные точки, которыми являются наши спутники, и «чертить» вокруг них мы будем не окружности, а сферы. Все три сферы сразу в общем случае будут иметь две точки пересечения, но одна из них находится «над» местом расположения спутников, очень высоко в космосе — она нам явно не нужна. А вот вторая — это как раз ваше местоположение.

Для измерения местоположения в пространстве необходимо знать точное время и иметь точный инструмент для его измерения.

Реальная задача осложняется тем обстоятельством, что время на часах вашего телефона не совпадает с тем, что показывают часы спутников, и ваши часы являются на несколько порядков менее точными. Вообще говоря, время создает несколько дополнительных сложностей в решении этой проблемы. Так, например, спутники подвержены эффектам релятивистского и гравитационного искажения времени. На самом деле скорость хода часов, согласно теории относительности, зависит в том числе от силы гравитации в той точке, где эти часы расположены, а также от скорости их движения.

На высоте 20 000 километров над Землей гравитация достаточно слаба, а спутники летают, как мы уже разобрались, довольно быстро. Из-за суммы этих эффектов часы приходится корректировать в общей сложности на 38 миллисекунд за сутки. Если кажется, что это мало, напомню, что электромагнитный сигнал, движущийся со скоростью света, пройдет за это время приблизительно 11 000 км — примерно такой и может быть погрешность при определении координат.

Вторая проблема — точность самих часов. При указанных скоростях сигналов каждая миллионная доля секунды, измеренная с погрешностью, может спровоцировать большие ошибки. Из-за этого спутники старого формата позволяют определить местоположение не очень точно и могут «обмануть» на целых 10 метров. Начиная с 2010-го на замену старым запускают новые спутники, оснащенные атомными часами, и их погрешность уменьшилась до 1 метра.

Другой путь решения проблемы — специальные наземные станции коррекции. Они используются на территории некоторых стран и принцип их работы таков: принимая данные о расположении того или иного объекта, они корректируют их, и в результате пользователь гаджета получает более достоверную информацию о собственном местоположении.

Чем больше источников сигнала, тем точнее результат измерения, вот почему в мегаполисе ориентироваться по навигатору будет проще, чем в пустыне.

Однако атомные часы – устройство громоздкое и дорогостоящее, поэтому, чтобы решить проблему времени приемника, нужен еще один спутник. Он тоже передает информацию о своем местоположении и моменте отправки сигнала. И теперь наше пространство становится не трех-, а четырехмерным. Неизвестными являются широта, долгота, высота и время приемника в момент отправки сигналов. Положение в этих четырех измерениях нам и нужно определить, для чего по аналогии с двухмерным и трехмерным пространствами нам нужны именно четыре спутника.

Конечно же, в реальности хорошо, когда удается «поймать» сигнал от большего числа источников, и в крупных городах и населенных районах с этим проблемы нет: можно легко увидеть одновременно десяток сателлитов, которые обеспечат достаточно высокую для бытового использования точность.

Однако начальный поиск спутников тоже не самая простая задача. В старых аппаратах устройству могло потребоваться немало времени, вплоть до нескольких минут, чтобы уловить и разобрать сигнал от нужного числа космических объектов. Тогда это называлось «холодный старт», и для того, чтобы ускорить процесс, придумали получать данные о текущем местоположении небесных тел из интернета. Но при перемещении приемника на большое расстояние (десятки километров) или при очень долгом бездействии «холодный старт» приходилось производить заново. В современных устройствах модуль периодически включается сам, обновляя информацию, поэтому подобной проблемы больше нет.

Кстати говоря, до 2000 года точность для гражданских лиц была искусственно занижена, и узнать свое местоположение позволялось не ближе, чем в 100 метрах от реального. Поскольку GPS создавалась, финансируется и поддерживается министерством обороны США, военные хотели иметь определенное преимущество. С развитием и все более активным внедрением технологии в жизнь гражданского населения это искусственное ограничение было убрано.

Спутник не получает данных ни о каких GPS-устройствах на поверхности Земли и в воздушном пространстве, поэтому услуга бесплатная. Мы просто не сможем узнать, кто конкретно ей пользуется. Выходит, рецепт решения общечеловеческой проблемы под кодовым названием «А где я нахожусь?» чрезвычайно прост: односторонняя связь и нехитрые математические расчеты.

Сегодня область применения системы глобального позиционирования GPS достаточно обширна. Всё чаще GPS-приемники встраивают в мобильные телефоны и коммуникаторы, в автомобили, часы и даже в собачьи ошейники. Люди привыкают к такому благу как GPS навигация, и пройдет совсем немного времени как они уже не смогут обойтись без нее. Именно поэтому стоит сказать пару слов о недостатках GPS.

Недостатками GPS навигации является то, что при определенных условиях сигнал может не доходить до GPS-приемника, поэтому практически невозможно определить свое точное местонахождение в глубине квартиры внутри железобетонного здания, в подвале или в тоннеле. Рабочая частота GPS находится в дециметровом диапазоне радиоволн, поэтому уровень приема сигнала от спутников может ухудшиться под плотной листвой деревьев, в районах с плотной городской застройкой или из-за большой облачности, а это скажется на точности позиционирования. Магнитные бури и наземные радиоисточники тоже способны помешать нормальному приему сигналов GPS. Карты, предназначенные для GPS навигации, быстро устаревают и могут быть не точными, поэтому нужно верить не только данным GPS-приемника, но и своим собственным глазам. Особенно стоит отметить, что работа глобальной системы навигации GPS полностью зависима от министерства обороны США и нельзя быть уверенным, что в любой момент времени США не включит помеху (SA – selective availability) или вообще полностью отключит гражданский сектор GPS как в отдельно взятом регионе, так и вообще. Прецеденты уже были.

У системы GPS есть менее популярная и известная альтернатива в виде навигационных систем ГЛОНАСС (Россия) и Galileo (ЕС), которые в перспективе должны получить широкое распространение. Так же ведется работа по разработке чипов навигации поддерживающих сразу три системы позиционирования GPS, Galileo и ГЛОНАСС.

www.facte.eu

Навигация. GPS навигация для начинающих с GPS навигатором GARMIN.

Случалось ли вам заблудиться и от всей души желать найти простой способ узнать, какой дорогой необходимо идти? Или найти чудесное место для рыбалки или охоты и не запомнить, как можно к нему легко вернуться? А как на счет обнаружить в походе, что сбился с пути, и не знать, как вернуться обратно к лагерю или машине? Возникала ли при полете необходимость определить ближайший аэропорт или идентифицировать воздушное пространство, в котором находились? Возможно, вы сталкивались с проблемой, когда нужно съехать на обочину и уточнить у кого-нибудь направление.

С GPS навигатором GARMIN вы сможете узнать в любое время, в какой точке планеты находитесь. Со времен первых ручных GPS приемников, предоставленных коалиционным силам во время войны в Персидском заливе, до сегодняшнего признания нашей компании как лидера GPS инноваций, GARMIN помогла GPS достичь новых высот, выведя технологию за рамки стандартного функционирования типичных GPS навигаторов.

GPS технология стремительно изменяет способ людей прокладывать путь по всей земле. Делается ли это ради забавы, спасения жизни, более быстрого добирания, или еще чего вы только не придумаете, GPS навигация становится с каждым днем все более распространенной. Мы надеемся, что данное руководство предоставит вам достаточно информации, заинтересует и увлечет вас.

Что такое GPS ?

GPS — Глобальная система навигации и позиционирования. Сеть спутников, которые постоянно передают закодированную информацию, с помощью которой можно точно определить месторасположение на земле путем измерения расстояния до спутников.

Как указано в приведенном выше определении GPS означает Глобальная Система Позиционирования (Global Positioning System), и относится к группе спутников Министерства Обороны США, постоянно вращающихся вокруг Земли. Спутники передают радио сигналы малой мощности, позволяя каждому, у кого есть GPS навигатор, определять свое месторасположение на Земле. Создание этой выдающейся системы было не дешевым и стоило США миллиардов долларов. Текущее техническое обслуживание, включая запуск новых спутников на замену старым, увеличивает стоимость системы. Удивительно, GPS фактически предшествовал появлению персональных компьютеров. Разработчики возможно и предвидеть не могли тот день, когда мы сможем носить маленькие GPS навигаторы весом меньше фунта, которые будут не только сообщать нам, где мы находимся в системе координат (долгота/широта), но смогут даже показывать наше месторасположение на электронной карте с городами, улицами и т.п.

Изначально разработчики думали о военном применении. GPS приемники служили бы целям навигации, дислокации войск и координации артиллерийского огня (среди прочих применений). К счастью, административное решение в 1980г. сделало GPS навигатор доступным также для гражданского применения. Сейчас каждый может оценить преимущества GPS ! Возможности почти не ограничены. Иногда люди спрашивают, можно ли бесплатно использовать эту систему – ДА! (Ну, вообще-то вашей платой стали уплаченные налоги). Так что просто распакуйте свой GPS навигатор, вставьте батарейки и окунитесь в интереснейший мир GPS навигации.

Кто использует GPS ?

У GPS навигатора есть множество применений на суше, в воде и в воздухе. В основном GPS навигатор позволяет вам записывать или задавать точки месторасположения на земле и помогает продвигаться от и к этим точкам. GPS навигатор может использоваться везде, кроме мест, где нет приема сигнала, т.е. внутри помещений, в пещерах, парковках и прочих местах, находящихся под землей, а также под водой.

В воздухе и на воде GPS применяется в основном для навигации, на земле же применение более разнообразно. В различных целях GPS навигаторы используется учеными. Все большую часть своей работы геодезисты проделывают с использованием GPS навигатора, что значительно сокращает затраты на проведение разведывательных работ, а также обеспечивает потрясающую точность. В основном разведывательное оборудование обеспечивает точность до одного метра. Более дорогие системы могут обеспечить точность в пределах сантиметра! В сфере отдыха применение GPS навигатора настолько разнообразно, насколько многочисленны виды отдыха. GPS навигатор становится все популярнее среди туристов, охотников, скалолазов, лыжников и т.д. Если вы увлекаетесь видом спорта или какой-либо деятельностью, где вам необходимо отслеживать свое местоположение, прокладывать маршрут к определенному месту или знать. в каком направлении и как быстро вы движетесь, вы по достоинству оцените все преимущества GPS навигации.

GPS навигация быстро становится привычным делом и в автомобилях. Некоторые встроенные системы обеспечивают поддержку в экстренных ситуациях на дороге – нажатием кнопки передается текущее месторасположение автомобиля в диспетчерский центр. Более совершенные системы могут отображать на дисплее месторасположение машины по электронной карте, позволяя водителям контролировать маршрут движения и искать нужные адреса, рестораны, отели и прочие объекты. Некоторые GPS навигаторы даже могут автоматически создавать маршрут и поочередно выдавать направления движения до указанного пункта назначения.

Чтобы знать, как работает GPS навигация, не надо быть ученым. Все что вам нужно, это немного базовых знаний плюс желание изучить и понять мир GPS навигации. Не позволяйте понятиям вроде «псевдослучайный», «анти-спуфинг» и «псевдокод» запугать вас. Давайте знакомиться и осваивать наилучший инструмент навигации со времен изобретения компасса — GPS навигатор !

3 сегмента GPS

Система NAVSTAR (официальное название GPS в Министерстве обороны США) состоит из космического сегмента (спутники), контрольного сегмента (наземные станции) и пользовательского сегмента (вы и ваш GPS навигатор).

Теперь давайте возьмем три части системы и обсудим их более детально. Так мы сможем ближе рассмотреть, как работает GPS навигация.

GPS навигация : космический, контрольный, пользовательский сегменты

Космический сегмент

Космический сегмент, который состоит минимум из 24 спутников (21 активный и 3 запасных) является сердцем системы. Спутники находятся на так называемой «верхней орбите» на высоте около 12 тыс. миль над поверхностью Земли. Функционирование на такой большой высоте позволяет сигналам покрывать бОльшую территорию. Спутники расположены на орбитах так, что GPS навигатор на земле всегда может получать сигналы по меньшей мере от четырех из них в любое заданное время.

Спутники вращаются со скоростью 7 000 миль в час, что позволяет им обходить вокруг земли каждые 12 часов. Они питаются солнечной энергией и рассчитаны приблизительно на 10 лет работы. На случай пропадания солнечной энергии (затмения и прочее) у спутников есть резервные батареи. Также спутники оснащены малыми ракетоносителями, которые корректируют траекторию вращения.

Первые GPS спутники были запущены в космос в 1978г. Полное созвездие из 24 спутников было получено в 1994г., завершив создание системы. Деньги на покупку новых спутников и их запуск для поддержания в последующие годы работоспособности системы входят в бюджет Министерства обороны США.

Каждый спутник передает радио сигналы малой мощности на нескольких частотах (выделенные L1, L2 и др.). Гражданские GPS навигаторы «слушают» частоту L1 1575,42 МГц в сверхвысокой полосе частот. Сигналы проходят «линию видимости», что значит, что они пройдут через облака, стекло и пластик, но не пройдут сквозь большинство твердых объектов, таких как здания и горы.

Чтобы вы смогли получить представление о положении сигнала L1 в радиоспектре, вспомните ваши любимые FM радиостанции, они работают на частотах где-то между 88 и 108 МГц (и звучат намного лучше!). Спутниковые сигналы очень малой мощности, порядка 20-50 Вт. Для сравнения, FM радиостанция около 100 000 Вт. Представьте теперь, как сложно пытаться услышать 50 Вт радиостанцию, передающую на высоте 12 000 миль! Вот почему так важно иметь чистый обзор неба при использовании GPS навигатора.

L1 содержит два «псевдослучайных» (комплексный шаблон цифрового кода) сигнала, Защищенный (Р) код и код гражданского доступа (С/А). Каждый спутник передает уникальный код, позволяющий GPS приемнику идентифицировать сигналы. «Анти-спуфинг» относится к шифрованию Р-кода для предотвращения несанкционированного доступа. Р-код также называют «Р(Y)» или «Y» код.

Основной целью этих закодированных сигналов является возможность вычисления времени прохождения (или времени прибытия сигнала) от спутника до GPS навигатора на земле. Время прохождения, умноженное на скорость света, равно дальности спутника (расстояние от спутника до GPS навигатора). Навигационное сообщение (информация, которую спутники передают GPS навигатору) содержит данные об орбите спутника, системном времени, общем состоянии системы, а также модель задержки сигналов в ионосфере. Спутниковые сигналы рассчитываются с использованием сверхточных атомных часов.

Контрольный сегмент

Контрольный сегмент выполняет то, о чем говорит само его название – «контролирует» GPS спутники, отслеживая их и обеспечивая правильной информацией об орбите и времени. На земле расположено пять контрольных станций – четыре станции слежения и одна станция основного контроля. Четыре станции постоянно получают данные со спутников и затем передают информацию на станцию основного контроля, которая «корректирует» данные спутников и вместе с двумя другими антенными полигонами передает (по восходящему потоку) информацию к GPS спутникам.

Пользовательский сегмент

Пользовательский сегмент включает вас и ваш GPS навигатор. Как уже упоминалось, пользовательский сегмент состоит из туристов, пилотов, охотников, военных и других, кто хочет знать, где находится, где находился или куда направляется.

GPS навигация – Как это работает?

Месторасположение

Теперь расскажем о том, как это работает. GPS навигатор должен знать две вещи, чтобы выполнить свою работу. Он должен знать, ГДЕ находятся спутники (месторасположение) и как ДАЛЕКО они находятся (расстояние). Посмотрим сперва как GPS навигатор знает, где в космосе находятся спутники. GPS навигатор получает два вида кодированной информации от спутников. Один вид информации, называемый «альманах», содержит данные о расположении спутников. Эти данные постоянно передаются и сохраняются в памяти GPS навигатора, так что он знает орбиты спутников и где каждый спутник предположительно должен находится. Данные альманаха периодически обновляются по мере перемещения спутников. Любой спутник может немного отклоняться от орбиты, а наземные станции постоянно отслеживают орбиту, высоту, расположение и скорость спутников. постоянно отслеживают орбиту, высоту, расположение и скорость спутников. Наземные станции посылают данные об орбите на станцию основного контроля, которая, в свою очередь, передает откорректированные данные обратно спутникам. Эти откорректированные данные точного месторасположения спутника называются данными «эфимериса», которые действительны около четырех или шести часов и передаются GPS навигатору в виде кодированной информации.

Таким образом, получив данные альманаха и эфимериса, GPS навигатор всегда знает местонахождение спутников.

Время

Даже если GPS навигатор знает точное положение спутников в космосе, ему все равно необходимо знать, насколько они далеко (расстояние), чтобы определить свое месторасположение на земле. Существует простая формула, говорящая приемнику, как далеко он находится от каждого из спутников:

расстояние от данного спутника равно скорости передаваемого сигнала, умноженной на время, необходимое сигналу, чтобы пройти от спутника до GPS навигатора (Скорость х Время прохождения сигнала = Расстояние).

Вспомните, как вы определяли, насколько далеко от вас гроза, когда были ребенком. Когда вы видели молнию, то считали затем, сколько секунд пройдет, пока раздастся гром. Чем больше насчитали, тем дальше была гроза. GPS навигация работает по такому же принципу, называемому «Время прибытия».

Используя основную формулу для определения расстояния, приемник уже знает скорость. Это скорость радио волны – 186 000 миль в секунду (скорость света), с учетом задержки сигнала при прохождении сквозь атмосферу Земли.

Теперь GPS навигатору необходимо определить временную составляющую формулы. Ответ кроется в закодированных сигналах, которые передают спутники. Передаваемый код называется «псевдослучайным кодом» потому, что похож на шумовой сигнал. Когда спутник генерирует псевдослучайный код, GPS навигатор генерирует такой же код и пытается согласовать его с кодом спутника. GPS навигатор сравнивает два кода, чтобы определить, насколько необходимо задержать (или сместить) свой код, чтобы соответствовать коду спутника. Чтобы получить расстояние время задержки (смещения) умножается на скорость света.

Часы GPS навигатора не отслеживают время с такой точностью, как часы спутника. Включение в состав GPS навигатора атомных часов сделало бы его намного больше и намного дороже! Поэтому каждое измерение расстояния требует корректировки на величину погрешности внутренних часов GPS навигатора. По этой причине измерение расстояния относится к «псевдорасстоянию». Чтобы определить позицию, используя данные псевдорасстояния, необходимо отслеживать и пересчитывать зафиксированные данные минимум с четырех спутников, чтобы погрешность исчезла.

Получение полного круга

Теперь, когда у нас есть и позиция спутника, и расстояние до него, приемник может определить свое месторасположение. Скажем, мы находимся на расстоянии 11 000 миль от спутника. Тогда наше месторасположение будет где-то в условной сфере со спутником в центре с радиусом 11 000 миль. Далее, допустим, что мы находимся на расстоянии 12 000 миль от другого спутника. Вторая сфера будет пересекаться с первой, образуя общую окружность. Если добавить третий спутник, на расстоянии 13 000 миль, будет две общие точки, где пересекаются три сферы.

Хотя возможных позиций две, они сильно отличаются показателями широты, долготы и высоты. Чтобы определить, какая же из двух точек соответствует вашему фактическому месторасположению, GPS навигатору необходимо также указать приблизительную высоту над уровнем моря. Это позволит приемнику рассчитать 2-х координатную позицию (широта, долгота). При наличии четвертого спутника GPS навигатор сможет определить 3-х координатную позицию (широта, долгота, высота). Так, допустим, расстояние до четвертого спутника составляет 10 000 миль. Теперь у нас есть четвертая сфера, пересекающая первые три в одной общей точке.

Данные альманаха

GPS навигатор всегда сохраняет данные о положении спутников. Эти данные называются альманахом. Иногда, когда GPS навигатор долгое время не включается, данные альманаха становятся устаревшими или «холодными». Когда GPS навигатор «холодный», установление связи со спутником может занять больше времени. GPS навигатор считается «теплым», если данные со спутников собраны за последние четыре-шесть часов. Если время установления связи со спутником играет для вас большую роль, то при покупке GPS навигаторов необходимо обращать внимание на время захвата спутника в «холодном» и «теплом» режимах.

Как только навигатор установит связь с достаточным количеством спутников, чтобы рассчитать месторасположение, вы готовы начать GPS навигацию! Большинство GPS навигаторов будут отображать текущие координаты или текущую позицию на электронной карте, которая будет помогать вам в навигации.

Технология GPS навигатора

Большинство современных GPS навигаторов имеют параллельный мультиканальный дизайн. Более старые одноканальные тоже были популярны, но у них была ограниченная возможность постоянного приема сигналов в жестких условиях, таких как густой лиственный покров. Параллельные приемники обычно имеют от пяти до двенадцати схем приема, каждая из которых отвечает за сигнал конкретного спутника, так что можно в любое время устанавливать надежную связь со всеми спутниками. Параллельные приемники быстро захватывают спутники при первом включении, им также нет равных в возможности принимать сигналы спутника в сложных условиях, таких как густая листва или город с высокими зданиями.

 

Источники погрешностей GPS навигаторов

Гражданский GPS навигатор имеет потенциальную погрешность определения месторасположения как результат совокупности погрешностей от следующих источников:

Задержки ионосферы и тропосферы – Сигнал спутника проходит сквозь атмосферу. Система использует встроенную «модель», которая высчитывает среднее, но не точное, значение задержки.

Отражение сигнала – встречается, когда сигнал перед тем, как достичь приемника, отражается от таких объектов как высотные здания или горы. Это увеличивает время прохождения сигнала, вызывая тем самым ошибку.

Ошибки часов приемника – поскольку не практично устанавливать атомные часы в приемниках GPS навигаторов, имеющиеся встроенные часы могут выдавать очень незначительные временные ошибки.

Орбитальные ошибки – также известны как «ошибки эфимериса», это неточности данных о расположении спутника.

Количество видимых спутников – чем больше спутников может «видеть» GPS навигатор, тем выше точность. Здания, рельеф местности, электронная интерференция, иногда даже густая листва могут блокировать прием сигнала, вызывая ошибки месторасположения или полное отсутствие показаний. Чем чище обзор, тем лучше прием. GPS навигаторы не будут работать в помещении (как правило), под водой или под землей.

Геометрия/затенение спутника – имеет отношение к относительному расположению спутников в любое заданное время. Идеальная геометрия спутников бывает, когда спутники располагаются под тупым углом по отношению друг к другу. Плохая геометрия является результатом расположения спутников на одной линии или в тесной группе.

Намеренное ухудшение сигнала спутника – намеренное ухудшение сигнала министерством обороны США известно как «Избирательная доступность» и предназначено для предотвращения использования с враждебными намерениями GPS сигналов высокой точности. Этим объясняется большинство ошибок. «Избирательная доступность» была отменена 2 мая 2000г. и в данный момент не применяется. Это значит, что вы можете ожидать от GPS навигатора точности в пределах 6 – 12 метров (около 20 – 40 футов).

Точность GPS навигатора может быть улучшена еще больше с применением дифференциального GPS приемника (DGPS), который может работать от нескольких возможных источников, уменьшая некоторые из описанных выше ошибок. Следующий раздел объясняет, что такое DGPS и как это работает.

DGPS – как это работает ?

Дифференциальные GPS работают с помощью расположения GPS приемника (называемого контрольной станцией) в месте с известными координатами. Поскольку контрольная станция знает свое точное месторасположение, она может определить ошибки спутниковых сигналов. Станция делает это путем измерения расстояния до каждого спутника с использованием принимаемых сигналов и сравнивает результат с фактическими показателями, рассчитанными на основе известного месторасположения. Разница между измеренным и рассчитанным расстоянием для каждого видимого спутника является «дифференциальной коррекцией».

Дифференциальные коррекции для каждого отслеживаемого спутника форматируются в сообщения и передаются DGPS приемникам. Далее дифференциальные коррекции применяются DGPS приемниками в вычислениях для уменьшения ошибок и улучшения точности. Уровень точности зависит от самого приемника и сходства его «окружающей среды» с условиями, в которых находится контрольная станция, а также его приближенности к станции. Приемник контрольной станции определяет составляющие погрешности и обеспечивает их коррекцию для GPS навигатора в реальном времени. Коррекция может передаваться по FM радиочастотам, через спутник или через маяк береговой охраны США. Обычно точность DGPS составляет 1 – 5 метров (около 3 – 16 футов).

WAAS

При полете есть одна вещь, которую все мы желаем получить: БЕЗОПАСНОСТЬ. Исключительная информация о месторасположении это ключ к безопасности полета. При дезориентирующих погодных условиях, когда визуальная навигация усложняется или вообще невозможна особое значение приобретает GPS навигация. Знакомьтесь с «Системой Панорамного обзора» или просто WAAS. Так называется сеть из 25 наземных контрольных станций, которые полностью покрывают территорию США, захватывая немного Канады и Мексики. Внедренные FAA (Федеральным Авиационным Агентством США) для целей авиации эти 25 контрольных станций расположены с предельной точностью. Они сравнивают измеренное GPS расстояние с известными значениями. Каждая контрольная станция подключена к базовой станции, которая собирает все коррекционные сообщения вместе и транслирует их через спутник. С помощью WAAS приемники GPS навигаторов могут обеспечивать точность 3 – 5 метров по горизонтали и 3 – 7 в высоту.

Картография и GPS навигация: где я нахожусь ?

Смотрели ли вы когда-нибудь на карту, желая определить свое точное месторасположение? Есть ли у вас или у ваших знакомых трудности с ориентировкой на местности? Нашли хорошее место для охоты или рыбалки и хотели бы легко вернуться сюда снова? GPS навигатор это то, что вам нужно, чтобы знать где вы и куда идете. GPS навигаторы GARMIN доступны с различными типами карт. Различают модели, не имеющие карты, с базовой картой и с детализированной картой.

 

GPS навигаторы без карты

GPS навигаторы без карты имеют экран с плоттером и могут предоставлять вид сверху, отображая ваше месторасположение относительно путевых точек, маршрутов, записей трека, которые вы создали. Плоттер поможет в определении месторасположения по отношению к указанным объектам. Большинство GPS навигаторов GARMIN смогут предоставлять такую информацию. Некоторые модели снабжены также дополнительной базой точек месторасположений городских объектов.

 

GPS навигаторы с базовыми картами

GPS навигатор GARMIN с базовой картой сможет, как правило, показать границы областей, автомобильные магистрали, основные линии метро, озера, реки, железные дороги, береговые линии, крупные города, аэропорты и съезды с основных магистралей федерального значения.

 

GPS навигаторы с детальными картами

С переходом к GPS навигаторам, у которых есть возможность загружать детальные карты, информация, отображаемая на экране, значительно шагнула вперед. Данные карт могут включать улицы деловых и жилых районов, рестораны, банки, заправки, достопримечательности, данные морской GPS навигации, места для спуска суден на воду, топографические детали, тропинки и многое, многое другое. Представьте, что у вас появилась возможность найти и проследовать по любому адресу в громадной базе данных, используя электронную карту, которая показывает детали улицы! Карты могут заноситься в прибор посредством картриджа или загрузки информации с диска. Некоторые GPS навигаторы используют картриджи компании GARMIN, которые уже содержат информацию о конкретных территориях или регионах. Другие используют чистый картридж, на который, подключившись к ПК с программным обеспечением MapSource, можно записать данные по интересующей вас территории. Еще одни GPS навигаторы могут иметь данные, записанные непосредственно в память, и не требовать картриджей.

GPS навигация: куда я иду ?

Путевые точки

Основной целью GPS навигации является предоставление возможности попасть из точки А в точку В настолько просто, насколько это возможно. GPS навигаторы GARMIN могут сохранять несколько сотен точек или месторасположений, называемых «путевыми точками». Ваш дом, аэропорт, стоянка машины, хорошие места для рыбалки/охоты или просто живописное местечко, которое вы бы хотели еще раз посетить – это только несколько примеров тех мест, которые можно сохранять и позже использовать для навигации. А что, если вы никогда там не были, но знаете координаты этого места или где оно находится на карте? С GPS навигаторами GARMIN вы сможете создавать путевые точки тех мест, где раньше не бывали, и проложить маршрут (GOTO) до нужного места.

GOTO

Использование данной функции также просто, как выбрать путевую точку направления и сказать GPS навигатору «идти туда». GPS навигатор нарисует прямую линию к данной точке и укажет направление указателем «стрелка», линией азимута, линией курса или предоставит «путь» в трехмерном режиме. Когда вы движетесь к определенному месту, GPS навигатор всегда отслеживает, где вы, куда движетесь, с какой скоростью, насколько далеко вы от пункта назначения и сколько времени вам потребуется, чтобы туда добраться! Но что, если на прямой между вами и местом назначения находятся горы, острова или глубокие ущелья? Вы можете сказать GPS навигатору двигаться по серии путевых точек в определенном порядке, называемых «маршрутом».

Маршруты

Помните картинку, которая получается, если соединять линиями точки? Вы рисуете линию из точки 1 к точке 2, 3 и так далее. Представьте, что путевые точки это те самые точки, которые необходимо соединить, а маршрут это соединяющая линия. Поскольку вам необходимо указывать свои номера точек, то обычно вы задаете: «Я хочу пойти отсюда туда-то, затем туда-то и т.д. в таком-то порядке».

Может быть картинка, которую вы увидите, получится и не очень, но зато это однозначно приведет вас туда, куда нужно! С GPS навигаторами GARMIN вы сможете увидеть, где вы были, в виде журнала пройденного пути (track log).

Журналы пройденного пути

По мере продвижения GPS навигатор будет автоматически записывать ваш маршрут в журнале пройденного пути. Представьте этот журнал как след из хлебных крошек, оставленный там, где вы прошли. То, как вы петляли лесными тропками, обходили разные объекты, каждое ваше движение сохраняется в GPS навигаторе. Если вы захотите пройти обратно тем же путем, достаточно просто активировать функцию TrackBack и GPS навигатор сам составит обратный маршрут. Вы можете даже сохранять эту информацию, чтобы использовать её снова и снова и знать, что вы двигаетесь в правильном направлении!

Географический и магнитный север

Думая о направлении, вам необходимо определиться, магнитный или географический север вы хотите использовать для ориентации. Географический север использует как ориентир 0° Северный Полюс, в то время как магнитный север использует магнитный северный полюс, находящийся фактически на севере Канады. Если вы используете GPS вместе с обычным компасом, то установите GPS навигатор в режим магнитного севера. Разница между географическим и магнитным севером в текущем местоположении известна как «магнитное отклонение». GPS навигаторы GARMIN имеют встроенную модель магнитного отклонения земли и могут автоматически устанавливать отклонение для вашего местонахождения в любой точке планеты. Вы также можете устанавливать отклонение вручную, используя пользовательские настройки.

Координатные сетки и форматы

В GPS навигации текущее месторасположение можно просматривать в виде координат. Поскольку различные карты и схемы используют различные форматы координат, GPS навигаторы GARMIN позволяют вам выбирать необходимую систему координат.

Самым типичным форматом, используемым GPS навигаторами GARMIN, является широта и долгота. В большинстве моделей есть возможность переходить и на другие системы координат.

UTM/UPS (Универсальная поперечная проекция Меркатора/Универсальная полярная стереографическая проекция) это простая в использовании метрическая сетка, которая чаще всего встречается на топографических четырехугольных картах геологической службы США (USGS). Сетка MGRS очень похожа на UTM/UPS и используется в основном на военных картах. В большинстве GPS навигаторов можно выбирать также несколько других сеток, включая настраиваемую пользователем (функция для продвинутых пользователей).

Системы координат

Карты и схемы это по своей сути сетки, созданные от опорной точки, называемой координатой. Много карт, которые используются до сих пор, были составлены десятки лет назад. Со временем технологии позволили нам улучшить геодезические навыки и создавать более точные карты. Тем не менее, существует необходимость адаптировать GPS навигаторы для использования старых карт. Большинство GPS навигаторов GARMIN включают более 100 систем координат, позволяя переключатся на соответствующие настройки карты. Использование неподходящей системы координат может стать причиной получения недостоверной информации о местоположении. На большинстве хороших навигационных карт указывается, какая система координат используется. Наиболее распространенными системами координат США являются WGS 84 (Всемирная геодезическая система 1984), NAD 83 (Североамериканская 1983), NAD 27 (Североамериканская 1927). Просматривая список систем координат, помните, что все они являются математическими моделями формы Земли, а не реальными картами, встроенными в GPS навигатор.

 

Дополнительные средства навигации

Даже учитывая то, что GPS навигация становится лучше с каждым днем, запасные средства навигации все равно не помешают. Владение бумажной картой, обычным компасом и приемами навигации является хорошей техникой безопасности. Помните, что GPS навигатор является только составляющей частью навигации и не должен быть единственным используемым навигационным инструментом.

 

Решение о покупке

Вы можете бесконечно решать, какой GPS навигатор и какие аксессуары покупать, особенно в сегодняшних условиях большого выбора на рынке GPS. Прежде всего, подумайте, для чего преимущественно вы будете использовать GPS навигатор: в автомобиле, самолете, лодке, на охоте, рыбалке, в походах, на велосипеде и пр. Поскольку все GPS навигаторы GARMIN могут показывать местоположение и основную навигационную информацию, то хорошим началом могут стать недорогие GPS навигаторы для начального уровня. Также все GPS навигаторы GARMIN имеют подсветку, что позволит вам использовать прибор как днем, так и ночью. Выбор GPS навигатора с большим количеством функций сможет предоставить абсолютно новый уровень возможностей GPS навигации и информации и местоположении при такой же простоте использования. При разработке изделий мы стараемся улучшать их, учитывать пожелания пользователей, и делать более дружественными к пользователю.

При выборе GPS навигатора учитывайте следующее:

Время работы от батарей — если вы собираетесь использовать прибор длительное время без дополнительного источника питания, не забудьте взять запасные батареи. GPS навигаторы с цветными дисплеями как правило быстрее расходуют батареи по сравнению с приборами, имеющими дисплеи с градацией серого.

Размер и вес – GPS навигаторы GARMIN доступны в большом количестве различных размеров и форм: маленькие ручные GPS навигаторы, графопостроители с большими дисплеями, модели, встраиваемые на панели.

Конфигурация антенны – Вы собираетесь использовать GPS навигатор в основном на улице? А как на счет машины? GARMIN предоставляет продукты как с внутренними, так и с внешними подключаемыми антеннами.

Возможность DGPS – Вам необходима самая лучшая точность, которая только возможна? Если да, в этом вам помогут дифференциальные GPS (DGPS) приемники.

Цена — Какой тип GPS навигатора подходит вам по цене? Имейте в виду, что все GPS навигаторы GARMIN могут позволить вам отмечать путевые точки и вести до нужного места. Остальное – дело выбора подходящих функций. В любом случае, GARMIN сможет удовлетворить любые ваши заспросы от самых обычных GPS навигаторов до последних новинок в этой области.

 

Выбор аксессуаров

Все GPS навигаторы GARMIN поставляются в базовом комплекте, достаточном для работы. Приобрести дополнительные аксессуары вы может у региональных дистрибьюторов GARMIN или на сайте www.garmin.com

Среди аксессуаров имеется следующее:

Внешняя антенна: если встроенная антенна экранируется, скажем, крышей автомобиля, то вам поможет внешняя антенна, как и в других случаях, когда имеются некоторые проблемы с чистым обзором неба.

Внешний источник питания – даже при наличии хороших аккумуляторов в большинстве GPS навигаторов GARMIN, всегда лучше лишний раз их по экономить, используя питание от автомобильного прикуривателя или от сети переменного тока.

Крепления – Когда вам необходимы свободные руки, могут пригодится крепления. Большинство GPS навигаторов поставляются вместе с креплением, также можно приобрести несколько дополнительных креплений.

Программное обеспечение — если есть необходимость сохранять путевые точки или планировать маршрут, MapSource это то, что вам нужно. Это ПО позволяет просматривать цветные карты на ПК с функциями панорамного просмотра и масштабирования. Можно создавать путевые точки и маршруты, а затем передавать их с ПК на GPS навигатор. Такая функция поддерживается почти всеми GPS навигаторами GARMIN. Это очень удобно для планирования походов, деловых поездок, отпусков и пикников не выходя из дома.

Для GPS навигаторов, поддерживающих функцию передачи информации, можно также дополнительно загружать карты интересующих территорий (см. спецификацию на прибор для определения наличия данной функции). Для этого GPS навигатор просто подключается к компьютеру с помощью соединительного кабеля. Далее необходимо выбрать нужную карту и кликом мышки информация загрузится в GPS навигатор. Некоторым GPS навигаторам для загрузки необходимы чистые картриджи размером 8, 16, 32, 64 или 128 Мб.

Все продукты MapSource включают функции управления путевыми точками и маршрутами. Вид вашей деятельности и предпочтения детализации карт определят, какое именно ПО MapSource вам необходимо.

G-Charts (морские карты) – если вам необходимо больше данных для морской GPS навигации, GARMIN предлагает вам два типа карт: наземные и прибрежные стандартных и микро размеров. Прибрежные карты содержат информацию о рельефе дна, аэронавигационных устройствах, порты с названиями гаваней, городов, заливов, опасных мест и прочего. Наземные содержат также такие детали, как границы штатов, магистрали, места спусков суден на воду, расположение различных служб.

 

Источник:  vodyanoy.net

Полное применение описанного выше можно найти в современной автомагнитоле в режиме навигатора, автомагнитолу можно купить здесь:

navi-blog.ru

Как работает GPS | Keddr.com

Мы каждый день пользуемся системами навигации. Кому-то нужно проложить маршрут в незнакомое место, кто-то ищет новые пути дом-работа-дом, кто-то просто страдает топографическим кретинизмом. Мы редко задумываемся о том, как это работает и вспоминаем, что это как-то связано со спутниками только тогда, когда все рьяно тупит и маршрут не строится. А все же, как это работает и нужен ли для корректной работы GPS Интернет?

Нет, Интернет не нужен. С этим разобрались. На самом деле, вокруг нашей планеты кружит 24 спутника (запущено почти 60, но не все уже в работе), с помощью которых каждый из нас может определить свое местоположение. У каждого спутника есть своя орбита, и за космические сутки (23 часа 56 минут) он успевает облететь Землю два раза. И все же, как люди додумались до создания спутниковой системы?

В 80-х российские учёные занялись разработкой системы навигации по спутникам, которую в будущем назовут “ГЛОНАСС”. Первый спутник со стороны России был запущен в 1982 году, но идея не взлетела, потому что финансирование закончилось. Зато в это время подсуетились в США, заметив, что их соперник уже во всю выводит что-то на орбиту. Их проект начался еще в 1973 году, но шел неспешно, не торопясь, а после того, как “противник” вплотную занялся делом, американцы до 1993 года быстренько вывели  на орбиту Земли 24 спутника и покрыли всю площадь планеты сигналом. Изначально, GPS задумывался исключительно как военная технология, но в процессе работы над проектом было решено дать возможность каждому использовать систему. Для этого абсолютная точность наведения была изменена с помощью специального алгоритма.

Принцип работы

24 спутника на высоте около 20 тысяч километров, вокруг планеты они расположены так, что в любой момент времени из любой точки Земли точно видно 4 спутника, максимум их может быть видно 12. В каждом спутнике имеются атомные часы, точность которых определена до наносекунд. Любой объект на Земле или над ней (самолеты, к примеру) определяют свое положение в зависимости от получаемых сигналов времени от разных спутников. Расстояние от трех спутников определяет точку на земном шаре. Для корректного определения вашего местоположения необходимы как минимум 3 спутника, но чем их больше, тем точность выше. Три сигнала дают нам три точки, вокруг которых мы можем начертить воображаемую сферу с радиусом, равным расстоянию до объекта. Пересечение двух сфер дает окружность возможных положений искомого объекта, а наличие третьей сферы дает возможность свести данные до одной конкретной точки – вашего местоположения. В целом каждое устройство с GPS-приемником ориентируется на данные от 3 до 12 спутников. Когда пользователь задает запрос (в машине, в смартфоне, просто gps-навигатор), он получает “ответочку” от трех-четырех и больше спутников с орбиты. Сигнал содержит данные о координатах спутника и времени на его часах. Получая сигналы из разных источников, учитывая разницу времени на Земле и в космосе, зная скорость передачи радиоволн, приемник рассчитывает с помощью уравнения расстояние до спутника (называется она псевдодальность) и, анализируя данные, определяет точное местоположение. Таким образом каждый человек может прокладывать маршруты и находить себя в пространстве в режиме реального времени.

Интересным моментом в работе GPS является вопрос коррекции времени. Ведь точность в вопросах определения геолокации важна, особенно если речь идет о военной технологии, пусть она и стала общественным достоянием. Для корректной работы спутников была учтена теория относительности. Из-за того, что с Земли мы видим спутники в движении, специальная теория относительности утверждает, что часы на них должны идти медленнее на 7 микросекунд из-за меньшей скорости хода времени. Кроме того, положение спутника относительно Земли заставило ученых брать в расчет кривизну пространства и времени, ведь масса планеты меньше влияет на часы на спутнике, чем на ее территории (ход часов, расположенных ближе к массивному объекту, кажется медленнее, чем часов, находящихся дальше от объекта). Короче говоря, с Земли кажется, что время на спутнике идет медленнее с разницой в 38 миллисекунд в сутки. Ведь даже разность данных на 20 наносекунд привела бы к погрешностям в вычислениям геолокации каждые пару минут, и эта ошибка накапливалась бы. К примеру, за день точность определения местоположения объектов сбилась бы приблизительно на 10 км!

Конечно, погрешности имеются. Каждый знает, что сигнал очень плохо считывается в помещении, ведь он плохо проходит через бетонные стены и металлические укрепления, в тоннеле или подвале не принимается совсем. Даже повышенная облачность может сбить точность информации. К тому же, если часы вашего GPS идут неверно, это тоже может привести к неправильным результатам.

 

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

keddr.com


Смотрите также