Как найти абсолютную и относительную погрешность. Как найти относительная погрешность


Как найти относительную погрешность

Погрешности измерений связаны с несовершенством приборов, инструментов, методики. Точность зависит также от внимательности и состояния экспериментатора. Погрешности разделяются на абсолютные, относительные и приведенные.

Инструкция

completerepair.ru

Как найти абсолютную и относительную погрешность

Содержание

  1. Вам понадобится
  2. Инструкция

При измерении какой-либо величины всегда есть некоторое отклонение от истинного значения, поскольку ни один прибор не может дать точного результата. Для того, чтобы определить возможные отклонения полученных данных от точного значения, используют понятия относительной и абсолютной погрешности.

Вам понадобится

  • - результаты измерений;
  • - калькулятор.

Инструкция

  • В первую очередь, проведите несколько измерений прибором одной и той же величины, чтобы иметь возможность посчитать действительное значение. Чем больше будет проведено измерений, тем точнее будет результат. Например, взвесьте яблоко на электронных весах. Допустим, вы получили результаты 0,106, 0,111, 0,098 кг.
  • Теперь посчитайте действительное значение величины (действительное, поскольку истинное найти невозможно). Для этого сложите полученные результаты и разделите их на количество измерений, то есть найдите среднее арифметическое. В примере действительное значение будет равно (0,106+0,111+0,098)/3=0,105.
  • Для расчета абсолютной погрешности первого измерения вычитайте из результата действительное значение: 0,106-0,105=0,001. Таким же образом вычислите абсолютные погрешности остальных измерений. Обратите внимание, независимо от того, получится результат с минусом или с плюсом, знак погрешности всегда положительный (то есть вы берете модуль значения).
  • Чтобы получить относительную погрешность первого измерения, разделите абсолютную погрешность на действительное значение: 0,001/0,105=0,0095. Обратите внимание, обычно относительная погрешность измеряется в процентах, поэтому умножьте полученное число на 100%: 0,0095х100%=0,95%. Таким же образом считайте относительные погрешности остальных измерений.
  • Если истинное значение уже известно, сразу принимайтесь за расчет погрешностей, исключив поиск среднего арифметического результатов измерений. Сразу вычитайте из истинного значения полученный результат, при этом вы найдете абсолютную погрешность.
  • Затем делите абсолютную погрешность на истинное значение и умножайте на 100% - это будет относительная погрешность. Например, количество учеников 197, но его округлили до 200. В таком случае рассчитайте погрешность округления: 197-200=3, относительная погрешность: 3/197х100%=1,5%.

completerepair.ru

1.1. Погрешности в метрологии

Ни одно измерение не свободно от погрешностей, или, точнее, вероятность измерения без погрешностей приближается к нулю. Род и причины погрешностей весьма разнообразны и на них влияют многие факторы (рис.1.2).

Общая характеристика влияющих факторов может быть систематизирована с различных точек зрения, например, по влиянию перечисленных факторов (рис.1.2).

По результатам измерения погрешности можно разделить на три вида: систематические, случайные и промахи.

Систематические погрешности, в свою очередь, делят на группы по причине их возникновения и характеру проявления. Они могут быть устранены различными способами, например, введением поправок.

рис. 1.2

Случайные погрешности вызываются сложной совокупностью изменяющихся факторов, обычно неизвестных и трудно поддающихся анализу. Их влияние на результат измерения можно уменьшить, например, путем многократных измерений с дальнейшей статистической обработкой полученных результатов методом теории вероятностей.

К промахам относятся грубые погрешности, которые возникают при внезапных изменениях условия эксперимента. Эти погрешности по своей природе тоже случайны, и после выявления должны быть исключены.

Точность измерений оценивается погрешностями измерений, которые подразделяются по природе возникновения на инструментальную и методическую и по методу вычислений на абсолютную, относительную и приведенную.

Инструментальная погрешность характеризуется классом точности измерительного прибора, который приведен в его паспорте в виде нормируемых основной и дополнительных погрешностей.

Методическая погрешность обусловлена несовершенством методов и средств измерений.

Абсолютная погрешность есть разность между измеренным Guи истинным G значениями величины, определяемая по формуле:

Δ=ΔG=Gu-G

Заметим, что величина имеет размерность измеряемой величины.

Относительную погрешность находят из равенства

δ=±ΔG/Gu·100%

Приведенную погрешность рассчитывают по формуле (класс точности измерительного прибора)

δ=±ΔG/Gнорм·100%

где Gнорм – нормирующее значение измеряемой величины. Ее принимают равной:

а) конечному значению шкалы прибора, если нулевая отметка находится на краю или вне шкалы;

б) сумме конечных значений шкалы без учета знаков, если нулевая отметка расположена внутри шкалы;

в) длине шкалы, если шкала неравномерная.

Класс точности прибора устанавливается при его проверке и является нормируемой погрешностью, вычисляемой по формулам

γ=±ΔG/Gнорм·100%, если ΔGm=const

где ΔGm –  наибольшая возможная абсолютная погрешность прибора;

Gk –  конечное значение предела измерения прибора; с и d – коэффициенты, учитывающие конструктивные параметры и свойства измерительного механизма прибора.

Например, для вольтметра с постоянной относительной погрешностью имеет место равенство

δm=±c

Относительная и приведенная погрешности связаны следующими зависимостями:

а) для любого значения приведенной погрешности

δ=±γ·Gнорм/Gu

б) для наибольшей приведенной погрешности

δ=±γm·Gнорм/Gu

Из этих соотношений следует, что при измерениях, например вольтметром, в цепи при одном и том же значении напряжения относительная погрешность тем больше, чем меньше измеряемое напряжение. И если этот вольтметр выбран неправильно, то относительная погрешность может быть соизмерима со значением Gн, что является недопустимым. Заметим, что в соответствии с терминологией решаемых задач, например, при измерении напряжения G = U, при измерении тока C = I, буквенные обозначения в формулах для вычисления погрешностей необходимо заменять на соответствующие символы.

Пример 1.1. Вольтметром, имеющим значения  γm= 1,0 %, Uн = Gнорм, Gk = 450 В, измеряют напряжение Uu, равное 10 В. Оценим погрешности измерений.

Решение.

Ответ. Погрешность измерений составляет 45 %. При  такой погрешности измеренное напряжение нельзя считать достоверным.

При ограниченных возможностях выбора прибора (вольтметра), методическая погрешность может быть учтена поправкой, вычисленной по формуле

Пример 1.2. Вычислить абсолютную погрешность вольтметра В7-26 при измерениях напряжения в цепи постоянного тока. Класс точности вольтметра задан максимально приведенной погрешностью γm=±2,5 %. Используемый в работе предел шкалы вольтметра  Uнорм=30 В.

Решение. Абсолютная погрешность вычисляется по известным формулам:

(так как приведенная погрешность, по определению, выражается формулой , то отсюда можно найти и абсолютную погрешность: 

Ответ. ΔU = ±0,75 В.

Важными этапами в процессе измерений являются обработка результатов и правила округления. Теория приближенных вычислений позволяет, зная степень точности данных, оценить степень точности результатов еще до выполнения действий: отобрать данные с надлежащей степенью точности, достаточной для обеспечения требуемой точности результата, но не слишком большую, чтобы избавить вычислителя от бесполезных расчетов; рационализировать сам процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точные цифры результаты.

При обработке результатов применяют правила округления.

Если за цифрой пять есть значащие цифры, то округление производится по правилу 2.

Применяя правило 3 к округлению одного числа, мы не увеличиваем точность округления. Но при многочисленных округлениях избыточные числа будут встречаться примерно столь же часто, как недостаточно. Взаимная компенсация погрешности обеспечит наибольшую точность результата.

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной погрешностью.

Величина предельной погрешности не является вполне определенной. Для каждого приближенного числа должна быть известна его предельная погрешность (абсолютная или относительная).

Когда она прямо не указана, то подразумевается, что предельная абсолютная погрешность составляет половину единицы последнего выписанного разряда. Так, если приведено приближенное число 4,78 без указания предельной погрешности, то подразумевается, что предельная абсолютная погрешность составляет 0,005. Вследствие этого соглашения всегда можно обойтись без указания предельной погрешности числа, округленного по правилам 1-3, т.е., если приближенное число обозначить буквой α, то

, где Δn – предельная абсолютная погрешность; а  δn – предельная относительная погрешность.

Кроме того, при обработке результатов используются правила нахождения погрешности суммы, разности, произведения и частного.

Предельную относительную погрешность легко найти, вычислив предельную абсолютную погрешность.

Если все слагаемые имеют одну и ту же предельную относительную погрешность, то и сумма имеет ту же предельную относительную погрешность. Иными словами, в этом случае точность суммы (в процентном выражении) не уступает точности слагаемых.

В противоположность сумме разность приближенных чисел может быть менее точной, чем уменьшаемое и вычитаемое. Потеря точности особенно велика в том случае, когда уменьшаемое и вычитаемое мало отличаются друг от друга.

Примечания:

1. Если перемножаются приближенные  числа с одним и тем же количеством значащих цифр, то в произведении следует сохранить столько же значащих цифр. Последняя из сохраняемых цифр будет не вполне надежна.

2. Если некоторые сомножители имеют больше значащих цифр, чем другие, то до умножения следует первые округлить, сохранив в них столько цифр, сколько имеет наименее точный сомножитель или еще одну (в качестве запасной), дальнейшие цифры сохранять бесполезно.

3. Если требуется, чтобы произведение двух чисел имело заранее данное число вполне надежное, то в каждом из сомножителей число точных цифр (полученное измерением или вычислением) должно быть на единицу больше. Если количество сомножителей больше двух и меньше десяти, то в каждом из сомножителей число точных цифр для полной гарантии должно быть на две единицы больше, чем требуемое число точных цифр. Практически же вполне достаточно взять лишь одну лишнюю цифру.

Пример 1.3. Найти предельную абсолютную погрешность частного 2,81 : 0,571.

Решение. Предельная относительная погрешность делимого есть 0,005:2,81=0,2%; делителя – 0,005:0,571=0,1%; частного – 0,2% + 0,1%=0,3%. Предельная абсолютная погрешность частного приближенно составит 2,81:0,571·0,0030=0,015

Значит, в частном 2,81:0,571=4,92 уже третья значащая цифра не надежна.

Ответ. 0,015.

Пример 1.4. Вычислить относительную погрешность показаний вольтметра, включенного по схеме (рис. 1.3), которая получается, если предположить, что вольтметр имеет бесконечно большое сопротивление и не вносит искажений в измеряемую цепь. Классифицировать погрешность измерения для этой задачи.

рис. 1.3

Решение. Обозначим показания реального вольтметра через И, а вольтметра с бесконечно большим сопротивлением через И∞. Искомая относительная погрешность 

Заметим, что

,

тогда получим

Так как RИ >>R и R > r, то дробь в знаменателе последнего равенства много меньше единицы. Поэтому можно воспользоваться приближенной формулой  , справедливой при λ≤1 для любого α.  Предположив, что в этой формуле α = -1  и   λ= rR (r+R)-1 RИ-1, получим δ ≈ rR/(r+R) RИ.

Чем больше сопротивление вольтметра по сравнению с внешним сопротивлением цепи, тем меньше погрешность. Но условие R<<RИ – достаточное, но не необходимое условие малости δ. Погрешность будет мала также и в том случае, когда выполняется условие r≤RИ, т.е. сопротивление вольтметра много больше внутреннего сопротивления источника тока. При этом внешнее сопротивление может быть как угодно велико.

Ответ. Погрешность систематическая методическая.

Пример 1.5. В цепь постоянного тока (рис.1.4) включены приборы: А – амперметр типа М 330 класса точности КА = 1,5 с пределом измерения Ik = 20 А; А1 – амперметр типа М 366 класса точности КА1 = 1,0 с пределом измерения Iк1 = 7,5 А.  Найти наибольшую возможную относительную погрешность измерения тока I2 и возможные пределы его действительного значения, если приборы показали, что I=8,0А. и I1 = 6,0А. Классифицировать измерение.

рис. 1.4

Решение. Определяем ток I2 по показаниям прибора (без учета их погрешностей): I2=I-I1=8,0-6,0=2,0 А.

Найдем модули абсолютных погрешностей амперметров А и А1

Для А имеем равенство  для амперметра 

Найдем сумму модулей абсолютных погрешностей:

Следовательно, наибольшая возможная и той же величины, выраженная в долях этой величины, равна 1 . 103 – для одного прибора; 2·103 – для другого прибора. Какой  из этих приборов будет наиболее точным?

Решение. Точность прибора характеризуется значением, обратным погрешности (чем точнее прибор, тем меньше погрешность), т.е. для первого прибора это составит 1/(1 . 103) = 1000, для второго – 1/(2 . 103) = 500. Заметим, что 1000 > 500. Следовательно, первый прибор точнее второго в два раза.

К аналогичному выводу можно прийти, проверив соответствие погрешностей: 2 . 103 / 1 . 103 = 2.

Ответ. Первый прибор в два раза точнее второго.

Пример 1.6. Найти сумму приближенных замеров прибора. Найти количество верных знаков: 0,0909 + 0,0833 + 0,0769 + 0.0714 + 0,0667 + 0.0625 + 0,0588+ 0,0556 + 0,0526.

Решение. Сложив все результаты замеров, получим 0,6187. Предельная наибольшая погрешность суммы 0,00005·9=0,00045. Значит, в последнем четвертом знаке суммы возможна ошибка до 5 единиц. Поэтому округляем сумму до третьего знака, т.е. тысячных, получаем 0,619 – результат, в котором все знаки верные.

Ответ. 0,619. Количество верных знаков – три знака после запятой.

1. Метрология< Предыдущая Следующая >1.2. Вероятный подход к оценке измерений
 

xn----8sbnaarbiedfksmiphlmncm1d9b0i.xn--p1ai

Как найти относительную погрешность в измерениях?

1

woprosi.ru

Относительная погрешность - это... Что такое Относительная погрешность?

Погре́шность измере́ния — оценка отклонения величины измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.

Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например, в БСЭ, термины ошибка измерения и погрешность измерения используются как синонимы.) Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. При этом за истинное значение принимается среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2.8±0.1 c. означает, что истинное значение величины T лежит в интервале от 2.7 с. до 2.9 с. некоторой оговоренной вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка).

В 2006 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределенность измерений».

Определение погрешности

В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.

Классификация погрешностей

По форме представления

ΔX = | Xtrue − Xmeas | ,

где Xtrue — истинное значение, а Xmeas — измеренное значение, должно выполняться с некоторой вероятностью близкой к 1. Если случайная величина Xmeas распределена по нормальному закону, то, обычно, за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

.

Относительная погрешность является безразмерной величиной, либо измеряется в процентах.

,

где Xn - нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

- если шкала прибора односторонняя, т.е. нижний предел измерений равен нулю, то Xn определяется равным верхнему пределу измерений;- если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.

Приведенная погрешность - безразмерная величина (может измеряться в процентах).

По причине возникновения

В технике применяют приборы для измерения лишь с определенной заранее заданной точностью – основной погрешностью, допускаемой нормали в нормальных условиях эксплуатации для данного прибора.

Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т.п. За нормальную температуру окружающего воздуха принимают 20°С, за нормальное атмосферное давление 01,325 кПа.

Обобщенной характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведенных основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)*10n, где n = 1; 0; -1; -2 и т.д.

По характеру проявления

По способу измерения

Если F = F(x1,x2...xn), где xi — непосредственно измеряемые независимые величины, имеющие погрешность Δxi, тогда:

См. также

Литература

Wikimedia Foundation. 2010.

dic.academic.ru

понятие, расчет и свойства :: SYL.ru

В наш век человек придумал и использует огромное множество всевозможных измерительных приборов. Но какой бы совершенной ни была технология их изготовления, все они имеют большую или меньшую погрешность. Этот параметр, как правило, указывается на самом инструменте, и для оценки точности определяемой величины нужно уметь разбираться в том, что означают указанные на маркировке цифры. Кроме того, относительная и абсолютная погрешность неизбежно возникает при сложных математических расчетах. Она широко применяется в статистике, промышленности (контроль качества) и в ряде других областей. Как рассчитывается эта величина и как трактовать ее значение – об этом как раз и пойдет речь в данной статье.

Абсолютная погрешность

Обозначим через х приближенное значение какой-либо величины, полученное, к примеру, посредством однократного измерения, а через х0 – ее точное значение. Теперь вычислим модуль разности между этими двумя числами. Абсолютная погрешность – это как раз и есть то значение, что получилось у нас в результате этой нехитрой операции. Выражаясь языком формул, данное определение можно записать в таком виде: Δ x = | x – x 0 |.

Относительная погрешность

Абсолютное отклонение обладает одним важным недостатком – оно не позволяет оценить степень важности ошибки. Например, покупаем мы на рынке 5 кг картофеля, а недобросовестный продавец при измерении веса ошибся на 50 грамм в свою пользу. То есть абсолютная погрешность составила 50 грамм. Для нас такая оплошность будет сущей мелочью и мы даже не обратим на нее внимания. А представьте себе, что случится, если при приготовлении лекарства произойдет подобная ошибка? Тут уже все будет намного серьезней. А при загрузке товарного вагона наверняка возникают отклонения намного больше данного значения. Поэтому сама по себе абсолютная погрешность малоинформативная. Кроме нее очень часто дополнительно рассчитывают относительное отклонение, равное отношению абсолютной погрешности к точному значению числа. Это записывается следующей формулой: δ = Δ x / x0.

Свойства погрешностей

Предположим, у нас есть две независимые величины: х и у. Нам требуется рассчитать отклонение приближенного значения их суммы. В этом случае мы может рассчитать абсолютную погрешность как сумму предварительно рассчитанных абсолютных отклонений каждой из них. В некоторых измерениях может произойти так, что ошибки в определении значений x и y будут друг друга компенсировать. А может случиться и такое, что в результате сложения отклонения максимально усилятся. Поэтому, когда рассчитывается суммарная абсолютная погрешность, следует учитывать наихудший из всех вариантов. То же самое справедливо и для разности ошибок нескольких величин. Данное свойство характерно лишь для абсолютной погрешности, и к относительному отклонению его применять нельзя, поскольку это неизбежно приведет к неверному результату. Рассмотрим эту ситуацию на следующем примере.

Задача

Предположим, измерения внутри цилиндра показали, что внутренний радиус (R1) равен 97 мм, а внешний (R2) – 100 мм. Требуется определить толщину его стенки. Вначале найдем разницу: h = R2 – R1 = 3 мм. Если в задаче не указывается чему равна абсолютная погрешность, то ее принимают за половину деления шкалы измерительного прибора. Таким образом, Δ(R2) = Δ(R1) = 0,5 мм. Суммарная абсолютная погрешность равна: Δ(h) = Δ(R2) +Δ(R1) = 1 мм. Теперь рассчитаем относительно отклонение всех величин:

δ(R1) = 0,5/100 = 0,005,

δ(R1) = 0,5/97 ≈ 0,0052,

δ(h) = Δ(h)/h = 1/3 ≈ 0,3333>> δ(R1).

Как видим, погрешность измерения обоих радиусов не превышает 5,2%, а ошибка при расчете их разности – толщины стенки цилиндра – составила целых 33,(3)%!

Следующее свойство гласит: относительное отклонение произведения нескольких числе примерно равно сумме относительных отклонений отдельных сомножителей:

δ(ху) ≈ δ(х) + δ(у).

Причем данное правило справедливо независимо от количества оцениваемых величин. Третье и последнее свойство относительной погрешности состоит в том, что относительная оценка числа k-й степени приближенно в | k | раз превышает относительную погрешность исходного числа:

δ(хk) ≈ |k| x δ(х).

www.syl.ru

Как найти погрешность

Содержание

  1. Вам понадобится
  2. Инструкция

Проводя измерения, нельзя гарантировать их точность, любой прибор дает некую погрешность. Чтобы узнать точность измерений или класс точности прибора, необходимо определить абсолютную и относительную погрешность.

Вам понадобится

  • - несколько результатов измерений или другая выборка;
  • - калькулятор.

Инструкция

  • Проведите измерения не менее 3-5 раз, чтобы иметь возможность посчитать действительное значение параметра. Сложите полученные результаты и разделите их на количество измерений, вы получили действительное значение, которое используется в задачах вместо истинного (его определить невозможно). Например, если измерения дали результат 8, 9, 8, 7, 10, то действительное значение будет равно (8+9+8+7+10)/5=8,4.
  • Найдите абсолютную погрешность каждого измерения. Для этого из результата измерения вычитайте действительное значение, знаками пренебрегайте. Вы получите 5 абсолютных погрешностей, по одному для каждого измерения. В примере они будут равны 8-8,4 = 0,4, 9-8,4 =0,6, 8-8,4=0,4, 7-8,4 =1,4, 10-8,4=1,6 (взяты модули результатов).
  • Чтобы узнать относительную погрешность каждого измерения, разделите абсолютную погрешность на действительное (истинное) значение. Затем умножьте полученный результат на 100%, обычно именно в процентах измеряется эта величина. В примере найдите относительную погрешность таким образом: δ1=0,4/8,4=0,048 (или 4,8%), δ2=0,6/8,4=0,071 (или 7,1 %), δ3=0,4/8,4=0,048 (или 4,8%), δ4=1,4/8,4=0,167 (или 16,7%), δ5=1,6/8,4=0,19 (или 19%).
  • На практике для наиболее точного отображения погрешности используют среднее квадратическое отклонение. Чтобы его найти, возведите в квадрат все абсолютные погрешности измерения и сложите между собой. Затем разделите это число на (N-1), где N – количество измерений. Вычислив корень из полученного результата, вы получите среднее квадратическое отклонение, характеризующее погрешность измерений.
  • Чтобы найти предельную абсолютную погрешность, найдите минимальное число, заведомо превышающее абсолютную погрешность или равное ему. В рассмотренном примере просто выберите наибольшее значение – 1,6. Также иногда необходимо найти предельную относительную погрешность, в таком случае найдите число, превышающее или равное относительной погрешности, в примере она равна 19%.

completerepair.ru