Турбо компрессор


Принцип работы турбокомпрессора - основы функционирования турбокомпрессора

Турбокомпрессор автомобиля, имеющий также название газотурбинный нагнетатель, представляет собой осевой либо центробежный компрессор, который функционирует совместно с турбиной. Это, пожалуй, главный конструктивный элемент, применяемый в газотурбинных силовых агрегатах.

Принцип работы автомобильного турбокомпрессора

Схема турбокомпрессора

Турбокомпрессор является сложным устройством, используемым в целях увеличения мощностных характеристик двигателя благодаря большему количеству воздуха, который подается в цилиндры. Принцип работы турбокомпрессора сводится к следующему:

Что такое турбо-яма?

Стоит добавить, что крыльчатка турбокомпрессора способна развивать до двухсот тысяч оборотов в минуту, благодаря чему данное устройство отличается большой инерционностью или, говоря иначе, имеет «турбо-яму», которая проявляется при резком нажатии на педаль газа. В этот момент крыльчатка медленно приводится в движение, и приходится некоторое время ждать, чтобы автомобиль начал набирать скорость.

Автомобиль медленно набирает скорость

Этот эффект имеет продолжительность всего несколько секунд, но, тем не менее, он не доставляет особого удовольствия при разгоне машины. На сегодняшний день производители, так или иначе, смогли устранить эффект «турбо-ямы» путем установки двух перепускных клапанов. Один предназначен для выработанных газов, задача второго состоит в том, чтобы перепускать избыток воздуха в трубопровод турбокомпрессора из впускного коллектора.

Благодаря этой системе обороты крыльчатки при сбросе газа уменьшаются в замедленном темпе, в то время как при резком нажатии на педаль акселератора происходит поступление воздушной массы в двигатель в полном объеме.

«Битурбо» и «Твинтурбо»

Битурбо и твинтурбо

Немногие автомобилисты знакомы с такими понятиями, как «битурбо» и «твинтурбо». Первое означает, что в машине установлено два турбокомпрессора, которые расположены параллельно друг другу. Второе указывает на то, что автомобиль оснащен тремя турбокомпрессорами. Как правило, такое дополнительное оснащение встречается на спортивных автомобилях.

Работа сразу нескольких турбокомпрессоров, которые отличаются разными размерами, приводит к тому, что один из них характеризуется большей инерцией, а другой – меньшей. Это дает значительный приток мощности мотору, поскольку первый газотурбинный нагнетатель функционирует при малых оборотах двигателя, а второй и третий – при оборотах, приближенных к максимальным.

При установке нескольких турбокомпрессоров не обойтись без интеркулера, задача которого состоит в охлаждении подаваемого во впускной коллектор воздуха. Подача воздушной массы в двигатель не может осуществляться бесконечно, поскольку при нагреве повышается ее плотность. Интеркулер, который представляет собой дополнительный радиатор, как раз и предусмотрен для того, чтобы охлаждать поступающий в мотор воздух.

Когда стоит устанавливать турбокомпрессор?

Установка оборудования

Как правило, намерение установить газотурбинный нагнетатель на автомобиль вызвано желанием улучшить его мощностные характеристики. Машины, которые комплектуются силовыми агрегатами с большим количеством лошадиных сил (как правило, от 100 л.с. и выше), не нуждаются в оснащении турбокомпрессором. Они и без него характеризуются хорошей динамикой и прекрасно проявляют себя как в условиях города, так и на трассе.

Наиболее часто такое оборудование устанавливается на модели отечественного автопрома, поскольку они не отличаются большой мощностью. Целесообразно внедрять турбокомпрессор в малолитражки. Прирост лошадиных сил будет хоть и не слишком существенным, но, тем не менее, даже пара единиц к мощности автомобиля позволят немного улучшить его разгон.

Разгон улучшится

Турбокомпрессоры являются весьма популярным приобретением для тех, кто занимается автомобильным тюнингом. Пожалуй, под капотом любой профессионально тюнингованной машины можно увидеть газотурбинный нагнетатель и не один, потому что это одно из эффективных средств, позволяющих значительно увеличить мощность автомобиля.

Итак, узнав о том, как работает турбокомпрессор, вы можете принять решение о его установке на свою машину. Если вы далеки от автомобильного тюнинга, и у вас нет желания усовершенствовать технические возможности своего личного транспорта, который полностью устраивает вас и в стоковом варианте, то его, безусловно, следует оставить в первозданном виде.

Если же вы не можете обойтись без экспериментов над улучшением характеристик своего автомобиля и ищите способы увеличения его динамики, то установка дополнительного турбокомпрессора частично поможет вам в этом. Это эффективное и сравнительно недорогое средство, позволяющее добавить несколько единиц к мощности своей машины, чтобы чувствовать себя более уверенно при совершении обгона других транспортных средств, что довольно часто требуется на скоростных трассах.

Видео

Интересное видео о производстве турбокомпрессора:

Работа турбокомпрессора в деталях показана ниже:

auto-wiki.ru

Автомобильный турбокомпрессор: принцип работы и назначение

С момента появления двигателя внутреннего сгорания и использования его на автомобильном транспорте, конструкторы бились обеспечением максимально возможно выхода мощности при минимальных переработках силовой установки.

Содержание статьи

Назначение автомобильного турбокомпрессора

Принцип работы турбокомпрессора

На данный момент решением данной проблемы является использование турбокомпрессора, он же турбонаддув, турбонагнетатель. Суть работы данного устройства – обеспечение повышенного давления воздуха, подаваемого в цилиндры силовой установки. Благодаря применению турбокомпрессора конструкторам удалось повысить выходную мощность без надобности в конструктивном изменении двигателя, увеличении объема камер сгорания и оборотов коленчатого вала. При этом потребление топлива у турбированного мотора будет ниже за счет более полного его сгорания в цилиндрах.

Турбокомпрессор на данный момент устанавливается и на бензиновые, и на дизельные моторы. Но при этом установка нагнетателя более эффективна на дизельных установках. Связано это с особенностями работы такого мотора – у дизеля степень сжатия в цилиндрах почти вдвое больше, чем у бензиновых, а скорость вращения коленчатого вала – меньше.

Риск использования нагнетателя на бензиновом моторе связан с возможным образованием детонационного сгорания в цилиндрах из-за резкого возрастания количества оборотов коленчатого вала. При этом в бензиновом моторе наддув работает в более жестких температурных условиях. Температура отработавших газов в бензиновом моторе выше, чем у дизеля, а поскольку наддув использует энергию отработанных газов, то у бензинового агрегата нагнетатель больше разогревается.

Существующие турбонаддувы могут конструктивно отличаться, но все они включают в себя определенные составные части.

Конструкция турбокомпрессора

Принцип работы системы турбонаддува

Турбонаддув включает в свою конструкцию воздухозаборник с воздушным фильтром, дроссельную заслонку, турбокомпрессор, интеркулер (охладитель наддувочного воздуха), впускной коллектор и элементы управления. Все эти элементы связаны между собой патрубками и напорными шлангами.

Основным элементом всей этой системы является турбокомпрессор, поскольку он обеспечивает нагнетание воздуха под давлением в систему. Состоит он из двух колес, посаженных на один ротор. Корпус компрессора состоит из двух камер, в каждую из которых помещено свое колесо.

Автомобильный турбокомпрессор в разрезе

Первое колесо компрессора – турбинное. Оно воспринимает на себя энергию отработавших газов и через ротор перелает его на другое колесо. То есть, турбинное колесо является ведущим. Поскольку оно работает с разогретыми газами, то изготавливается это колесо, и также его камера из жаропрочных материалов.

Второе колесо – компрессорное. Оно получает вращение от ведущего колеса и является ведомым. Данное колесо засасывает через воздухозаборник воздух, сжимает его, повышая давление, и перепускает его дальше.

Свободное вращение ротора обеспечивается наличием подшипников скольжения. Данные подшипники – плавающие, то есть между ними, ротором и корпусом обеспечивается зазор. Смазка этих подшипников производится от системы смазки мотора. Чтобы масло не вытекало наружу, и не попадало в воздух или обработанные газы, в конструкции используются уплотнительные кольца.

1 – крыльчатка турбины; 2 – крыльчатка компрессора; 3 – вал; 4 – подшипниковый узел; 5 – штуцер подачи масла; 6 –регулятор. давления наддува.

В большинстве турбонаддувов используется воздушная система охлаждения, но на некоторых бензиновых двигателях встречается и жидкостная система охлаждения компрессора, входящая с состав системы охлаждения двигателя.

Интеркулер включен в систему турбонаддува для обеспечения охлаждения сжатого воздуха. Во время работы турбокомпрессора воздух разогревается, что приводит к снижению его плотности. При охлаждении плотность снова возрастает и повышается давление. Интеркулер представляет собой обычный радиатор. Он может охлаждать воздух как при помощи воздушного, так и жидкостного охлаждения. После интеркулера воздух подается во впускной коллектор, а затем уже – в цилиндры.

В турбонаддув входят элементы управления, которые обеспечивают правильное функционирование. Главным элементом управления является регулятор давления. Данный регулятор представляет собой перепускной клапан. Этот клапан регулирует количество подаваемых отработанных газов на турбинное колесо. Данный клапан работает на основе показаний датчика давления наддува, входящий в систему управления двигателем. Этот клапан обеспечивает подачу только необходимого количества отработанных газов, остальные пуская в обход турбокомпрессора.

Также в систему управления турбонаддува могут входить еще один клапан– предохранительный, который устанавливается за компрессором. Он обеспечивает защиту от возможных скачков давления в системе при резком закрытии дросселя. Этот клапан может либо стравливать избыток давления, либо перегонять лишний воздух на вход в турбокомпрессор.

Принцип работы турбокомпрессора и его недостатки

Видео: Принцип работы турбокомпрессора (турбины)

Принцип работы турбонаддува достаточно прост: выхлопные газы поступают в камеру турбинного колеса и заставляет его вращаться. Вращаясь, он чрез ротор приводит в движение турбокомпрессор. Тот в свою очередь засасывает воздух, сжимает его и подает в интеркулер для охлаждения. После прохождения интеркулера воздух под давлением подается во впускной коллектор. Работа наддува контролируется и регулируется регулятором давления, который дозирует количество отработанных газов, поступающих в камеру турбинного колеса. Благодаря этому осуществляется возможность изменения производительности турбонаддува в зависимости от вращения коленчатого вала.

Но такая конструкция имеет один существенный недостаток – при резком открытии дроссельной заслонки турбонаддув не успевает обеспечить необходимое количество воздуха для подачи в цилиндры. Для этого ему требуется определенное время. Выливается это в образование негативного эффекта, который получил название «турбояма». То есть, водитель резко нажимает на педаль газа, рассчитывая резко ускориться, но из-за нехватки воздуха ускорения сразу не происходит. Автомобиль начнет набирать обороты только после того, как наддув обеспечит необходимое количество воздуха. Вслед за «турбоямой» возникает еще один негативный эффект – «турбоподхват». Происходит он после «турбоямы» и сопровождается увеличенным давлением в турбонаддуве из-за интенсивной работы компрессора.

Для решения проблемы появления «турбоямы» и «турбоподхвата» существует несколько способов. Первый из них – использование комбинированного наддува (состоящего из механического нагнетателя и турбонагнетателя). На начальном этапе при резком нажатии на педаль газа давление в выпускном коллекторе обеспечивает механический нагнетатель, работа которого не зависит от выхлопных газов, после в работу вступает турбонагнетатель, а механический отключается.

Видео: Устройство и неисправности турбины

Вторым способом преодоления «турбоямы» является использование двойного турбонаддува, так называемого «twin-turbo». Двойной турбонаддув обычно применяется на V-образных двигателях.

И третий способ – использование турбонаддува с изменяемой геометрией. В такой турбине воздушный поток оптимизируется за счет изменения площади канала, по которому подается воздух.

Неисправности и их диагностика

При своей достаточно простой конструкции, у турбонаддува может возникнуть большое количество неисправностей. Основными из них являются:

О многих возникших проблемах с работой турбонаддува могут просигнализировать выхлопные газы. Синий дым из трубы будет указывать на попадание масла в воздух, черный – на утечку воздуха, а белый – на засорение отводного масляного канала.

Также о неисправностях с турбонаддувом может рассказать сам двигатель и турбонаддув. Потеря динами разгона будет указывать на проблемы с управлением турбиной, свист при работе мотора будет сигнализировать об утечке воздуха между компрессором и двигателем, а деформация корпуса будет сопровождаться скрежетом.

Несмотря на свои недостатки и неисправности все больше автомобилей оснащаются турбокомпрессорами, поскольку данное устройство – действительно полезное.

Поделитесь с друзьями:

avtomotoprof.ru

Турбокомпрессор — Энциклопедия журнала "За рулем"

Турбокомпрессор работает под воздействием потока горячих отработавших газов, вращающих его ротор с частотой 150–230 тысяч об/мин. В этих условиях даже небольшое нарушение работы приводит к его повреждению.

Об­щие све­де­ния

Мощ­ность, раз­ви­ва­е­мая пор­ш­не­вым дви­га­те­лем вну­т­рен­не­го сго­ра­ния, за­ви­сит от на­пол­не­ния ци­лин­д­ров го­рю­чей сме­сью. С уве­ли­че­ни­ем ча­с­то­ты вра­ще­ния ко­лен­ча­то­го ва­ла мощ­ность до­сти­га­ет мак­си­маль­ной ве­ли­чи­ны1, а за­тем на­чи­на­ет па­дать. Это свя­за­но с тем, что с рос­том ско­ро­сти воз­душ­но­го по­то­ка на­пол­не­ние умень­ша­ет­ся из-за уве­ли­че­ния со­про­тив­ле­ния впу­ск­но­го тру­бо­про­во­да. Для улуч­ше­ния мощ­но­ст­ных ха­рак­те­ри­с­тик мо­то­ров ис­поль­зу­ют над­дув.Над­дув — на­гне­та­ние воз­ду­ха в ци­лин­д­ры дви­га­те­ля для уве­ли­че­ния их на­пол­не­ния го­рю­чей сме­сью. Из­бы­точ­ное дав­ле­ние вы­ше ат­мо­сфер­но­го по­лу­ча­ют с по­мо­щью раз­лич­ных на­гне­та­те­лей (ком­прес­со­ров), что поз­во­ля­ет по­вы­сить мощ­ность мо­то­ра2 при тех же га­ба­ри­тах и мас­се. Ком­прес­со­ры с ме­ха­ни­че­с­ким при­во­дом от ко­лен­ча­то­го ва­ла дви­га­те­ля тре­бу­ют до­пол­ни­тель­ных за­трат топ­ли­ва и име­ют ог­ра­ни­чен­ное при­ме­не­ние.Тур­бо­ком­прес­со­ры при­во­дят­ся в дей­ст­вие не­ис­поль­зу­е­мой энер­ги­ей от­ра­бо­тав­ших га­зов. Они по­лу­чи­ли в на­сто­я­щее вре­мя на­и­боль­шее рас­про­ст­ра­не­ние, так как не тре­бу­ют до­пол­ни­тель­но­го рас­хо­да топ­ли­ва в от­ли­чие от ком­прес­со­ров с ме­ха­ни­че­с­ким при­во­дом. Тур­бо­ком­прес­со­ры, как пра­ви­ло, снаб­жа­ют­ся ох­ла­ди­те­лем.Ох­ла­ди­тель над­ду­воч­но­го воз­ду­ха ус­та­нав­ли­ва­ет­ся на вы­хо­де из тур­бо­ком­прес­со­ра для умень­ше­ния тем­пе­ра­ту­ры го­рю­чей сме­си и уве­ли­че­ния ее плот­но­с­ти. При этом по­вы­ша­ет­ся на­пол­не­ние ци­лин­д­ров, сни­жа­ет­ся теп­ло­вая на­груз­ка на де­та­ли дви­га­те­ля и умень­ша­ет­ся со­дер­жа­ние окис­лов азо­та в от­ра­бо­тав­ших га­зах3.

Ус­т­рой­ст­во тур­бо­ком­прес­со­ра вклю­ча­ет в се­бя три ос­нов­ные ча­с­ти — кор­пус тур­би­ны, кор­пус под­шип­ни­ков с ро­то­ром в сбо­ре и кор­пус ком­прес­со­ра.

Турбокомпрессор1 — Корпус подшипников;2 — Турбинное колесо;3 — Перепускной клапан;4 — Корпус турбины;5 — Масляные каналы;6 — Вал ротора;7 — подшипник скольжения;8 — компрессорное колесо;9 — корпус компрессора;10 — пневмопривод перепускного клапана

Ог­ра­ни­че­ние дав­ле­ния над­ду­ва осу­ще­ств­ля­ют с це­лью за­щи­тить дви­га­тель от пе­ре­груз­ки.Пе­ре­пу­ск­ной кла­пан, уп­рав­ля­е­мый пнев­ма­ти­че­с­ким при­во­дом, при оп­ре­де­лен­ной ве­ли­чи­не дав­ле­ния над­ду­ва на­прав­ля­ет часть от­ра­бо­тав­ших га­зов в об­ход тур­би­ны.

По­во­рот­ные ло­пат­ки, ус­та­нов­лен­ные в кор­пу­се тур­би­ны не­ко­то­рых ком­прес­со­ров, поз­во­ля­ют из­ме­нять ее про­ход­ное се­че­ние и со­от­вет­ст­вен­но дав­ле­ние над­ду­ва.

Турбокомпрессор с изменяемым проходным сечением корпуса турбины:1 — турбинное колесо2 — поворотные лопатки

Ра­бо­та тур­бо­ком­прес­со­ра про­ис­хо­дит под воз­дей­ст­ви­ем по­то­ка от­ра­бо­тав­ших га­зов, вра­ща­ю­щих тур­бин­ное ко­ле­со и вал ро­то­ра. Ус­та­нов­лен­ное на том же ва­лу ком­прес­сор­ное ко­ле­со на­гне­та­ет воз­дух во впу­ск­ной тру­бо­про­вод. На не­ко­то­рых ре­жи­мах ра­бо­ты мо­то­ра про­яв­ля­ют се­бя осо­бен­но­с­ти тур­бо­над­ду­ва.

Тур­бо­яма

"Тур­бо­яма” (тур­бо­лаг)” — за­держ­ка уве­ли­че­ния обо­ро­тов и мощ­но­с­ти дви­га­те­ля при рез­ком на­жа­тии на пе­даль ак­се­ле­ра­то­ра (“га­за”). Эф­фект свя­зан с инер­ци­он­но­с­тью си­с­те­мы — тре­бу­ет­ся вре­мя, что­бы ус­ко­рив­ший­ся по­ток вы­хлоп­ных га­зов рас­кру­тил тур­би­ну. Ос­нов­ной спо­соб ус­т­ра­не­ния — сни­же­ние раз­ме­ров и мас­сы вра­ща­ю­щих­ся де­та­лей для об­лег­че­ния их бы­ст­ро­го рас­кру­чи­ва­ния. Од­на­ко это ве­дет к сни­же­нию про­из­во­ди­тель­но­сти тур­бо­ком­прес­со­ра и для со­хра­не­ния не­об­хо­ди­мо­го да­в­ле­ния над­ду­ва при­хо­дит­ся уве­ли­чи­вать ча­с­то­ту вра­ще­ния ро­то­ра или при­ме­нять кор­пус тур­би­ны с из­ме­ня­е­мым про­ход­ным се­че­ни­ем.

Тур­бо­под­хват

“Тур­бо­под­хват” воз­ни­ка­ет при уве­ли­че­нии обо­ро­тов и ско­ро­сти дви­же­ния вы­хлоп­ных га­зов по­сле пре­одо­ле­ния “тур­бо­ямы”. Вслед­ст­вие это­го рез­ко уве­ли­чи­ва­ет­ся дав­ле­ние над­ду­ва, со­зда­ва­е­мо­го тур­бо­ком­прес­со­ром и, со­от­вет­ст­вен­но, мощ­ность дви­га­те­ля. Что­бы ис­клю­чить пе­ре­груз­ку де­та­лей кри­во­шип­но-ша­тун­но­го ме­ха­низ­ма и де­то­на­цию4 (в бен­зи­но­вых дви­га­те­лях), не­об­хо­ди­мо та­кое же рез­кое ог­ра­ни­че­ние дав­ле­ния над­ду­ва.На­и­бо­лее эф­фек­тив­ный спо­соб ус­т­ра­не­ния этих не­до­стат­ков — ос­на­ще­ние со­вре­мен­ных тур­бо­ком­прес­со­ров эле­к­трон­ной си­с­те­мой уп­рав­ле­ния.

Ре­ко­мен­да­ции

Экс­плу­а­ти­руя ав­то­мо­биль с тур­бо­ком­прес­со­ром, же­ла­тель­но ори­ен­ти­ро­вать­ся на сле­ду­ю­щие пра­ви­ла.

1 Двигатель развивает максимальную мощность при определенной частоте вращения, именуемой “обороты максимальной мощности”.2 В отличие от “наддувных”, двигатели без наддува иногда называют “атмосферные”.3 Некоторые из окислов азота являются токсичными и даже канцерогенными.

wiki.zr.ru

Как работает турбокомпрессор. » Хабстаб

Турбокомпрессоры часто применяются в дизельных автомобилях. Турбина может существенно увеличить мощность автомобиля, без особого увеличения веса, этот факт делает её очень популярной. Давайте вкратце рассмотрим как это происходит.В процессе горения участвует кислород,  а турбокомпрессор позволяет сжимать воздух,  поступающий в цилиндр. Таким образом, становится возможно больше воздуха поместить в цилиндр, а больший объём воздуха позволит большему количеству топлива сгореть. Теоретически, теперь каждый цилиндр может отдать больше мощности при сгорании топлива и увеличить соотношение мощность-вес двигателя.Турбокомпрессор, используя энергию отработавших газов, раскручивает турбину, которая раскручивает воздушный насос. Скорость вращения турбины достигает 150 000 оборотов в минуту,  что примерно в 30 раз превышает скорость вращения двигателя автомобиля.

Работа двигателя с турбокомпрессором .Самый простой способ увеличить мощность двигателя, это увеличить количество воздуха и топлива, поступающего в двигатель. Один из способов это добавление цилиндров, или увеличение их объёма. Иногда, внести такие изменения нет возможности и проще установить турбину.Турбокомпрессор позволяет двигателю сжигать больше топлива,  «упаковывая» больше воздуха в уже имеющийся цилиндр. Типичное значение увеличения давления составляет от 6 до 8 фунтов на квадратный дюйм. При нормальном атмосферном давлении 14,7 фунта на квадратный дюйм, несложно подсчитать, что мы получаем прирост воздуха,  поступающего в двигатель, более 50%.Теоретически мы ожидаем получить прирост мощности около 50%. В реальной жизни можно получить от 30 до 40%. Одной из причин такого несовпадения является то, что для раскрутки турбины требуется энергия. Устройство турбокомпрессора.Турбокомпрессор крепится к выпускному коллектору двигателя. Выхлопные газы раскручивают турбину, которая работает как газотурбинный двигатель.Турбина соединена валом с компрессором, который располагается между воздушным фильтром и впускным коллектором. Компрессор — это тип центробежного насоса, который втягивает воздух своими лопастями и толкает его наружу. Он увеличивает давление воздуха, поступающего в цилиндр. Выхлопные газы проходят через лопасти турбины, заставляя её вращаться, и чем больше выхлопных газов проходит через лопасти, тем больше скорость вращения.Для вращения со скоростью 150 000 об/м вал должен хорошо поддерживаться.Большинство подшипников просто не выдержат таких скоростей и разрушатся, поэтому используются гидравлические подшипники. Это тип подшипника в котором непосредственную нагрузку от вала воспринимает тонкий слой жидкости. Таким образом, решается два вопроса:  первый — это охлаждение вала и остальных частей турбогенератора, второй — это уменьшение трения между валом и другими частями.

Основные части турбокомпрессора.Одна из проблем связанная, с турбокомпрессором состоит в том, что он не обеспечивает мгновенное увеличение мощности при нажатии на педаль газа. Один из способов уменьшить это отставание — это уменьшить инерцию вращающихся частей,  в основном за счёт уменьшения их массы и размера. Это позволит турбине и компрессору быстрее ускоряться. Меньший турбокомпрессор будет обладать лучшей приёмистостью на низких оборотах двигателя, но не будет в состоянии дать значительный прирост на высоких оборотах. Также существует опасность разрушения турбины и компрессора на слишком больших оборотах.

Большинство автомобильных турбокомпрессоров оснащены перепускными клапанами (wastegate),  который позволяет использовать турбокомпрессор меньшего размера, сокращая задержку и предотвращая слишком быстрое вращение на высоких оборотах. Wastegate — это клапан, который позволяет выхлопным газам обходить турбину,  он чувствителен к давлению наддува. Если давление становится слишком высоким, это показатель того, что турбина вращается слишком быстро, таким образом, перепускной клапан создаёт путь для обхода выпускными газами, лопастей турбины.Некоторые турбокомпрессоры используют шариковые подшипники для поддержки вала турбины. Но это необычные шариковые подшипники, это высоко прецизионные шариковые подшипники, сделанные из улучшенных материалов, способные справиться с высокой скоростью и температурой. Они позволяют валу турбины вращаться с меньшим трением, чем гидродинамические подшипники, применяемые в большинстве турбокомпрессоров.Они также позволяют слегка уменьшить и облегчить используемый вал,  что позволяет турбине быстрее ускоряться,  ещё больше уменьшая отставание.Керамические лопасти турбины легче чем металлические,  применяющиеся в большинстве турбокомпрессоров,  они тоже способствуют более быстрому ускорению и уменьшению задержки. В некоторых двигателях применяют два турбокомпрессора разных размеров. Меньший раскручивается очень быстро, тем самым уменьшая отставание,  а больший схватывает на более высоких оборотах, чтобы обеспечить больший прирост мощности.При сжатии давление воздуха увеличивается,  а температура повышается. Чтобы увеличить мощность двигателя, необходимо увеличить количество молекул воздуха в цилиндре, необязательно повышая давление. Интеркулер — это система для охлаждения нагнетаемого воздуха, является дополнительным компонентом,  который выглядит как радиатор. Входящий воздух движется через герметичные проходы внутри охладителя, в то время как холодный воздух, нагнетаемый лопастями вентилятора, обдувает радиатор. Интеркулер дополнительно увеличивает мощность двигателя, охлаждая нагнетаемый турбиной воздух, прежде чем он попадёт в двигатель.Турбокомпрессор помогает двигателю работать на высоте, где воздух менее плотный. Обычные двигатели будут иметь пониженную мощность на больших высотах, потому что в двигатель на каждом такте будет поступать меньше кислорода.На старых авто с карбюратором, автоматически увеличивается подача топлива при увеличении воздуха,  поступающего в цилиндры. В современных инжекторных двигателях то же есть такой механизм, он основан на анализе выхлопных газов с помощью датчиков кислорода, так же известных как лямбда-зонд.Если турбокомпрессор поставить на инжекторную машину, система топливоподачи может не обеспечить достаточное количество топлива. Причин может быть две: либо программное обеспечение не позволит сделать это, либо топливный насос. А вы знаете что...средняя температура возле турбинного колеса: в дизельных двигателях 800 градусов Цельсия, а в бензиновых 1000 градусов! Такой температуры хватит чтобы расплавить стекло! ротор турбокомпрессорного двигателя нового поколения может вращаться со скоростью до 220000 об./мин. Для примера ротор реактивного двигателя самолёта Боинг 747 крутится со скоростью 7000 об./мин.Турбокомпрессор раскручивается с 20000 до 150000 менее чем за 1 сек.  

hubstub.ru

Как работает турбокомпрессор

Как работает турбокомпрессор   Содержание статьи  
  1. Введение
  2. Турбокомпрессоры и двигатели
  3. Устройство турбокомпрессора
  4. Детали турбокомпрессора
  5. Использование двух турбокомпрессоров и других турбо деталей
  6. Узнать больше
  7. Читайте также » Все статьи про работу двигателя
    В этой статье мы узнаем, каким образом турбокомпрессор увеличивает мощность двигателя в жестких условиях эксплуатации. Мы также узнаем о том, как регуляторы давления наддува, керамические лопатки турбины и шариковые подшипники улучшают работу турбокомпрессора. Турбокомпрессоры являются своего рода системой наддува. Они сжимают воздух, поступающий в двигатель (читайте статью "Как работает автомобильный двигатель" для описания движения воздуха в обычном двигателе). Преимущество сжатия воздуха состоит в том, что при этом можно впустить больше воздуха в цилиндр, и, соответственно, больше топлива. Таким образом, при каждом взрыве в цилиндрах высвобождается больше энергии. Двигатель с турбонаддувом является более мощным по сравнению с обычным двигателем. Благодаря этому существенно увеличивается удельная мощность двигателя (для получения более подробной информации, рекомендуем прочитать статью "Как работает лошадиная сила").   Для увеличения мощности двигателя, турбокомпрессор использует выхлопные газы для вращения турбины, которая, в свою очередь, вращает нагнетатель воздуха. Турбина турбокомпрессора вращается со скоростью до 150.000 оборотов в минуту (об/мин) - это примерно в 30 раз быстрее, чем скорость вращения большинства автомобильных двигателей. В связи с тем, что выхлоп идет на турбокомпрессор, температура в турбине очень высокая.   Далее мы расскажем о том, как узнать, насколько увеличится мощность двигателя, если установить турбокомпрессор.

     

Система турбонаддува автомобиля Mitsubishi Lancer Evolution IX.  Турбокомпрессоры и двигатели   Одним из самых эффективных способов увеличения мощности двигателя является увеличение количества сгораемого воздуха и топлива. Для этого можно установить дополнительные цилиндры или увеличить их объем. В некоторых случаях невозможно осуществить эти модификации, поэтому установка турбокомпрессора может стать более простым и компактным способом увеличения мощности, особенно для подержанных автомобилей.   Турбокомпрессоры позволяют двигателю сжигать больше топлива и воздуха благодаря увеличению подачи смеси в цилиндры. Стандартное давление сжатия воздуха турбокомпрессором составляет 6-8 фунт/дюйм2 (0,4 - 0,55 бар). Учитывая, что нормальное атмосферное давление составляет 14,7 фунт/дюйм2 (1 бар), при помощи турбокомпрессора в двигатель поступает на 50% больше воздуха. Следовательно, можно рассчитывать на увеличение мощности двигателя на 50%. Однако, эта технология не идеальна, поэтому мощность увеличивается на 30 - 40%.   Одна причина недостаточной эффективности состоит в том, что энергия, которая вращает турбину, не является свободной. Турбина, установленная в потоке выхлопных газов, создает препятствие для выхода газов. Это означает, что во время такта выпуска двигатель должен преодолеть высокое противодавление. В связи с этим происходит расход энергии работающих цилиндров.     Расположение турбокомпрессора в автомобиле

 Устройство турбокомпрессора   Турбокомпрессор крепится к выпускному коллектору двигателя при помощи болтового соединения. Выхлопы из цилиндра вращают турбину, которая работает как газотурбинный двигатель. Турбина при помощи вала соединяется с компрессором, который установлен между воздушным фильтром и впускным коллектором. Компрессор сжимает воздух, поступающий в цилиндры.   Отработанные газы от цилиндра проходят через лопатки турбины, вызывая ее вращение. Чем больше выхлопных газов проходит через лопатки, тем быстрее происходит вращение.   С другой стороны вала, который установлен на турбине, компрессор вводит воздух в цилиндры. Компрессор представляет собой своего рода центробежный насос -- он втягивает воздух в центр лопаток и выпускает его под давлением во время вращения.   Для того, чтобы выдержать скорость вращения до 150.000 об/мин, вал турбины должен иметь надежную опору. Большинство подшипников не выдержит такую скорость и взорвется гидростатические подшипники. Такой тип подшипников поддерживает вал на тонком слое масла, которое непрерывно подается. Это обусловлено двумя причинами: Масло охлаждает вал и некоторые другие детали турбокомпрессора и позволяет валу вращаться, снижая трения.   Существует много различных решений, связанных с конструкцией турбокомпрессоров для автомобильных двигателей. На следующей странице мы расскажем о некоторых оптимальных вариантах и рассмотрим, как они влияют на работу двигателя.  

Слишком сильное сжатие?

 

Когда воздух под давлением запускается в цилиндры при помощи турбокомпрессора и затем сжимается поршнями (читайте статью "Как работает автомобильный двигатель" для наглядного описания), существует риск самовозгорания смеси. Возгорание может произойти при сжатии воздуха, т.к. при этом возрастает температура. При высокой температуре может произойти возгорание еще до срабатывания свечи зажигания. Для предотвращения раннего сгорания топлива, автомобили с турбокомпрессором рекомендуется заправлять высокооктановым бензином. Если давление наддува слишком высокое, возможно придется уменьшить степень сжатия двигателя для того, чтобы избежать раннего сгорания топлива.

 

 

Как устанавливается турбокомпрессор        

Как турбокомпрессор выглядит изнутри  

 

 Детали турбокомпрессора   Одна из основных проблем турбокомпрессоров состоит в том, что они не обеспечивают мгновенный форсированный наддув по нажатию на педаль газа. Турбине требуется несколько секунд для того, чтобы набрать скорость вращения, необходимую для наддува. В результате возникает задержка между временем нажатия на педаль газа и временем начала ускорения автомобиля при срабатывании турбины.   Одним из способов устранения задержки является снижение инерции вращающихся деталей, благодаря снижению их массы. Это способствует более быстрому набору скорости вращения турбины и компрессора и раннему началу наддува. Одним из наиболее надежных способов снижения инерции турбины и компрессора является уменьшение их размеров. Небольшой турбокомпрессор быстрее начнет наддув при низкой скорости работы двигателя, однако он не сможет обеспечить достаточный наддув при больших скоростях двигателя, когда в цилиндры поступает значительные объемы воздуха. Также существует риск слишком быстрого вращения на высоких скоростях двигателя, т.к. при этом через турбину проходит значительный объем выхлопа.   Большой турбокомпрессор может обеспечить сильный наддув при высокой скорости вращения двигателя, однако при этом может наблюдаться сильная задержка наддува, т.к. необходимо определенное время на разгон тяжелой турбины и компрессора. К счастью, существует ряд решений данных проблем.   В большинстве автомобильных турбокомпрессоров используется регулятор давления наддува, который позволяет уменьшить время задержки наддува небольших турбокомпрессоров, предотвращая слишком быстрое вращение при высокой скорости вращения двигателя. Регулятор давления наддува представляет собой клапан, который обеспечивает выпуск выхлопа в обход лопаток турбины. Регулятор давления наддува измеряет давление наддува. Если давление слишком высокое, это означает, что турбина вращается слишком быстро, поэтому регулятор давления наддува выпускает определенное количество выхлопа в обход лопаток для снижения скорости вращения турбины.   В некоторых турбокомпрессорах используются шариковые подшипники вместо гидростатических подшипников для поддержки вала. Но это не обычные шариковые подшипники – это особые подшипники, изготовленные из специального материала, которые могут выдержать скорости и температуры турбокомпрессора. Они снижают трение вала турбины при вращении, как и гидростатические подшипники. Они также позволяют использовать меньший и облегченный вал. Благодаря этому происходит быстрый набор скорости турбокомпрессором, что, в свою очередь, снижает задержку.  Керамические лопатки турбины легче стальных лопаток, которые используются в большинстве турбокомпрессоров. Благодаря этому опять же происходит быстрый набор скорости турбокомпрессором, что снижает задержку.    

Турбокомпрессор обеспечивает наддув при большой скорости вращения двигателя.  

 Использование двух турбокомпрессоров и других турбо деталей   На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.   Когда воздух сжимается, он нагревается, а при нагревании воздух расширяется. Поэтому повышение давления от турбокомпрессора происходит в результате нагревания воздуха до его впуска в двигатель. Для того, чтобы увеличить мощность двигателя, необходимо впустить в цилиндр как можно больше молекул воздуха, при этом не обязательно сжимать воздух сильнее.  Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. При впуске воздух проходит через герметичный канал в охладитель, при этом более холодный воздух подается снаружи по ребрам при помощи вентиляторов охлаждения двигателя.   Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. Это значит, что если турбокомпрессор сжимает воздух под давлением 7 фунт/дюйм2 (0,5 бар), охладитель осуществит подачу охлажденного воздуха под давлением 7 фунт/дюйм2 (0,5 бар), который является более плотним и содержит больше молекул, чет теплый воздух.   Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.   В старых автомобилях с карбюраторами автоматически увеличивается подачу топлива в соответствии с увеличением подачи воздуха. В современных автомобилях происходит то же самое. Система впрыска топлива ориентируется на данные датчика кислорода в выхлопе для определения необходимого соотношения топлива и воздуха, так что система автоматически увеличивает подачу топлива при установленном турбокомпрессоре.   При установке мощного турбокомпрессора на двигатель с впрыском топлива, система может не обеспечить необходимое количество топлива - либо программное обеспечение контроллера не допустит, либо инжекторы и насос не смогут осуществить необходимую подачу. В этом случае необходимо осуществлять уже другие модификации для максимального использования преимуществ турбокомпрессора.   Для получения большей информации по турбокомпрессорам, рекомендуем ознакомиться со ссылками на следующей странице.    

Mazda RX-8 купе-кабриолет с установленной системой турбонаддува   Источник:  http://auto.howstuffworks.com/

www.exist.ru

Турбокомпрессор: определение, технические особенности, недостатки.

Турбокомпрессор – это сложный с технической стороны механизм, использующий кинетическую энергию отработанных (выхлопных) газов для увеличения давления внутри впускной системы. Сжимаясь, смесь топлива и воздуха увеличивает массу горючего заряда внутри цилиндров, из-за чего растет калорийность и как следствие мощность двигателя.

Плюсы использования ТКР

На данный момент турбокомпрессор является наиболее эффективным устройством наддува, значительно превосходя механический нагнетатель, который приводиться в движение использует энергию коленчатого вала, что частично снижает мощность двигателя.

Если быть до конца честным применение турбокомпрессора приводит аналогичным последствиям, незначительно уменьшая базовую мощность двигателя.

Турбокомпрессор устанавливается на выпускной тракт, тем самым создавая препятствие для свободного движения  воздуха, образовавшееся противодавление создает дополнительную нагрузку, заставляя двигатель работать усерднее, дабы очистить цилиндры от продуктов горения. Естественно это приводит к незначительной потери мощности, которая тут же компенсируется приростом равным 30-40%.

Принцип работы турбокомпрессора:

1.    Горячий отработанный воздух поступает в корпус турбин, давя на лопасти, он разгоняет крыльчатку, до огромной скорости вплоть до 250 тыс. оборов в минуту, а затем покидает корпус, через центральное отверстие направляясь в выпускную систему.

2.    Компрессорное колесо жестко связанное с турбиной вращается синхронно, засасывая воздух в холодную улитку и сжимает воздух.

Основные элементы турбокомпрессора:

1.    1.    Корпус турбины (горячая улитка) – в основном изготавливается из сфероидного чугуна для того чтобы выдерживать высокую температуру.

2.    Колесо турбины (крыльчатка) – покрывается никелевым сплавом и соединяется валом с колесом компрессора.

3.    Вал.

4.    Корпус подшипников.

5.    Корпус компрессора (холодная улитка) – к данной детали не предъявляются ни каких особых требований эксплуатации, поэтому ее производят в основном из алюминия для экономии средств.

6.    Колесо компрессора (воздушная крыльчатка) – в основном изготавливается из алюминия, и лишь в редких случаях когда нужно чтобы компрессор проработал длительный срок под высокой нагрузкой его делают из титана.

7.    Масляные каналы.

 Производительность турбокомпрессора интуитивно можно определить на глаз. Чем больше его размер, тем больше давление он может выдержать. Большая турбина вмещает больший объем и давление и как следствие обеспечивает больший прирост к мощности двигателя. При этом на малых оборотах все большие турбокомпрессоры страдают от турбозадержки. В то время как их малые менее производительные собратья быстрее набирают номинальную мощность.

За регулировку давления наддува внутри корпуса турбины отвечает перепускной клапан (анг. wastegate). Он работает на пневмо приводе и управляется системой управления мотора.

Основным функциональным элементов турбокомпрессора является средний (центральный) корпус (картридж). По сути это весь турбокомпрессор без улиток. Через него проходит ротор (турбинное и компрессорное колесо соединенные валом). Вал вращается при минимальном трении в масленой ванне под давлением с максимальной скоростью продетый во втулки (подшипники или реже в шарикоподшипники) картриджа.

Система смазки двигателя отвечает за подачу смазки в турбокомпрессор. Она не только смазывает, но и охлаждает детали, которые нагреваются. Качество масла является одним из наиболее значимых факторов в эксплуатации турбины. От него зависит то насколько долго вам прослужит турбонагнетатель. Перед установкой нового или заменой старого турбокомпрессора обязательно стоит провести полную замену масла. Турбированные двигатели с икорным зажиганием имеют более лучшее охлаждение поскольку средний корпус изначально включен в систему охлаждения мотора.

Центробежный компрессор является прекрасным примером создания дополнительного давления внутри впускной камеры. Его конструкция почти полностью аналогична механическому нагнетателю. Воздух поступает в центр колеса, а потом по нисходящей в периферию корпуса создавая крутящий момент. Диффузор в свою очередь преобразует кинетическую энергию воздуха для повышения давления при резком снижении скорости движения потока. Во впускной коллектор поступает сжатый воздух.

Для экономии средств корпус и колесо компрессора изготавливают из алюминия.

Минусы использования турбокомпрессора

Основные функциональные недостатки присущий всем турбокомпрессорам появляются в связи с инерционностью действия устройства. Иначе говоря, в процессе работы возникает задержка между нажатием на акселератор (педаль газа), ростом давление выхлопных газов и увеличением мощности двигателя. Эта последовательность называется турбояма и появляется из-за силы трения. Ее провотиположность -турбозадержка является прямым следствием турбоямы и проявляется в резком скачке мощности двигателя на короткий срок.

Для снижения негативных эффектов этих функциональных недостатков и повышения производительности  компании изготовители турбокомпрессоров постоянно совершенствуют свои изделия. Применяют следующие технические решения:

·         Разработки и установка новых блоков подшипников, снижающих потери из-за силы трения.

·         Уменьшение массы турбины,  путем обточки деталей и замены деталей на другие изготовленые из более легких материалов (в том числе керамики).

·         Турбокомпрессор с изменяющейся геометрией (анг. VNT-турбина).

·         Разделительный турбокомпрессор (анг. twin-scroll).

Интересный факт: механический нагнетатель лишен данных недостатков, поскольку работает напрямую от коленчатого вала и ему не нужно ждать пока, подымиться давление выхлопных газов. 

Виды турбонаддува

Раздельный турбокомпрессор – это турбокомпрессор у которого имеются два входа для выхлопных газов и два сопла для каждой пары цилиндров. Данная конструкция обеспечивает максимальную производительность и препятствует попаданию отработаных газов обратно в цилиндыры. Первое сопло отвечает за максимально бысьрое реагирование, а второе повышеную производительность и увеличение КПД.

Помимо, этого ТКР с двойной улиткой имеет разделенные выпускные каналы, предотвращающие перекрытие во время выпуска выхлопных газов. 

Турбина с изменяющейся геометрией  (или турбина с переменным соплом) – наиболее широко применяется  в производстве дизельных двигателей. Основное ее техническое отличие от других видов турбин – это наличие внутри подвижных лопастей с приводом регулирующих поток газов в самой турбине. В зависимости  от  угла наклона  лопастей меняется скорость выхлопных газов тем самым согласовывая давление и обороты двигателя.

В некоторых конструкциях турбонаддува применяются по два  (автомобили КамАЗ) и более турбокомпрессоров  (тройной наддув для дизелей «BMW») подключенные параллельно или последовательно для увеличения производительности (или для того, что бы один работал на больших оборотах, а второй на малых).

 

Читайте далее: 

История наддува и нагнетателей (компрессоров)

turbokom.ru

Турбонаддув: устройство и конструктивные особенности

Постоянная гонка инженеров за увеличением мощности ДВС привела к появлению турбокомпрессоров. Данное решение оказалось самым эффективным как на бензиновых, так и на дизельных моторах.

Становится вполне очевидным, что итоговая мощность ДВС пропорциональна количеству топливовоздушной рабочей смеси, которая попадает в цилиндры двигателя. Закономерно, что двигатель с большим объемом способен пропускать больше воздуха и тем самым выдавать больше мощности сравнительно с двигателем меньшего объема. Если перед нами стоит задача добиться от малообъемного ДВС такой же мощности, которую демонстрируют моторы большего объема, тогда необходимо принудительно уместить как можно больше воздуха в цилиндрах такого двигателя.

Небольшой прирост или солидное увеличение мощности

Существует несколько способов форсирования силовой установки без турбонаддува. Можно произвести ряд доработок конструкции головки блока цилиндров, обеспечить установку спортивных распредвалов, поставить фильтр нулевого сопротивления, улучшить продувку и тем самым обеспечить подачу большего количество воздуха в цилиндры при  езде в режиме максимально высоких оборотов.

Вполне можно и вовсе не стремится менять количество поступающего в мотор воздуха, а вместо этого увеличить степень сжатия и перейти на использование горючего с более высоким октановым числом. Доступно даже расточить цилиндры и нарастить их объем. Это также позволит увеличить КПД Вашего мотора.

Все указанные способы уместны и работают, но только тогда, когда мощность планируется увеличить всего на 15-20%.

Если речь заходит о кардинальных изменениях и значительном увеличении мощности мотора, тогда без компрессора уже не обойтись. Наиболее эффективным методом будет установка турбокомпрессора. Более того, установка турбонаддува способна увеличить мощность  любого специально подготовленного для таких возросших нагрузок мотора.

В предыдущих статьях мы поверхностно  перечислили основные элементы системы турбонаддува. Теперь давайте подробнее рассмотрим те главные этапы и процессы, когда сначала воздух проходит в системе с установленным турбокомпрессором, а затем отработавшие газы приводят в действие компрессор. Для примера возьмем турбокомпрессор дизельного ДВС.

Так и происходит процесс сжатия свежей порции воздуха для следующего рабочего такта. Одновременно происходит падение давления отработавших газов, а также снижается температура выхлопа. Это получается по причине того, что часть энергии газов уходит на обеспечение работы турбокомпрессора на другой стороне вала турбины;

Дополнительные элементы системы турбонаддува

Если говорить о конкретных модификациях мотора, а также о компоновке различных элементов в подкапотном пространстве, турбокомпрессор может иметь ряд дополнительных элементов. Мы  уже упоминали такие детали системы, как Wastegate и Blow-Off. Давайте рассмотрим их  более подробно.

Клапан Blow-off

Блоу-офф представляет собой перепускной клапан. Данное устройство устанавливается в воздушной системе. Местом расположения становится участок между выходом из компрессора и дроссельной заслонкой. Главной задачей блоу-офф клапана становится предотвращение выхода компрессора на характерный режим работы surge.

Под таким режимом стоит понимать момент резкого закрытия дросселя. Если описать происходящее простыми словами, то скорость воздушного потока и сам расход воздуха в системе резко понижаются, но турбина еще определенное время продолжает вращение по инерции. Инерционно турбина вращается с той скоростью, которая уже больше не соответствует новым потребностям мотора и упавшему таким образом расходу воздуха.

Последствия после циклических скачков  давления воздуха за компрессором могут быть плачевны. Явным признаком скачков является характерный звук воздуха, который  прорывается через компрессор. С течением времени из строя выходят  опорные подшипники турбины, так как они испытывают сильные нагрузки в момент указанных скачков давления при сбросе газа и последующей работе турбины в этом  переходном режиме.

Блоуофф  реагирует на разницу давлений в коллекторе и срабатывает благодаря установленной внутри пружине. Это позволяет выявить момент резкого перекрытия дросселя. Если дроссель резко закрылся, тогда блоу-офф осуществляет стравливание в атмосферу внезапно появившегося в воздушном тракте избытка давления. Это позволяет существенно обезопасить турбокомпрессор и уберечь его от избытка нагрузок и последующего разрушения.

Клапан Wastegate

Данное решение представляет собой механический клапан. Вестгейт установливают на турбинной части или же на самом выпускном коллекторе. Задачей устройства является обеспечение контроля за тем давлением, которое создает турбокомпрессор.

Стоит отметить, что некоторые дизельные силовые агрегаты используют в своей конструкции турбины без вейстгейта. Для моторов, которые работают на бензине, в большинстве случаев наличие такого клапана является обязательным условием.

Главной задачей вейстгейта становится обеспечение возможности беспрепятственного выхода для выхлопных газов из системы в обход турбины. Запуск части отработавших газов в обход позволяет осуществлять контроль за необходимым количеством энергии  этих газов. Взаимосвязь очевидна, ведь именно выхлоп вращает через вал колесо компрессора. Данный способ позволяет эффективно управлять давлением наддува, которое создается в компрессоре. Наиболее частым решением становится контроль вейстгейта за давлением наддува, который осуществляется при помощи противодавления встроенной пружины. Такая конструкция позволяет контролировать обходной поток выхлопных газов.

Выбираем турбину для мотора

Правильный подбор турбокомпрессора является главным моментом в процессе постройки качественного турбомотора. Подбирать турбину следует на основе многих данных.

Первым и основным фактором при выборе является та мощность, которую Вы хотите получить в итоге от мотора. Очень важно подходить к этому показателю разумно и реально взвешивать возможности ДВС применительно к той или иной степени наддува.

Мы знаем, что мощность силовой установки напрямую зависит от количества топливно-воздушной смеси, которая попадет в цилиндры за единицу времени. Нужно в самом начале определить желаемый показатель мощности. Только затем можно осуществлять выбор турбины, которая будет способна обеспечить достаточный поток воздуха для получения  итогового показателя запланированной отдачи от построенной силовой установки.

Вторым по значимости показателем при выборе турбины становится скорость ее выхода на эффективный наддув. Более того, этот выход на наддув сопоставляется с минимальными оборотами двигателя, на которых и будет происходить нагнетание. Чем меньше турбина или меньше сам горячий хаузинг (улитка), тем больше шансов на улучшение этих показателей. Учтите, что максимальная мощность при этом однозначно будет ниже по сравнению с турбиной большего размера.

На деле все может оказаться не так плохо, ведь меньшая турбина обеспечивает больший рабочий диапазон в процессе работы двигателя. Такая турбина способна быстрее выходить на наддув при открытии дроссельной заслонки, а итоговый результат в конечном итоге может оказаться даже намного более положительным. Использование же большей турбины с большой максимальной мощностью позволит обеспечить преимущество только в достаточно узком диапазоне работы мотора на высоких оборотах.

Особенности эксплуатации турбокомпрессора

Наиболее частой причиной выхода из строя современных турбокомпрессоров является то, что масло забивает центральный картридж турбины. Закоксовка маслом происходит после быстрой остановки турбомотора после серьезных и продолжительных нагрузок. Дело в том, что усиленный теплообмен между турбиной и разогретым выпускным коллектором сопровождается  отсутствием потока свежего масла и поступлений охлажденного  наружного воздуха в компрессор. Возникает общий перегрев картриджа и  происходит закоксовка оставшегося в турбине масла.

Свести такой негативный эффект к минимуму позволяет решение водяного охлаждения турбины. Магистрали с охлаждающей жидкостью создают теплопоглощающий эффект и снижают  уровень температуры в центральном картридже. Это происходит  даже после полной остановки двигателя и при отсутствии принудительной циркуляции ОЖ. С учетом этого  рекомендуется обеспечить минимум неравномерностей по вертикальной линии подачи ОЖ, а также осуществить разворот центрального картриджа вокруг оси турбины (это можно сделать под углом около 25 градусов).

Дополнительно в ряде случаев потребуется установка «турботаймера». Под этим решением понимается устройство, которое не позволяет двигателю сразу остановиться после того, когда водитель выключил зажигание. Устройство позволяет вынуть ключ, выйти из автомашины, поставить автомобиль под охрану сигнализации, а затем само заглушит мотор спустя заданное количество времени. Для повседневной эксплуатации турботаймер очень удобен, прост и практичен в использовании.

Виды турбин: втулочные и шарикоподшипниковые турбины

Турбины втулочного типа были  сильно распространены достаточно долгое время. Они имели ряд конструктивных недостатков, которые не позволяли в полной мере наслаждаться преимуществами турбомотора.  Появление более эффективных шарикоподшипниковых турбин нового поколения постепенно вытесняет втулочные решения. Для примера можно упомянуть шарикоподшипниковые турбины Garrett, которые являются венцом инженерной мысли и используются на многих гоночных двигателях.

На сегодняшний день шарикоподшипниковые турбины являются оптимальным решением, так как требуют значительно меньшего количества масла сравнительно с втулочными аналогами. Учтите, что установка масляного рестриктора на входе в турбокомпрессор является очень желательной, особенно если давление масла в системе находится на отметке выше 4 атм. Осуществлять слив масла необходимо путем специального подвода в поддон, причем с учетом того, что слив должен быть выше уровня масла.

Всегда помните, что слив масла из турбины происходит самостоятельно и под действием силы гравитации. Знание этого диктует необходимость ориентирования центрального картриджа турбины так, чтобы слив масла был направлен вниз.

Тот показатель, который определяет реакцию турбины на нажатие педали газа, демонстрирует  сильную зависимость от самой конструкции центрального картриджа турбины. Шарикоподшипниковые решения от Garrett способны на 15% быстрее выйти на наддув сравнительно с втулочными аналогами. Шарикоподшипниковые турбины снижают эффект турбо-ямы и делают использование турбомотора максимально похожим на езду с таким атмосферным двигателем, который имеет большой рабочий объем.

Шарикоподшипниковые турбины имеют еще один положительный момент. Такие турбины требуют заметно меньшего потока масла,  которое проходит через картридж и осуществляет смазку подшипников. Решение ощутимо снижает вероятность возникновения утечки масла через сальники. Шарикоподшипниковые турбины не являются излишне требовательными к качеству масла, а также менее подвержены закоксовке после плановой или внезапной  остановки двигателя.

Подведем итоги

Использование современных турбин от ведущих производителей позволяет говорить о получении двигателей с выдающимися динамическими показателями. Эффект турбоямы, а также жесткие требования к особенностям эксплуатации турбомоторов за последнее время заметно снизились, возросла надежность массовых систем турбонаддува. Активное использование электронных блоков управления позволило поднять турбокомпрессоры на абсолютно новый качественный уровень.

Такие характеристики позволяют данному решению уверенно опережать большеобъемные атмосферники практически всем. Сегодня  автомобиль с турбонаддувом для многих автовладельцев является мощным, надежным, динамичным и практически идеальным выбором как для повседневной, так и для спортивной езды!

Для того, чтобы окончательно убедиться во всесильности турбокомпрессора, просто посмотрите следующий увлекательный видеоролик. Нам же на этой позитивной ноте пора заканчивать и остается только пожелать читателям стабильного наддува и полного отсутствия турбоям!

Похожие статьи

krutimotor.ru


Смотрите также