Аэродинамика автомобиля это: Аэродинамика автомобиля. Как это работает?

Содержание

Аэродинамика автомобиля. Как это работает?

Ни одна машина не пройдет сквозь кирпичную стену, но ежедневно проходит через стены из воздуха у которого тоже есть плотность.

Никто не воспринимает воздух или ветер как стену. На низких скоростях, в безветренную погоду, сложно заметить, как поток воздуха взаимодействует с транспортным средством. Но на высокой скорости, при сильном ветре, сопротивление воздуха (сила, воздействующая на движущийся по воздуху объект – также определяемая как сопротивление) сильно влияет на то, как машина ускоряется, насколько управляема, как расходует топливо.

Здесь в игру вступает наука аэродинамика, изучающая силы, образующиеся в результате движения объектов в воздухе. Современные автомобили разрабатываются с учетом аэродинамики. Автомобиль с хорошей аэродинамикой проходит сквозь стену воздуха как нож по маслу.

За счет низкого сопротивления воздушному потоку, такой автомобиль лучше ускоряется и лучше расходует топливо, так как двигателю не приходится тратить лишние силы на то, чтобы «протолкнуть» машину сквозь воздушную стену.

Чтобы улучшить аэродинамику автомобиля, форму кузова закругляют, чтобы воздушный канал обтекал авто с наименьшим сопротивлением. У спорткаров форма кузова спроектирована так, чтобы направлять поток воздуха преимущественно по нижней части, далее поймете почему. Еще на багажник машины ставят антикрыло или спойлер. Антикрыло прижимает заднюю часть автомобиля предотвращая подъем задних колес, из-за сильного потока воздуха, когда тот движется на большой скорости, что делает машину устойчивей. Не все антикрылья одинаковы и не все применяют по назначению, некоторые служат только элементом автомобильного декора не выполняющей прямую функцию аэродинамики.

Наука аэродинамика

Прежде чем говорить об автомобильной аэродинамике, пройдемся по основам физики.

При движении объекта через атмосферу, он вытесняет окружающий воздух. Объект также подвержен силе притяжения и сопротивлению. Сопротивление генерируется, когда твердый объект движется в жидкой среде — воде или воздуху. Сопротивление увеличивается вместе со скоростью объекта – чем быстрее он перемещается в пространстве, тем большее сопротивление испытывает.

Мы измеряем движение объекта факторами, описанными в законах Ньютона — масса, скорость, вес, внешняя сила, и ускорение.

Сопротивление прямо влияет на ускорение. Ускорение (а) объекта = его вес (W) минус сопротивление (D), деленное на массу (m). Напомним, что вес – это произведение массы тела на ускорение свободного падения. Например, на Луне вес человека изменится из-за отсутствия силы притяжения, но масса останется прежней. Проще говоря:

a = (W — D) / m

Когда объект ускоряется, скорость и сопротивление растут до конечной точки, в которой сопротивление становится равным весу – больше объект не ускориться. Давайте представим, что наш объект в уравнении — автомобиль. Когда автомобиль движется все быстрее и быстрее, все больше и больше воздуха сопротивляется его движению, ограничивая машину предельным ускорением при определенной скорости.

Подходим к самому важному числу – коэффициенту аэродинамического сопротивления. Это один из основных факторов, который определяет, как легко объект движется сквозь воздух. Коэффициент лобового сопротивления (Cd) рассчитывается по следующей формуле:

Cd = D / (A * r * V/2)

Где D – это сопротивление, A – площадь, r – плотность, V – скорость.

Коэффициент аэродинамического сопротивления в автомобиле

Разобрались в том, что коэффициент лобового сопротивления (Cd) это величина, которая измеряет силу сопротивления воздуха, примененную к объекту, например, к автомобилю. Теперь представьте, что сила воздуха давит на автомобиль по мере его передвижения по дороге. На скорости в 110 км/ч на него воздействует сила в четыре раза большая, чем на скорости в 55 км/ч.

Аэродинамические способности автомобиля измеряются коэффициентом аэродинамического сопротивления. Чем меньше показатель Cd, тем лучше аэродинамика автомобиля, и тем легче он пройдет сквозь стену воздуха, которая давит на него с разных сторон.

Рассмотрим показатели Cd. Помните угловатые квадратные Volvo из 1970-х, 80-х годов? У старого седана Volvo 960 коэффициент лобового сопротивления 0. 36. У новых Volvo кузова плавные и гладкие, благодаря этому коэффициент седана S80 достигает 0.28. Более плавные и обтекаемые формы показывают лучшую аэродинамику, чем угловатые и квадратные.

Причины, по которым аэродинамика любит гладкие формы

Вспомним самую аэродинамическую вещь в природе – слезу. Слеза круглая и гладкая со всех сторон, а в верхней части сужается. Когда слеза капает вниз, воздух легко и плавно ее обтекает. Также с автомобилями – по гладкой, округлой поверхности воздух течет свободно, сокращая сопротивление воздуха движению объекта.

Сегодня у большинства моделей средний коэффициент сопротивления 0.30. У внедорожников коэффициент лобового сопротивления от 0.30 до 0.40 и более. Причина высокого коэффициента в габаритах. Ленд Крузеры и Гелендвагены вмещают больше пассажиров, у них больше грузового места, большие радиаторные решетки, чтобы охладить двигатель, отсюда и квадратно-подобный дизайн. У пикапов, дизайн которых целенаправленно квадратный Cd больше, чем 0. 40.

Дизайн кузова Toyota Prius спорный, но у машины показательно аэродинамическая форма. Коэффициент лобового сопротивления Toyota Prius 0.24, поэтому показатель расхода топлива у машины низкий не только из-за гибридной силовой установки. Запомните, каждые минус 0,01 в коэффициенте сокращают расход топлива на 0,1 л на 100 км пути.

Модели с плохим показателем аэродинамического сопротивления:

Модель

Коэффициент Сх

Lada 4×4 / ВАЗ-21213 «Нива»

0,536

Mercedes-Benz G-класса

0,54

ВАЗ 2101,2103,2106,2107

0,56-0,53

Hummer h3

0,57

Jeep Wrangler (поколение TJ)

0,58

УАЗ «Хантер» / УАЗ-469

0,6

Caterham Seven

0,7

 

Модели с хорошим показателем аэродинамического сопротивления:

Модель

Коэффициент Сх

BMW 3-й серии (E90), BMW i8, Jaguar XE, Lexus LS, Mazda 3, Mercedes B-класса, Mercedes C-класса Coupe, Mercedes E-класса, Infiniti Q50, Nissan GT-R

0,26

Alfa Romeo Giulia, Honda Insight, Audi A2, Peugeot 508

0,25

Tesla Model S, Tesla Model X, Hyundai Sonata Hybrid, Mercedes C-класса, Toyota Prius

0,24

Audi A4, Mercedes CLA, Mercedes S 300 h

0,23

Tesla Model 3

0,21

General Motors EV1

0,195

Volkswagen XL1

0,189

Методы улучшения аэродинамики известны давно, но потребовалось много времени, чтобы автопроизводители начали пользоваться ими при создании новых транспортных средств.

У моделей первых появившихся автомобилей нет ничего общего с понятием аэродинамики. Взгляните на Модель T компании Ford – машина больше похожа на лошадиную повозку без лошади – победитель в конкурсе квадратного дизайна. Правду сказать, большинство моделей — первопроходцев и не нуждались в аэродинамическом дизайне, так как ездили медленно, с такой скоростью нечему было сопротивляться. Однако гоночные машины начала 1900-х годов начали понемногу сужаться, чтобы за счет аэродинамики побеждать в соревнованиях.

Rumpler-Tropfen Auto

В 1921 году немецкий изобретатель Эдмунд Румплер создал Rumpler-Tropfen Auto, что в переводе с немецкого означает «автомобиль — слеза». Созданный по образу самой аэродинамической формы в природе, формы слезы, у этой модели коэффициент лобового сопротивления был 0.27. Дизайн Rumpler-Tropfenauto так и не нашел признания. Румплер успел создать только 100 единиц Rumpler-Tropfenauto.

В Америке скачок в аэродинамическом дизайне совершили в 1930 году, когда вышла модель Chrysler Airflow. Вдохновленные полетом птиц, инженеры сделали Airflow с учетом аэродинамики. Для улучшения управляемости вес машины равномерно распределили между передней и задней осями — 50/50. Уставшее от Великой депрессии общество так и не приняло нетрадиционную внешность Chrysler Airflow. Модель посчитали провальной, хотя обтекаемый дизайн Chrysler Airflow был далеко впереди своего времени.

Chrysler Airflow

В 1950-х и 60-х годах произошли самые большие достижения в области автомобильной аэродинамики, которые пришли из гоночного мира. Инженеры начали экспериментировать с разными формами кузова, зная, что обтекаемая форма ускорит автомобили. Так родилась форма гоночного болида, сохранившаяся по сей день. Передние и задние спойлеры, носы в форме лопаты, и аэрокомплекты служили одной цели, направить поток воздуха через крышу и создать необходимую прижимную силу на передние и задние колеса.

Успеху экспериментов поспособствовала аэродинамическая труба. В следующей части нашей статьи расскажем зачем она нужна и почему важна в проектировании дизайна автомобиля.

Измерение сопротивления в аэродинамической трубе

Для измерения аэродинамической эффективности автомобиля, инженеры позаимствовали инструмент из авиационной промышленности – аэродинамическую трубу.

Аэродинамическая труба — это туннель с мощными вентиляторами, которые создают воздушный поток над объектом, находящимся внутри. Автомобиль, самолет, или что-то еще, чье сопротивление воздуху измеряют инженеры. Из помещения за туннелем, научные сотрудники наблюдают за тем, как воздух взаимодействует с объектом и как ведут себя воздушные потоки на разных поверхностях.

Автомобиль или самолет внутри аэродинамической трубы не двигается, но для имитации реальных условий вентиляторы подают поток воздуха с разной скоростью. Иногда реальные авто даже не загоняют в трубу – дизайнеры часто полагаются на точные модели, создаваемые из глины или другого сырья. Ветер обдувает автомобиль в аэродинамической трубе, а компьютеры рассчитывают коэффициент аэродинамического сопротивления.

Аэродинамические трубы используют еще с конца 1800-х годов, когда пытались создать самолет и измеряли в трубах воздействие воздушного потока. Даже у братьев Райт была такая труба. После Второй мировой войны, инженеры гоночных автомобилей, в поисках преимущества над конкурентами, стали применять аэродинамические трубы для оценки эффективности аэродинамических элементов разрабатываемых моделей. Позже эта технология проложила себе путь в мир пассажирских авто и грузовиков.

За последние 10 лет, большие аэродинамические трубы стоимостью в несколько миллионов долларов США применяют все реже и реже. Компьютерное моделирование понемногу вытесняет этот способ тестирования аэродинамики автомобиля (подробнее здесь). Аэродинамические трубы запускают только, чтобы убедиться, что в компьютерном моделировании нет никаких просчетов.

В аэродинамике больше понятий, чем одно только сопротивление воздуха – есть еще факторы подъемной и прижимной силы. Подъемная сила (или лифт) – это сила, работающая против веса объекта, поднимающая и удерживающая объект в воздухе. Прижимная сила противоположность лифта – это сила, которая прижимает объект к земле.

Тот, кто думает, что коэффициент аэродинамического сопротивления гоночных автомобилей Формулы 1, развивающих 320 км/ч, низкий, заблуждается. У типичного гоночного болида Формулы 1 коэффициент аэродинамического сопротивления около 0.70.

Причина завышенного коэффициента сопротивления воздуху гоночных болидов Формулы 1 в том, что эти машины спроектированы так, чтобы создавать как можно больше прижимной силы. С той скоростью, с которой болиды передвигаются, с их чрезвычайно легким весом, они начинают испытывать лифт на больших скоростях – физика заставляет их подниматься в воздух как самолет. Автомобили не созданы, чтобы летать (хотя статья Transition Terrafugia – летающий автомобиль-трансформер утверждает обратное), и если транспортное средство начинает подниматься в воздух, то ожидать можно только одного – разрушительной аварии. Поэтому, прижимная сила должна быть максимальной, чтобы удержать автомобиль на земле при высоких скоростях, а значит коэффициент аэродинамического сопротивления должен быть большим.

Высокой прижимной силы болиды Формулы 1 добиваются при помощи крыльев или спойлеров на передней и задней частях транспортного средства. Эти крылья направляют потоки воздуха так, что прижимают автомобиль к земле – та самая прижимная сила. Теперь можно спокойно увеличивать скорость и не терять ее на поворотах. При этом, прижимная сила должна быть тщательно сбалансирована с лифтом, чтобы автомобиль набирал нужную прямолинейную скорость.

Многие серийные автомобили имеют аэродинамические дополнения для создания прижимной силы. Суперкар Nissan GT-R пресса критиковала за внешность. Спорный дизайн. А все потому, что весь кузов GT-R спроектирован так, чтобы направить поток воздуха над автомобилем и обратно через овальный задний спойлер, создавая большую прижимную силу. О красоте машины никто не подумал.

Вне трассы Формулы 1, антикрылья часто встречаются на серийных автомобилях, например, на седанах компаний Toyota и Honda. Иногда эти элементы дизайна добавляют немного устойчивости на высоких скоростях. Например, на первом Audi TT изначально не было спойлера, но компании Audi пришлось его добавить, когда выяснилось, что округлые формы TT и легкий вес, создавали слишком много подъемной силы, что делало машину неустойчивой на скорости выше 150 км/ч.

Но если машина не Audi TT, не спортивный болид, не спорткар, а обычный семейный седан или хетчбек, установка спойлера не к чему. Управляемости на таком автомобиле спойлер не улучшит, так как у «семейника» итак высокая прижимная сила из-за высокого Cx, а скорости выше 180 на нем не выжмешь. Спойлер на обычном авто может стать причиной избыточной поворачиваемости или наоборот, нежелания входить в повороты. Однако если вам тоже кажется, что гигантский спойлер Honda Civic стоит на своем месте, не позволяйте никому переубедить вас в этом.

Ошибка

  • Автомобиль — модели, марки
  • Устройство автомобиля
  • Ремонт и обслуживание
  • Тюнинг
  • Аксессуары и оборудование
  • Компоненты
  • Безопасность
  • Физика процесса
  • Новичкам в помощь
  • Приглашение
  • Официоз (компании)
  • Пригородные маршруты
  • Персоны
  • Наши люди
  • ТЮВ
  • Эмблемы
  •  
  • А
  • Б
  • В
  • Г
  • Д
  • Е
  • Ё
  • Ж
  • З
  • И
  • Й
  • К
  • Л
  • М
  • Н
  • О
  • П
  • Р
  • С
  • Т
  • У
  • Ф
  • Х
  • Ц
  • Ч
  • Ш
  • Щ
  • Ъ
  • Ы
  • Ь
  • Э
  • Ю
  • Я
Навигация
  • Заглавная страница
  • Сообщество
  • Текущие события
  • Свежие правки
  • Случайная статья
  • Справка
Личные инструменты
  • Представиться системе
Инструменты
  • Спецстраницы
Пространства имён
  • Служебная страница
Просмотры

    Перейти к: навигация,
    поиск

    Запрашиваемое название страницы неправильно, пусто, либо неправильно указано межъязыковое или интервики название. Возможно, в названии используются недопустимые символы.

    Возврат к странице Заглавная страница.

    Если Вы обнаружили ошибку или хотите дополнить статью, выделите ту часть текста статьи, которая нуждается в редакции, и нажмите Ctrl+Enter. Далее следуйте простой инструкции.

    Лаборатория автомобильной электроники Клемсона: активная аэродинамика

    Активная аэродинамика

    Основное описание

    Аэродинамика используется в автомобильном дизайне уже несколько десятилетий. При проектировании аэродинамических характеристик автомобилей учитываются два основных понятия: прижимная сила и сопротивление. Прижимная сила использует области низкого давления, чтобы удерживать автомобиль на земле и улучшать управляемость и реакцию торможения на высоких скоростях. Однако некоторые аэродинамические особенности, которые увеличивают прижимную силу автомобиля, также могут увеличить сопротивление, что заставляет автомобиль требовать больше мощности для поддержания скорости.

    Активная аэродинамика начала появляться на серийных автомобилях в середине-конце 1980-х годов. Некоторые из первых автомобилей с этой функцией включают Porsche 959 1986 года, Volkswagen Corrado 1988 года и Mitsubishi 3000GT VR-4 1991 года. Активные аэродинамические системы обычно регулируют определенные аэродинамические характеристики в зависимости от скорости автомобиля. Однако может также использоваться другая информация, такая как ускорение, скорость рыскания, угол поворота рулевого колеса и торможение. На рисунке ниже показаны несколько аэродинамических компонентов, которые сегодня используются в различных транспортных средствах. Те, что выделены зеленым, обычно встроены в раму и в настоящее время не являются частью активных аэродинамических систем, а те, что выделены красным, являются активными системами в некоторых автомобилях.

    Аэродинамические характеристики автомобиля

    Стационарные аэродинамические элементы направлены на то, чтобы направлять потоки воздуха, проносящиеся мимо автомобиля, в оптимальные места. Вентиляционные отверстия в шинах, например, позволяют воздуху охлаждать шины и тормоза, тем самым повышая эффективность использования топлива и продлевая срок службы этих компонентов. Лопасти и плавники направляют часть воздуха вокруг автомобиля к вентиляционным отверстиям шин и увеличивают прижимную силу автомобиля. Горб и диффузор направляют воздух под автомобиль. Это создает область низкого давления, увеличивая прижимную силу и устойчивость автомобиля.

    Активные аэродинамические характеристики улучшают характеристики стационарных компонентов. Например, в Porsche 911 Turbo задний спойлер и воздушная заслонка синхронно расширяются и убираются при достижении определенной скорости. В исходном низкоскоростном положении они обеспечивают достаточную прижимную силу и устойчивость автомобиля. Однако их расширение на более высоких скоростях повышает устойчивость и минимизирует коэффициент лобового сопротивления на этой скорости. Передние вертикальные заслонки и задние заслонки диффузора входят в комплектацию Ferrari 458 Speciale. Створки на заднем диффузоре поднимаются, увеличивая объем отводимого воздуха под автомобиль, а передние вертикальные створки открываются для создания прижимной силы, уравновешивая силу, создаваемую задними створками. Передние створки также открываются, чтобы направить поток воздуха на поворотные лопасти и впустить больше воздуха внутрь автомобиля для охлаждения двигателя. Видео ниже демонстрирует движение каждого из этих активных компонентов.

    Демонстрация активной аэродинамики




    McLaren MP4-12C оснащен активным пневматическим тормозом, который срабатывает при резком торможении на скорости выше 95 км/ч. Пневматический тормоз представляет собой ветровую заслонку на задней части автомобиля, которая раскрывается поршнем на первоначальный угол 32 градуса. Воздушный поток над задней частью автомобиля заставляет воздушный тормоз растянуться до 69 градусов.градусов. Пневматический тормоз сокращает тормозной путь до 20 метров.

    Хотя большинство активных аэродинамических систем используются в гоночных автомобилях, некоторые из этих функций реализованы и в других автомобилях высокого класса. Некоторые автомобили BMW и Ford Mustang имеют активные системы решетки радиатора, которые перемещаются на более высоких скоростях, чтобы уменьшить лобовое сопротивление, когда не требуется дополнительная охлаждающая способность. У Audi также есть активная конструкция с заслонками между спицами колеса, которые открываются и закрываются в зависимости от количества воздуха, необходимого для охлаждения тормозов.

    Датчики
    Датчик ускорения, датчик положения педали тормоза, датчик температуры двигателя, датчик угла поворота рулевого колеса, датчик скорости автомобиля, датчик скорости рыскания
    Приводы
    Воздушная заслонка, створки в переднем сплиттере и/или заднем диффузоре, задние воздушные тормоза, задний спойлер, решетчатые жалюзи, колесные жалюзи
    Передача данных
    Обычно сеть управления (CAN)
    Производители
    Ауди, БМВ, Бугатти, Феррари, Форд, Кенигсегг, Макларен, Пагани, Порше
    Для получения дополнительной информации
    [1] Автомобильная аэродинамика, Википедия.
    [2] Будущее автомобилей: активная аэродинамика, Дэвид Морерия, Правда об автомобилях, 8 января 2009 г.
    [3] Диффузоры — Основы техники — Аэродинамика, Машиностроение гоночных автомобилей, 15 апреля 2009 г.
    [4] McLaren P1: Making Hyper Advanced Aerodynamics Gorgeous, Jalopnik, 27 сентября 2012 г.
    [5] 2014 Porsche 911 Turbo — Видео по аэродинамике, YouTube, 16 августа 2013 г.
    [6] Ferrari 458 Speciale — аэродинамика, YouTube, 8 октября 2013 г.
    [7] 2014 Audi 7 Retractable Spoiler, YouTube, 30 ноября 2013 г.
    [8] Активное заднее крыло One:1 — /Inside Koenigsegg 2, YouTube, 8 апреля 2014 г.
    [9] Active Aerodynamics, a Slippery Obsession, BBC, 19 августа 2014 г.

    Руководство по аэродинамике автомобиля | Все, что вам нужно знать

    То, как воздух проходит под автомобилем или над ним, имеет решающее значение как для его производительности, так и для вашей безопасности. Мы исследуем ключевые принципы в нашем руководстве по аэродинамике автомобиля.

    Руководство из журнала Fast Ford.

    «Aero» — удивительно расплывчатая всеобъемлющая фраза, которую автомобильное сообщество любит разбрасывать, говоря о модификации определенного жанра, но что она на самом деле означает? Ну, по сути, аэродинамика — это изучение движущегося воздуха, в частности, когда он соприкасается с объектом — в данном случае с автомобилем. Это очень сложно, но, к счастью, эксперты уже сделали уравнения за нас. Вместо этого мы можем просто сосредоточиться на том, чтобы выбрать все самое интересное, что заставит наши машины ехать быстрее.

    Каждый, кто читает это, вероятно, видел гоночные автомобили и очень быстрые дорожные автомобили, украшенные причудливыми вспомогательными средствами из углеродного волокна, но они не только придают им агрессивный внешний вид, они предназначены для выполнения определенной работы. И эта работа заключается в том, чтобы направлять воздух туда, где он вам нужен, и отводить его от мест, которые вам не нужны.

    При этом вы можете фактически использовать давление воздуха, когда вы проезжаете через него, чтобы получить преимущества в производительности и безопасности. Сделаете это неправильно, и все, что вы сделаете, это увеличит лобовое сопротивление вашего автомобиля и, следовательно, снизит его производительность. Итак, в этом руководстве по аэродинамике автомобиля мы рассмотрим некоторые ключевые основы дизайна и способы их использования в ваших собственных сборках.

    Что такое аэродинамика автомобиля ?

    То, как ваш автомобиль движется по воздуху, представляет собой критическую комбинацию событий, которые напрямую влияют на его характеристики, стабильность и безопасность. На самом простом уровне, если вы представляете переднюю часть своей машины, когда вы едете, воздух, с которым вы сталкиваетесь, может проходить либо под ней, либо над ней. Точка на вашем переднем бампере, в которой воздушный поток разделяется, чтобы пройти либо над автомобилем, либо под ним, называется точкой застоя. Отсюда воздух под автомобилем должен иметь дело с объектами, которые создают сильное сопротивление: колеса, выхлоп, карданные валы и компоненты подвески — все это комковатые объекты, вызывающие сопротивление.

    Аэродинамическое сопротивление — это сила, непосредственно противодействующая движению автомобиля. Если быть точным, около трети общего сопротивления вашего автомобиля приходится на днище. Вдобавок к этому, еще одна треть поступает от воздуха, проходящего через автомобиль (весь экстерьер), а оставшаяся треть поступает от воздушного потока через решетку радиатора, интеркулер и моторный отсек. Каждый серийный автомобиль проходит испытания, чтобы присвоить ему число, известное как коэффициент аэродинамического сопротивления или Cd. Чем меньше число, тем меньше лобовое сопротивление автомобиля, а если учесть, что на скоростях по шоссе более половины мощности, необходимой для поддержания скорости, требуется для преодоления лобового сопротивления, вы начинаете понимать, насколько важна эта цифра, особенно для экономии топлива.

    Типичные значения Cd находятся в районе 0,3-0,4 для серийных дорожных автомобилей. Некоторые автомобили особенно аэродинамичны, например, новый Porsche Taycan, у которого Cd всего 0,22. С другой стороны, гоночные автомобили с открытыми колесами имеют гораздо более высокий коэффициент аэродинамического сопротивления, в основном благодаря вращению колес, что создает сильное сопротивление. Автомобиль F1, например, имеет Cd в районе 1,0.

    Руководство по аэродинамике автомобиля: что делает сплиттер?

    Привинчивание большого переднего сплиттера к вашему автомобилю — это довольно простой способ добавить прижимную силу, который эффективно прижимает переднюю часть автомобиля к земле на скорости. Это отлично подходит для поворотов и торможения, где требуется высокий уровень сцепления с передней частью. Еще одним плюсом является то, что он уменьшает долю подъемного воздушного потока, направленного под автомобиль, и вместо этого направляет его над крышей автомобиля. Небольшой недостаток переднего сплиттера заключается в том, что он увеличивает лобовую площадь автомобиля, что имеет прямое отношение к лобовому сопротивлению, но преимущества перевешивают недостатки, когда сцепление имеет решающее значение. На гоночных автомобилях низкий выступающий передний сплиттер является обычным явлением, но он лучше всего подходит для гладкого ровного асфальта и жесткой подвески.

    На дорожном автомобиле это прекрасный баланс того, насколько низко вы можете ехать, не отрывая его при въезде на подъездную дорожку. Другой метод уменьшения доли воздушного потока под автомобилем немного проще: если вы опускаете свой автомобиль на койловеры или усиленные занижающие пружины, меньший поток воздуха будет направлен под автомобиль, что одновременно снижает подъемную силу и лобовое сопротивление, поэтому такие автомобили, как новый GT, имеют системы, которые фактически опускают автомобиль на 50 мм в режимах максимальной скорости и трека. Опускание автомобиля дает больше преимуществ, чем вы думаете!

    Что делают утки?

    Бамперные утки (также называемые ныряльщиками) становятся все более популярными в сфере тюнинга и, подобно переднему сплиттеру, увеличивают прижимную силу в передней части автомобиля. Обычно изготавливаются из углеродного волокна и крепятся болтами к бокам переднего бампера, чаще всего в наборах по четыре штуки. Они также направляют поток воздуха из-под автомобиля, что очень желательно для уменьшения подъемной силы, но в результате они увеличивают сопротивление. Canards оказывают заметное влияние только на более высоких скоростях, и их лучше всего использовать для точной настройки аэродинамических характеристик автомобиля. Для использования в дорожных автомобилях сомнительно, можно ли оправдать утки с точки зрения производительности.

    Руководство по аэродинамике автомобиля: что делает заднее антикрыло?

    Подобно тому, как сплиттеры увеличивают прижимную силу в передней части автомобиля, заднее антикрыло создает прижимную силу в задней части. Их часто называют спойлерами, что технически неверно — спойлер нужен, чтобы «портить» любой нежелательный поток воздуха над задней частью автомобиля (подсказка в названии), чтобы уменьшить подъемную силу или повысить эффективность использования топлива. . Крыло, которым оснащены многие гонщики, а также задняя часть Sierra и Escort Cosworth, представляет собой устройство, которое активно создает прижимную силу сзади, чтобы увеличить сцепление с задним колесом и повысить устойчивость. Заднее крыло Sierra Cosworth создает прижимную силу от 70 до 80 кг на скорости 100 миль в час, а заднее крыло Escort Cosworth обеспечивает прижимную силу от 40 до 50 кг на скорости 100 миль в час, поэтому вы можете видеть, насколько эффективно они обеспечивают сцепление с задними колесами. – подтвердит любой, кто ездил на трехдверной Sierra без заднего антикрыла.

    Критический угол атаки лопасти крыла; это оказывает большое влияние на аэродинамическое сопротивление, а также влияет на то, как распределяется прижимная сила. Например, заднее антикрыло Escort Cosworth имеет другой угол атаки, чем у Sierra, из-за того, что оно полноприводное, а не заднеприводное. Форма и расположение крыла также имеют жизненно важное значение, и многие задние крылья на вторичном рынке имеют возможность регулировки. Если вы серьезно настроены быстро двигаться по трассе, купите крыло с некоторыми данными CFD (вычислительная гидродинамика) — это может связать величину прижимной силы, сопротивления и энергопотребления со скоростью. Таким образом, вы знаете, что на скорости 100 миль в час ваш вес равен весу трех взрослых барсуков-самцов, сидящих на заднем сиденье автомобиля (или чего-то еще). Было бы еще лучше инвестировать некоторое время в аэродинамическую трубу, но это стоит серьезных денег, и для большинства дорожных и трековых автомобилей достаточно просто купить приличное легкое заднее крыло.

    Заслонка Gurney (названная в честь американского гонщика Дэна Герни, который впервые успешно применил эту концепцию в гонках с открытыми колесами в 1970-х годах) иногда устанавливается на задние крылья, как в случае с RS500. Это часть технологии, которая была заимствована из аэронавтики. Небольшая полоска материала, обычно расположенная под прямым углом к ​​поверхности крыла, способствует четкому отделению воздуха от крыла и максимизирует прижимную силу.

    Аэродинамика автомобиля: что делает спойлер?

    Многие спортивные автомобили в стандартной комплектации оснащены спойлерами, и это не только из эстетических соображений — безопасность здесь также играет большую роль. Спойлеры используются для уменьшения турбулентного воздушного потока в задней части автомобиля, создавая четкое разделение потока, что снижает нежелательную подъемную силу. Возможно, стоит подумать об этом, прежде чем вы отвинтите стандартный спойлер вашего автомобиля! Активные задние спойлеры, такие как тот, который можно найти на последнем Ford GT (который, когда он выдвинут, технически является задним крылом, но когда он спрятан, является спойлером) удваиваются как воздушные тормоза и не только обеспечивают устойчивость в движении, но и предлагают огромное сопротивление при резком торможении, помогающее замедлить машину, как при посадке самолета.

    Аэродинамические средства не обязательно должны быть только спереди или сзади автомобиля: возьмем в качестве примера скромную пятидверную Sierra; ранние модели поставлялись без маленьких резиновых полосок вокруг окон заднего фонаря, в результате чего они сильно страдали от бокового ветра и чувствовали себя довольно неустойчиво на более высоких скоростях. Это было исправлено Ford в 1985 году, когда фирма представила резиновые полоски (известные как ремни) на более поздних моделях.

    Руководство по аэродинамике автомобиля: что делает днище?

    Оптимизация воздушного потока под автомобилем дает большие преимущества, и в течение многих лет использовались различные методы, особенно на гоночных автомобилях, чтобы найти преимущества в этой области.

    Основная цель — создать зону низкого давления под автомобилем, чтобы не было направленной вверх силы, борющейся с прижимной силой, создаваемой сплиттерами и спойлерами, которые вы только что прикрутили. Основной способ создать зону низкого давления — ускорить поток воздуха под автомобилем. Это связано с принципом Бернулли, который гласит, что увеличение скорости воздуха приводит к снижению давления.

    Наилучшим решением будет совершенно ровный пол, полностью исключающий зону под полом, создающую сопротивление. Этот метод действительно применяется только в полноценных гоночных автомобилях, но другое решение для гоночных автомобилей — использовать сплиттер или днище, которое проходит под двигателем, чтобы минимизировать сопротивление, создаваемое компонентами моторного отсека. Эта технология даже нашла свое применение в экономичных дорожных автомобилях, в которых используется расширенная передняя кромка и частичное днище для уменьшения лобового сопротивления и повышения экономии топлива.

    Что делает задний диффузор?

    Задний диффузор помогает быстрому воздушному потоку под автомобилем воссоединиться с более медленным потоком позади автомобиля. Это смешивание различных воздушных скоростей часто приводит к нежелательному сопротивлению, поэтому диффузор используется для расширения и замедления воздуха в задней части автомобиля, прежде чем он присоединится к следу позади автомобиля.

    Использование продольных ребер в диффузоре является обычным явлением и способствует устойчивости задней части автомобиля на высоких скоростях, обеспечивая контроль направления и скорости воздушного потока.

    Диффузоры часто устанавливаются на гоночные и трековые автомобили, но не всегда под правильным углом. Хотите верьте, хотите нет, но для заднего диффузора существует окно эффективности, которое, хотя и субъективно, составляет от семи до десяти градусов.

    Что делают воздуховоды?

    Воздуховоды жизненно необходимы в любом автомобиле, но особенно в автомобилях с турбонаддувом, где управление теплом является более серьезной проблемой. Будь то промежуточный охладитель, радиатор, масляный радиатор или тормоза, наличие надлежащих воздуховодов — единственный способ гарантировать, что поток воздуха достигнет объекта, который вы пытаетесь охладить.

    Например, если у вас передний интеркулер с большими зазорами по бокам и между бампером, то воздух всегда будет идти по пути наименьшего сопротивления, а не проходить через сердцевину и обеспечивать максимальное охлаждение. Если вы не предлагаете воздуху другого выбора, кроме как проходить через предмет, который вы хотите охладить, с помощью правильного воздуховода, то он будет выполнять свою работу должным образом.

    Воздуховоды также применяются к автомобилям, которые едут на максимальной скорости, например, на соляных равнинах Бонневилля, где обычно можно увидеть клейкую ленту на крышках капота, чтобы предотвратить создание сопротивления. В Великобритании эти методы использовались такими компаниями, как Reyland Motorsport, в своем предыдущем проекте Escort Cosworth, который разогнался до 200 миль в час в Брантингторпе. Тем не менее, необходимо уделять особое внимание тому, чтобы автомобиль все еще получал необходимый уровень охлаждения двигателя!

    Что такое активная аэродинамика?

    Последней аэродинамической технологией является активная аэродинамика, которую многие производители в настоящее время устанавливают на серийные автомобили. Имея такие компоненты, как заслонки решетки радиатора, которые могут двигаться, ЭБУ автомобиля может управлять аэродинамикой. Например, система Active Grille Shutter от Ford оснащена моторизованными горизонтальными лопастями, которые открываются и закрываются для изменения количества воздуха, проходящего через решетку в охлаждающий пакет. Это имеет двойной эффект: во-первых, это помогает двигателю быстрее прогреваться и, таким образом, снижает выбросы выхлопных газов; во-вторых, это помогает уменьшить аэродинамическое сопротивление, которое, по утверждению Ford, может достигать шести процентов, когда решетка радиатора полностью закрыта.

Back to top