Конструкция синхронного генератора: Синхронный генератор переменного тока: устройство, принцип работы, применение

Содержание

Устройство, принцип действия и конструкция синхронного генератора, режимы работы

Каталог

Бренды

Главная

»

Помощь покупателю

»

Устройство и принцип работы синхронного генератора

1 марта 2019

Содержание

  • Элементы конструкции синхронных генераторов
  • Вычисление скорости вращения
  • Принцип действия синхронного генератора
  • Области применения

Синхронный генератор (СГ) – энергетическое оборудование, предназначенное для преобразования механической энергии в электрическую. Имеет надежную конструкцию и достаточно простой принцип работы. СГ востребованы на предприятиях энергетической индустрии, в транспортных системах, нефтегазовой и других промышленных отраслях.

Элементы конструкции синхронных генераторов

В состав СГ входят:

  • Обмотка возбуждения (ОВ) статора. Для ее питания применяется источник постоянного электротока, его функции реализует электронный регулятор напряжения. Этот элемент применяется в СГ с самовозбуждением. Первичное возбуждение происходит благодаря остаточному магнетизму магнитопровода генератора. Переменный ток, который понижающий трансформатор и выпрямитель преобразуют в постоянный, поставляет обмотка статора.
  • Обмотка ротора. Обмотка, в которой инициируется электродвижущая сила, называется обмоткой возбуждения якоря.
  • Схема вращающихся диодов («диодный мост») – обеспечивает выпрямление переменного напряжения, которое генерирует обмотка якоря возбудителя.
  • Статор – неподвижный узел. В его составе имеется корпус, внутри которого предусмотрен сердечник или пакет, состоящий из листов электротехнической стали особой конфигурации. Качество генерируемой электроэнергии во многом зависит от того, какие листы используются в пакете – цельные или сборные, от их качества и материала, из которого изготовлена обмотка. В дорогих моделях обмотка изготавливается из медного эмаль-провода, в более дешевых ее функции выполняет алюминиевый провод.
  • Ротор – вращающаяся часть генератора. Может быть явнополюсным и неявнополюсным. Роторы первого типа используются в СГ, совмещенных с низкочастотными ДВС, частота вращения которых составляет до 3000 об/мин. В высокомощных и высокочастотных агрегатах применяют неявнополюсные роторы. Их часто монтируют на валу совместно с паровыми турбинами. СГ с таким конструктивным исполнением называют турбогенераторами.

Силовые обмотки и обмотки возбуждения монтируют в специальные пазы, предусмотренные в конструкциях ротора и якоря. По виду выходного напряжения СГ разделяют на однофазные и трехфазные.

Синхронный генератор может функционировать в режиме генератора или мотора. Во втором варианте на входе СГ присутствует электроэнергия, а на выходе – механическая энергия. Функции электродвигателя синхронные генераторы выполняют в установках мощностью более 50 кВт. При использовании СГ в роли электродвигателя обмотка статора подсоединяется к электросети, а ротора – к источнику постоянного тока.

Вычисление скорости вращения

Количество оборотов ротора зависит от частоты тока. Такая зависимость выражена формулой:

n = 60хf/p, в которой

  • n – количество оборотов, об/мин;
  • f – частота электросети, равная 50 Гц;
  • p – число полюсных пар.

Принцип действия синхронного генератора

Агрегат в режиме электрогенератора работает следующим образом:

  • При прохождении через ОВ постоянного тока появляется магнитное поле с чередованием полюсов.
  • Магнитное поле вращается относительно обмотки якоря. При этом происходит возбуждение переменных ЭДС, которые при суммировании образуют ЭДС фаз.
  • Трехфазную схему образуют три одинаковые обмотки, которые размещаются на якоре под углом друг к другу, равным 120°.

Области применения

СГ в комплексе с бензиновым или дизельным ДВС востребованы в местах, в которых централизованного энергоснабжения нет или его мощности недостаточно, например:

  • на строительных площадках;
  • в местах ведения разведочных и добывающих работ;
  • на морских судах.

Если необходимо генерировать электропитание для высокомощных пользователей, несколько агрегатов включают на параллельное функционирование. Такой способ соединения позволяет выводить из работы отдельные СГ без остановки функционирования всей сети.

Устройство синхронного генератора переменного тока, принцип работы

Каталог

Бренды

Главная

»

Помощь покупателю

»

Устройство синхронного генератора переменного тока

10 декабря 2019

Содержание

  • Конструктивные особенности синхронного генератора
  • Принцип работы синхронного электрогенератора
  • Виды синхронных генераторов переменного тока
  • Области использования синхронных генераторов переменного тока
  • Преимущества применения СГ

Синхронный генератор переменного тока – агрегат, предназначенный для преобразования любого вида энергии, чаще всего механической, в электрическую. В таких электромашинах магнитное поле токов якорной обмотки вращается синхронно с ротором. Может быть одно- или трехфазным, работать самостоятельно, а также параллельно с другими генераторами или централизованной электросетью. Используется режиме как генератора, так и двигателя. Такие аппараты востребованы на предприятиях энергетического комплекса, в транспортной сфере, на объектах производственного назначения.

Конструктивные особенности синхронного генератора

Конструкция синхронных машин может быть разной, но в нее обязательно входят:

  • Ротор. Вращающийся узел, образуемый системой вращающихся электромагнитов, которые питаются постоянным электротоком, поступающим от наружных источников. Магниты имеют зубчатую конфигурацию. Роторы могут быть явнополюсными, используемыми в низкоскоростных машинах, и неявнополюсными, востребованными для высокоскоростных моделей.
  • Статор. Неподвижный узел, состоящий из сердечника, который набирается из листов электротехнической стали, и обмотки. Витки статорной обмотки равномерно распределены по окружности. В однофазных моделях присутствует одна обмотка, в трехфазных – три, соединяемые по схемам «звезда» или «треугольник».

Принцип работы синхронного электрогенератора

Один из вариантов рабочей схемы синхронной машины переменного тока:

  • Механическая энергия от бензинового или дизельного ДВС передается к ротору, что провоцирует вращение поля электромагнита.
  • В статорной обмотке генерируется одно- или трехфазное переменное напряжение, величина которого зависит от скорости вращения ротора.
  • Блок управления осуществляет автоматическую регулировку электрических параметров генерируемого переменного тока посредством обратной связи.

В синхронных машинах применяют два способа возбуждения: электромагнитное и постоянными магнитами.

Трехфазный СГ может работать в режиме электрогенератора или мотора. В первом случае на входе будет механическая (или другая) энергия, во втором – электрическая энергия будет входящей, а механическая – выходящей.

Виды синхронных генераторов переменного тока

Тип электромашины выбирают в зависимости от запланированной области использования:

  • Импульсные. Востребованы для механизмов, работающих импульсном режиме, или для оборудования, функционирующего в стабильном рабочем режиме, но с импульсным руководящим сигналом.
  • Безредукторные. Подходят для автономных систем.
  • Бесконтактные. Выполняют функции электростанций на водных судах.
  • Гистерезисные. Устанавливаются в системах автоматизированного управления, инерционных электроприводах, временных счетчиках.

Области использования синхронных генераторов переменного тока

Такие электромашины при работе в условиях высоких и меняющихся нагрузок эффективно синхронизируются с другим энергооборудованием. Это свойство позволяет в часы пик подключать резервные генераторы.

Синхронные электрогенераторы востребованы:

  • в тепловозах и других транспортных системах, в этом случае электромашины работают в комплексе с выпрямителями на полупроводниках;
  • на мощных ГЭС, ТЭС, АЭС, мобильных электростанциях;
  • на гибридных автомобилях.

СГ могут выполнять функции электромоторов мощностью выше 50 кВт.

В каких случаях используют синхронные электрогенераторы переменного тока

СГ эффективны при:

  • высоких требованиям к стабильности напряжения и частоты электротока;
  • при большой вероятности возникновения перегрузок у потребителей с реактивной мощностью;
  • при вероятности перегрузов, возникающих в рабочем режиме при подключении активных и реактивных нагрузок.

Преимущества применения СГ

Синхронные генераторы широко используются, благодаря комплексу преимуществ, среди которых:

  • устойчивость к перегрузкам в сети и КЗ;
  • более высокое качество генерируемой электроэнергии, по сравнению с асинхронными машинами, что позволяет использовать СГ для питания дорогостоящего оборудования;
  • наличие автоматических регуляторов электрических параметров и выпрямителей, которые отключают электропитание при возникновении аварийных ситуаций.

Современные синхронные генераторы изготавливаются в соответствии с требованиями мировых стандартов качества.

Синхронный генератор

в качестве ветрового генератора

Синхронный генератор

в качестве ветрового генератора мода на генератор автомобильного типа.

На этот раз отличие заключается в том, что синхронный генератор вырабатывает трехфазное переменное напряжение на выходе из своих обмоток статора, в отличие от генератора постоянного тока, который вырабатывает один постоянный или постоянный ток. Однофазные синхронные генераторы также доступны для систем синхронных генераторов маломощных бытовых ветряных турбин.

По сути, синхронный генератор представляет собой синхронную электромеханическую машину, используемую в качестве генератора, и состоит из магнитного поля на вращающемся роторе и неподвижного статора, содержащего несколько обмоток, которые обеспечивают генерируемую мощность. Система магнитного поля ротора (возбуждение) создается либо с помощью постоянных магнитов, установленных непосредственно на роторе, либо за счет электромагнитного возбуждения от внешнего постоянного тока, протекающего в обмотках возбуждения ротора.

Этот постоянный ток возбуждения передается на ротор синхронной машины через контактные кольца и угольные или графитовые щетки. В отличие от предыдущей конструкции генератора постоянного тока, синхронные генераторы не требуют сложной коммутации, что обеспечивает более простую конструкцию. Затем синхронный генератор работает аналогично автомобильному генератору переменного тока и состоит из двух следующих общих частей:

Основные компоненты синхронного генератора

  • Статор: — Статор несет три отдельных (3-фазных) якоря. обмотки физически и электрически смещены друг от друга на 120 градусов, создавая выходное напряжение переменного тока.
  • Ротор: — Ротор несет магнитное поле либо в виде постоянных магнитов, либо в виде намотанных катушек, подключенных к внешнему источнику питания постоянного тока через токосъемные кольца и угольные щетки.

Говоря о «синхронном генераторе», терминология, используемая для описания частей машины, является обратной терминологии для описания генератора постоянного тока. Обмотки возбуждения — это обмотки, создающие основное магнитное поле, которые являются обмотками ротора для синхронной машины, а обмотки якоря — это обмотки, в которых индуцируется основное напряжение, обычно называемые обмотками статора. Другими словами, для синхронной машины обмотки ротора являются обмотками возбуждения, а обмотки статора — обмотками якоря, как показано.

Конструкция синхронного генератора

В приведенном выше примере показана базовая конструкция синхронного генератора с явно выраженным двухполюсным ротором. Эта обмотка ротора подключена к напряжению питания постоянного тока, создающему ток возбуждения I f . Внешнее напряжение возбуждения постоянного тока, которое может достигать 250 вольт постоянного тока, создает электромагнитное поле вокруг катушки со статическими северным и южным полюсами.

Когда вал ротора генератора вращается лопастями турбины (первичный двигатель), полюса ротора также будут двигаться, создавая вращающееся магнитное поле, поскольку северный и южный полюса вращаются с той же угловой скоростью, что и лопасти турбины (при условии прямого водить машину). Когда ротор вращается, его магнитный поток пересекает отдельные катушки статора одну за другой, и по закону Фарадея в каждой катушке статора индуцируется ЭДС и, следовательно, ток.

Величина напряжения, индуцированного в обмотке статора, как показано выше, является функцией напряженности магнитного поля, которая определяется током возбуждения, скоростью вращения ротора и числом витков в обмотке статора. Поскольку синхронная машина имеет три обмотки статора, в обмотках статора создается трехфазное напряжение, соответствующее обмоткам А, В и С, которые электрически разнесены на 120 o друг от друга, как показано выше.

Эта трехфазная обмотка статора подключается непосредственно к нагрузке, и, поскольку эти катушки являются стационарными, им не нужно проходить через большие ненадежные контактные кольца, коллектор или угольные щетки. Кроме того, поскольку катушки, генерирующие основной ток, являются стационарными, упрощается намотка и изоляция обмоток, поскольку они не подвергаются вращательным и центробежным силам, что позволяет генерировать более высокие напряжения.

Синхронный генератор с постоянными магнитами

Как мы видели, синхронные машины с возбуждением возбуждения требуют возбуждения постоянным током в обмотке ротора. Это возбуждение осуществляется за счет использования щеток и контактных колец на валу генератора. Однако есть несколько недостатков, таких как необходимость регулярного обслуживания, очистки от угольной пыли и т. д. Альтернативным подходом является использование бесщеточного возбуждения, в котором вместо электромагнитов используются постоянные магниты.

Как следует из названия, в Синхронный генератор с постоянными магнитами (ГПМГ), поле возбуждения создается с помощью постоянных магнитов в роторе. Постоянные магниты могут быть установлены на поверхности ротора, встроены в поверхность или установлены внутри ротора. Воздушный зазор между статором и ротором уменьшен для обеспечения максимальной эффективности и сведения к минимуму количества необходимого редкоземельного магнитного материала. Постоянные магниты обычно используются в маломощных и недорогих синхронных генераторах.

Для низкоскоростных ветряных генераторов с прямым приводом генератор с постоянными магнитами является более конкурентоспособным, поскольку он может иметь большее число полюсов, составляющее 60 или более полюсов, по сравнению с обычным синхронным генератором с фазным ротором. Кроме того, реализация возбуждения с постоянными магнитами проще, надежнее, но не позволяет контролировать возбуждение или реактивную мощность. Одним из основных недостатков синхронных генераторов ветряных турбин с постоянными магнитами является то, что без контроля потока ротора они достигают максимальной эффективности только при одной заранее определенной скорости ветра.

Синхронная скорость генераторов

Частота выходного напряжения зависит от скорости вращения ротора, другими словами, от его «угловой скорости», а также от количества отдельных магнитных полюсов на роторе. В нашем простом примере выше синхронная машина имеет два полюса, один северный полюс и один южный полюс. Другими словами, машина имеет два отдельных полюса или одну пару полюсов (север-юг), также известную как пары полюсов.

Когда ротор делает один полный оборот, 360 o , генерируется один цикл ЭДС индукции, поэтому частота будет равна одному циклу на каждый полный оборот или 360 o . Если удвоить количество магнитных полюсов до четырех, (две пары полюсов), то на каждый оборот ротора будет генерироваться два цикла ЭДС индукции и так далее.

Поскольку один цикл ЭДС индукции создается одной парой полюсов, количество циклов ЭДС, возникающих за один оборот ротора, будет равно количеству пар полюсов P. Таким образом, если количество циклов на число оборотов задается как: P/2 относительно числа полюсов, а количество оборотов ротора N в секунду задается как: N/60, тогда частота ( ƒ ) ЭДС индукции будет определяться как:

В синхронном двигателе его угловая скорость определяется частотой напряжения питания, поэтому N обычно называют синхронной скоростью. Тогда для синхронного генератора с полюсом «P» скорость вращения первичного двигателя (лопастей турбины) для получения необходимой выходной частоты ЭДС индукции 50 Гц или 60 Гц будет:

При 50 Гц

Количество
отдельных полюсов
2 4 8 12 24 36 48
Rotational Speed ​​
(rpm)
3,000 1,500 750 500 250 167 125

At 60Hz

Количество
Индивидуальные полюсы
2 4 8 12 24 36 48
Скорость ротации
(RPM)

Ротационная скорость
(RPM)

.0072

1 800 900 600 300 200 150

, так как для данного синхронного генератора, разработанного с фиксированным количеством столбов. постоянной ЭДС индукции при требуемом значении, либо 50Гц, либо 60Гц для питания сетевых приборов. Другими словами, частота создаваемой ЭДС синхронизирована с механическим вращением ротора.

Тогда сверху видно, что для генерации 60 Гц с помощью 2-полюсной машины ротор должен вращаться со скоростью 3600 об/мин, или для генерации 50 Гц с помощью 4-полюсной машины ротор должен вращаться со скоростью 1500 об/мин. . Для синхронного генератора, который приводится в действие электродвигателем или парогенератором, эта синхронная скорость может быть легко достигнута, однако при использовании в качестве синхронного генератора ветровой турбины это может быть невозможно, поскольку скорость и мощность ветра постоянно меняется.

Синхронные генераторы (Электрические генераторы…

Из нашего предыдущего учебника по проектированию ветряных турбин мы знаем, что все ветряные турбины выигрывают от ротора, работающего с оптимальным передаточным числом . Но чтобы получить TSR от 6 до 8, угловая скорость лопастей, как правило, очень низкая и составляет от 100 до 500 об/мин, поэтому, глядя на наши таблицы выше, нам потребуется синхронный генератор с большим числом магнитных полюсов, например, 12 или выше.

Кроме того, потребуется какая-либо форма механического ограничителя скорости, например бесступенчатая трансмиссия или бесступенчатая трансмиссия, чтобы поддерживать вращение лопастей ротора с постоянной максимальной скоростью для ветряной турбины с прямым приводом. Однако для синхронной машины чем больше у нее полюсов, тем крупнее, тяжелее и дороже становится машина, которая может быть приемлемой или неприемлемой.

Одним из решений является использование синхронной машины с небольшим числом полюсов, которая может вращаться с более высокой скоростью от 1500 до 3600 об/мин с приводом от редуктора. Низкая скорость вращения лопастей ротора ветряных турбин увеличивается с помощью редуктора, который позволяет скорости генератора оставаться более постоянной при изменении скорости вращения лопастей турбины, поскольку изменение на 10% при 1500 об/мин менее проблематично, чем изменение на 10% при 100 об/мин. Этот редуктор может согласовать скорость генератора с переменной скоростью вращения лопастей, что позволяет работать с переменной скоростью в более широком диапазоне.

Однако использование редуктора или системы шкивов требует регулярного технического обслуживания, увеличивает вес ветряной турбины, создает шум, увеличивает потери мощности и снижает эффективность системы, поскольку требуется дополнительная энергия для привода шестерен редуктора и внутренних компонентов.

Существует много преимуществ использования системы прямого привода без механической коробки передач, но отсутствие коробки передач означает более крупную синхронную машину с увеличением как размера, так и стоимости генератора, который должен работать на низких скоростях. Итак, как мы можем управлять синхронным генератором в системе низкоскоростных ветряных турбин, скорость вращения лопастей ротора которых определяется только мощностью ветра. Путем выпрямления сгенерированного 3-фазного питания в источник постоянного или постоянного тока.

Синхронные генераторные выпрямители

Диодные выпрямители представляют собой электронные устройства, используемые для преобразования переменного тока (переменного тока) в постоянный (постоянный ток). Преобразовывая выходную мощность синхронного генератора в источник постоянного тока, генератор ветровой турбины может работать на других скоростях и частотах, отличных от его фиксированной синхронной скорости.

Позволяет преобразовывать переменную частоту и переменное выходное напряжение генератора в постоянное напряжение переменного уровня. Преобразовывая выход переменного тока в постоянный, генератор теперь можно использовать как часть ветряной системы для зарядки аккумуляторов или как часть ветроэнергетической системы с переменной скоростью. Затем синхронный генератор переменного тока преобразуется в генератор постоянного тока.

Схема простейшего выпрямителя использует схему диодного моста для преобразования переменного тока, генерируемого генератором, в флуктуирующий источник постоянного тока, амплитуда которого определяется скоростью вращения генератора. В этой схеме выпрямителя синхронного генератора, показанной ниже, 3-фазный выход генератора выпрямляется до постоянного тока с помощью 3-фазного выпрямителя.

Цепь генераторного выпрямителя

Принципиальная схема мостового трехфазного выпрямителя переменного тока в постоянный показана выше. В этой конфигурации ветряная турбина может управлять генератором на частоте, не зависящей от синхронной частоты, поскольку изменение скорости генератора изменяет частоту генератора. Следовательно, можно изменять скорость генератора в более широком диапазоне и работать с оптимальной скоростью для получения максимальной мощности в зависимости от фактической скорости ветра.

Обратите внимание, что выходное напряжение трехфазного мостового выпрямителя не является чистым постоянным током. Выходное напряжение имеет уровень постоянного тока вместе с большими колебаниями переменного тока. Эта форма сигнала обычно известна как «пульсирующий постоянный ток», который можно использовать для зарядки аккумуляторов, но нельзя использовать в качестве удовлетворительного источника постоянного тока. Чтобы удалить эти пульсации переменного тока, используется фильтр или схема сглаживания. Эти схемы сглаживания или схемы фильтра пульсаций используют комбинации катушек индуктивности и конденсаторов для получения плавного постоянного напряжения и тока.

При использовании в качестве части системы, подключенной к сети, синхронные машины могут быть подключены к сети только тогда, когда их частота, фазовый угол и выходное напряжение такие же, как у сети, другими словами, они вращаются синхронно. скорость, как мы видели выше. Но, преобразовывая их переменное выходное напряжение и частоту в постоянный источник постоянного тока, мы теперь можем преобразовать это постоянное напряжение в источник переменного тока с правильной частотой и амплитудой, соответствующей сети электросети, используя либо однофазную, либо трехфазную сеть. фазоинвертор.

Инвертор — это устройство, которое преобразует электричество постоянного тока (DC) в электричество переменного тока (AC), которое может подаваться непосредственно в электрическую сеть, поскольку подключенные к сети инверторы работают синхронно с коммунальной сетью и производят идентичную электроэнергию. к мощности коммунальной сети. Подключенные к сети синусоидальные инверторы для ветровых установок выбираются с диапазоном входного напряжения, соответствующим выпрямленному выходному напряжению турбины.

Преимущество непрямого подключения к сети состоит в том, что ветряная турбина может работать с переменной скоростью. Еще одним преимуществом выпрямления выходного сигнала генератора является то, что ветряные турбины с синхронными генераторами, которые используют электромагниты в своей конструкции ротора, могут использовать этот постоянный ток для питания обмоток катушек вокруг электромагнитов в роторе. Однако недостатком непрямого подключения к сети является стоимость, поскольку системе требуется инвертор и два выпрямителя, один для управления током статора, а другой для генерирования выходного тока, как показано ниже.

Схема синхронного генератора

Краткий обзор учебного пособия

Синхронный генератор с фазным ротором уже используется в качестве генератора ветровой турбины, но одним из основных недостатков синхронного генератора может быть его сложность и стоимость. Безредукторные генераторы с прямым приводом представляют собой очень медленно вращающиеся синхронные генераторы с большим количеством полюсов для достижения их синхронной скорости. Генераторы с меньшим количеством полюсов имеют более высокие скорости вращения, поэтому требуют коробки передач или трансмиссии, что увеличивает стоимость.

Синхронные генераторы производят электричество, основная выходная частота которого синхронизирована со скоростью вращения ротора. Сетевым генераторам требуется постоянная фиксированная скорость для синхронизации с частотой сети общего пользования, и необходимо возбуждать обмотку ротора от внешнего источника постоянного тока с помощью токосъемных колец и щеток.

Основным недостатком одной операции с фиксированной скоростью является то, что она почти никогда не улавливает энергию ветра с максимальной эффективностью. Энергия ветра теряется, когда скорость ветра выше или ниже определенного значения, выбранного в качестве синхронной скорости.

Ветряные турбины с регулируемой скоростью используют выпрямители и инверторы для преобразования переменного напряжения, выходной переменной частоты синхронного генератора в фиксированное напряжение, фиксированную выходную частоту 50 Гц или 60 Гц, требуемую коммунальной сетью. Это позволяет использовать синхронные генераторы с постоянными магнитами, снижая стоимость. Для низкоскоростных генераторов ветряных турбин с прямым приводом генератор с постоянными магнитами более конкурентоспособен, поскольку он может иметь большее число полюсов, составляющее 60 или более полюсов, по сравнению с обычным синхронным генератором с фазным ротором.

В следующем уроке о ветроэнергетике и генераторах ветряных турбин мы рассмотрим работу и конструкцию другого типа электрической машины, называемой индукционным генератором, также известной как «асинхронный генератор». Асинхронные генераторы также могут использоваться для выработки трехфазной электроэнергии переменного тока, подключенной к сети.

Чтобы узнать больше о «синхронных генераторах» или получить дополнительную информацию об энергии ветра о различных доступных системах генерации ветряных турбин, или изучить преимущества и недостатки использования синхронных генераторов как части системы ветряных турбин, подключенной к сети, щелкните здесь, чтобы Получите копию одной из лучших книг о синхронных генераторах и двигателях прямо сегодня на Amazon.

Уже в продаже

Синхронные генераторы (электрические генераторы…

уже в продаже)

Генерация энергии ветра: моделирование и управление

Принципы работы электрических машин: обязательное руководство…

Уже в продаже

Проектирование вращающихся электрических машин

[PDF] Оптимизация и проектирование возбуждения синхронного генератора низкого напряжения

  • Идентификатор корпуса: 18142753
 @inproceedings{Rasilo2007LowvoltageSG,
  title={Оптимизация и проектирование возбуждения низковольтного синхронного генератора},
  автор = {Пааво Расило и Текниллинен Коркеакоулу и Дипломити {\"о}н Тиивистельм{\"а} и Текий{\"а} Пааво Расило},
  год = {2007}
} 
  • P. Rasilo, Teknillinen Korkeakoulu, Tekijä Paavo Rasilo
  • Опубликовано в 2007 г.
  • Физика

……………………… …………………………………………. …………………………………………. …………….2 ТИВИСТЕЛЬМЯ……………………………. …………………………………………. …………………………………………. …….3 ПРЕДИСЛОВИЕ ………………………………… …………………………………………. …………………………………………. ……4 СПИСОК СИМВОЛОВ И СОКРАЩЕНИЙ… 

lib.tkk.fi

Поиск оптимизации машины возбуждения синхронного генератора путем анализа угла коммутации выпрямителя

Общеизвестной характеристикой привода возбуждения синхронного генератора является большое перекрытие коммутации выпрямителя со стороны ротора. Большое значение угла коммутации выпрямителя добавляет…

Конструкция низковольтного синхронного генератора с фазным ротором

  • М. Косович, С. Смака, С. Масич, И. Салихбегович, Х. Штейнхарт
  • Машиностроение

    2011 XXIII Международный симпозиум по информационно-коммуникационным технологиям и технологиям автоматизации

  • 2011

Представлена ​​конструкция магнитопровода низковольтного трехфазного синхронного генератора с фазным ротором для автономной работы и некоторые характеристики опытного образца, который в настоящее время строятся, отдаются.

Виртуальное прототипирование и проектирование системы возбуждения третьей гармоники для низковольтных бесщеточных генераторов переменного тока на основе FEM

  • K. S. Jiji, N. Jayadas, C. Babu
  • Engineering

  • 2015

Бесщеточные генераторы переменного тока с явно выраженными полюсами, соединенные с двигателями внутреннего сгорания, широко используются в качестве резервных источников питания для удовлетворения промышленных потребностей в электроэнергии. Конструкция таких генераторов требует высокой мощности для…

Метод реконструкции поля, применяемый для подавления гармоник напряжения в явнополюсных синхронных генераторах

Небольшие синхронные генераторы могут иметь выходное напряжение с относительно высокими гармоническими искажениями. Это связано с тем, что распределение плотности потока вдоль воздушного зазора не является чистым…

Otimização multiobjetiva da máquina síncrona de polos salientes baseada em algoritmo genético e análise de robustez

  • Maycon A. Maran, Rogério A. Flauzino, Rodrigo A. Ramos
  • 2020

Electric machine optimization has become a relevant topic over последнее десятилетие. Достижения в области информатики предоставили огромные возможности для анализа различных конструкций. Сложная мультифизика и многоуровневый…

ПОКАЗЫВАЕТСЯ 1-10 ИЗ 22 ССЫЛОК

СОРТИРОВАТЬ ПОРелевантностьНаиболее влиятельные статьиНедавность

Вспомогательные обмотки, питающие АРН бесщеточного синхронного генератора

Две правильно спроектированные вспомогательные обмотки, установленные в пазах статора, могут обеспечить соответствующее питание для автоматического регулятора напряжения (АРН) бесщеточного синхронного генератора.

Back to top